
Integrating Scheduling and Queueing For Dynamic Scheduling Problems

Student: Daria Terekhov Supervisor: J. Christopher Beck Collaborator: Tony T. Tran
Department of Mechanical & Industrial Engineering

University of Toronto, Toronto, Ontario, Canada
{dterekho,jcb,tran}@mie.utoronto.ca

Abstract

Within the scheduling community, there has recently
been an increasing interest in modelling and solving of
scheduling problems in dynamic and uncertain environ-
ments. Such research does not utilize the developments
of queueing theory, an area that has examined problems
of similar nature. This paper is initial work towards
the goal of integrating queueing theory and scheduling.
Specifically, by combining concepts and problem set-
tings from queueing theory and scheduling, we obtain
new insights about dynamic scheduling.

Introduction
In a typical real-world scheduling problem, the set of jobs
changes dynamically over time and the durations of jobs
are affected by various types of uncertainty. The goal is to
determine how the available machine processing time is to
be allocated among competing requests with the objective
of optimizing the performance of the system. Methods for
solving dynamic scheduling problems, in general, must ad-
dress the combinatorial structure inherent in most interesting
scheduling problems, the uncertainty about the evolution of
the system, and the effect of current decisions on the future.
The quality of the resulting schedule should be close to that
of the schedule that could have been constructed if all of the
uncertainty had been revealed a priori. Clearly, this is a dif-
ficult task, because to make a decision, one can only use the
information that is known with certainty at that particular
decision point and the stochastic properties of future events.
The effect of the decision on both short-run and long-run
system performance also has to be considered.

Queueing theory has taken the viewpoint that, since it is
impossible to create an optimal schedule for every single
sample path in the evolution of the system, one should aim
to achieve optimal performance in some probabilistic sense
(e.g., in expectation) over a long time horizon. This goal
could be attained by construction of a policy based on the
global stochastic properties of the system. For example, a
policy could specify the start time assignment decisions to
be made each time a new job arrives. However, the sched-
ule obtained from such a policy, while being of good quality
probabilistically, may in reality be far from optimal for the
particular realization of uncertainty that occurs. Moreover,

queueing theory generally studies systems with simple com-
binatorics, as such systems are more amenable to rigorous
analysis of their stochastic properties.

In the scheduling community, a dynamic scheduling prob-
lem is generally viewed as a collection of linked static prob-
lems. Adopting this view makes the abundance of algo-
rithms developed for static scheduling problems directly ap-
plicable as these algorithms can deal with complex com-
binatorics and can optimize the quality of each static sub-
problem schedule. However, these approaches tend to over-
look the long-run performance and the stochastic properties
of the system, with a notable exception being the work of
Branke and Mattfeld (2002).

Thus, queueing theory and scheduling have differing
views of dynamic problems. Our goal is to investigate
whether these two viewpoints can be combined in way that
would be beneficial for dynamic scheduling. This paper is
an initial step towards this goal: we combine problem set-
tings and ideas from queueing theory and scheduling and, as
a result, obtain novel insights about dynamic scheduling.

Problem Formulations
We study two related dynamic scheduling environments: a
two-machine flow shop and a polling system with a flow
shop-like server.

In a two-machine dynamic flow shop, jobs arrive stochas-
tically over time and must be processed first on machine 1
and then on machine 2. The time of a job arrival and the
processing times on both machines are not known until the
instant the arrival occurs. Both machines are of unary capac-
ity, and preemptions are not allowed. The buffers in front
of machine 1 and machine 2 are assumed to be of infinite
size. The goal of the problem is to assign start times to all
jobs on the two machines so that the mean job flow time is
minimized. A job’s flow time is defined as the difference be-
tween the job’s completion time on the second machine and
its arrival time to the system.

Polling systems are also dynamic environments: jobs ar-
rive at random points in time and, under one set of queue-
ing assumptions, the processing times of these jobs are not
known until their arrival. Polling systems usually consist of
a single server and multiple job classes. Each arriving job
has to wait for processing in the queue corresponding to its
specific class. As in much of polling system research (Levy



Figure 1: Polling system with 3 sub-problems (each corre-
sponding to a queue visit) and n = 3 jobs per sub-problem.

and Sidi 1990; Takagi 2000), we assume that the server vis-
its (i.e., polls) the queues in a cyclic manner and, upon each
visit to a queue, employs a gated discipline, processing all
jobs that are present at the time of its arrival. Preemptions
are not allowed.

Unlike in standard queueing models, we assume that the
server of the polling model consists of two machines in se-
ries (a two-machine flow shop). We consider the problem
of scheduling jobs for processing by the two-machine server
with the objective of optimizing the mean flow time. Due
to the gated policy assumption, upon arrival to a queue, the
server is faced with a static two-machine flow shop schedul-
ing problem.

Scheduling in Polling Systems and Dynamic
Flow Shops

We solve the two problems described above via periodic
scheduling strategies: at a given point in time, we review the
jobs present in the system or a particular queue of the sys-
tem, create a schedule for these jobs, and once this schedule
is executed, review the status of the system again. We exam-
ine two queueing-based and two scheduling-based methods
for creating each sub-schedule in both polling systems and
dynamic flow shops. The time at which scheduling happens
is different in the two environments. In the polling system,
the server switches from one queue to the next only after all
of the jobs present upon its arrival to the queue have been
processed on both machines. The start of every new sub-
problem is equal to the completion time of the last job in the
previous sub-problem, as shown in Figure 1. In a dynamic
flow shop without a polling structure, such an assumption
is unreasonable since it would create unnecessary idle time
on machine 1. Thus, in a dynamic flow shop, scheduling is
performed once all jobs of the previous sub-problem have
been processed on the first machine, as illustrated in Figure
2. This difference plays a key role in further analysis.

Methods for Solving Static Sub-problems
To our knowledge, policies for the polling system discussed
in this paper have not been examined in queueing theory.
We are also unaware of any queueing policy that has been
proven to be optimal, even in the expected sense, for a dy-
namic two-machine flow shop under the assumptions we
make above. Thus, we consider two queueing approaches

Figure 2: Dynamic flow shop with 3 sub-problems and n =
3 jobs per sub-problem.

for which theoretical results are available for systems related
to ours. Specifically, the two queueing policies that we use to
solve each sub-problem are first-come, first-served (FCFS)
and shortest total processing time first (SPTsum).

Under FCFS, the jobs are processed in non-decreasing or-
der of their arrival times to the queue. Towsley and Baccelli
(1991) show that FCFS achieves the smallest expected flow
time in a two-machine dynamic flow shop in the class of
work-conserving, non-preemptive policies that do not use
processing time information.

Employing SPTsum means that all jobs present in the
queue at the time when the schedule is constructed are pro-
cessed in non-decreasing order of the sum of their durations
on machine 1 and machine 2. This policy choice is moti-
vated by the fact that, in the case when the server is a single
unary resource, shortest processing time first minimizes the
expected flow time in queueing systems with a single queue
or with a polling structure under a cyclic, gated service dis-
cipline (Wierman, Winands, and Boxma 2007).

From the perspective of scheduling, each static queue sub-
problem presents an opportunity for optimization. Since
minimizing flow time under the above assumptions is equiv-
alent to minimizing the total completion time, a natural
choice of objective to be optimized in a sub-problem is the
sum of completion times of activities on the second ma-
chine. We refer to this model as the completionTime model.
Optimizing the total completion time will lead to the best
short-run performance but, given the dynamics of the sys-
tem, may not result in the best mean flow time in the long-
run. The completionTime model also has a computational
disadvantage: minimizing the sum of completion times in a
two-machine flow shop is NP-hard (Pinedo 2003).

The fourth method we employ is motivated by a com-
bination of queueing-based reasoning and the fact that
scheduling methods can be used to optimize local queue
performance. Specifically, suppose that we minimize the
makespan for the set of jobs present in the queue, with
makespan being defined as the difference between the end
time of the job that is scheduled in the last position on ma-
chine 2 and the start time of the job that is scheduled in the
first position on machine 1. Minimizing makespan may lead
to a schedule with a sub-optimal mean flow time for the sub-
problem, since minimizing mean flow time is not equivalent
to minimizing makespan. However, the minimum makespan
schedule may allow jobs in subsequent sub-problems to start



0.3 0.4 0.5 0.6 0.7 0.8

0
50

0
10

00
15

00
20

00

System Load

M
ea

n 
F

lo
w

 T
im

e

Mean Flow Times for Various Queue Loads

FCFS
SPT_sum
makespan
completionTime 

Figure 3: Mean flow times in a polling system with a two-
machine flow shop server for FCFS, SPTsum, completion-
Time and makespan models as the system load varies.

earlier than under the completionTime approach. Earlier
start times for all jobs would imply lower total completion
times for future sub-problems and, therefore, better long-
run performance. Moreover, the optimal makespan sched-
ule for a static two-machine flow shop can be found us-
ing a polynomial-time algorithm – Johnson’s rule (Conway,
Maxwell, and Miller 1967). The scheduling approach that
uses Johnson’s rule to solve each sub-problem will be re-
ferred to as the makespan approach.

Polling System
In order to understand the performance of the four methods
in a polling system with a flow shop server, we simulated
five symmetrical systems with N = 5 queues and with an
arrival rate of λ = 1 for every queue. In each system, the
processing times are exponentially distributed with the same
means on both machines. As the mean processing times in-
crease in the different experimental conditions, the load on
the system, defined as Nρ, where ρ = λ/µ and 1/µ is the
mean processing time both on machine 1 and 2, increases.
Thus, to observe the variation in performance as the load
changes, we considered systems with µ ∈ {16, 12, 10, 8, 6}.

Figure 3 shows the mean flow times for the completion-
Time model with a 1-second time limit, FCFS, SPTsum and
the makespan model as the system load increases. Every
point in this figure represents the mean flow time over 100
problem instances, each consisting of 25000 jobs (5000 per
queue). The figure shows that, for loads of 0.5 or less, the
performance of the four methods is almost identical. For
loads greater than 0.5, makespan achieves the lowest mean
flow times. Moreover, the difference in performance be-
tween makespan and the other methods grows as the load
increases. FCFS results in the highest flow times, while
the relative performance of completionTime and SPTsum

changes as the loads change. For loads of 0.65 or less, the
completionTime model has a slight advantage over SPTsum;

0.2 0.4 0.6 0.8

0
10

0
20

0
30

0

Queue Load

M
ea

n 
F

lo
w

 T
im

e

Mean Flow Times for Various Queue Loads

FCFS
SPT_sum
makespan
completionTime 

Figure 4: Mean flow times in a dynamic two-machine flow
shop for FCFS, SPTsum, completionTime and makespan
models as the system load varies.

when the load increases to 0.85, the reverse is true.

Dynamic Flow Shop
To evaluate the performance of our four methods in a dy-
namic flow shop, we considered a system with exponential
inter-arrival times and exponential processing times with the
same means on both machines, with the arrival distribution
and processing time distributions being independent. We
fixed the inter-arrival rate, λ, to 10, and varied the load on the
system by changing the rates of the processing time distri-
butions from 100 to 10.53. The results of these experiments
are shown in Figure 4. Each point in the figure represents
the mean flow time over 100 instances of 55000 jobs each.

Figure 4 shows that the relative performance of the four
methods is different without a polling structure. Although
there is no significant difference between the methods,
SPTsum is slightly better than the rest, especially when
the load of the system is at or above 0.9. The mean flow
times obtained by the completionTime model are compara-
ble to those of FCFS, with the makespan model being only
marginally better.

Polling System vs. Dynamic Flow Shop
We can view the global system schedule for each environ-
ment as a sequence of linked sub-schedules. In this global
schedule, every job j has completion time Cj . We denote by
C0

j the end time of job j under the assumption that the first
job of the sub-problem to which j belongs starts at time 0.
Cj is equal to C0

j shifted forward in time by an amount that
is a function of the characteristics of previous sub-problems.
This function explains the differences in the relative perfor-
mance of the four methods shown in Figures 3 and 4.

Specifically, in a polling system, C0
j is always shifted by

the sum of the makespans of the preceding sub-problems.
Thus, as the number of time periods in the overall prob-
lem grows, so does the saving obtained from applying to



each sub-problem the schedule with the minimum makespan
rather than with the minimum total completion time. In a
dynamic flow shop, the value of the shift is dependent on
the sum of machine 1 processing times and the idle times
occurring before each job in addition to the makespans of
sub-problems. Unlike in the polling model, the shifts of
jobs resulting from the makespan approach are not much
smaller than from the other methods, while the total com-
pletion times could be significantly greater. In fact, in a
dynamic flow shop, the model that finds the schedule with
the best total completion time for every sub-problem will
achieve the smallest overall mean flow time. In the results
of Figure 4, the model that finds the best total completion
time schedules for the sub-problems is SPTsum: the com-
pletionTime model cannot find good quality solutions due to
the 1-second run-time limit. Formal support for these results
is given in the work of Terekhov, Tran and Beck (2010).

In the polling system, a conflict exists between short-run
and long-run objectives. That is, minimization of the sum of
completion times at each scheduling point results in the best
performance for the current sub-problem, but leads to poor
performance in the long-run. Minimization of the makespan,
on the other hand, leads to sub-optimal sum of completion
time values for each sub-problem, but results in significant
overall mean flow time improvements. In the dynamic two-
machine flow shop there is no conflict between the ways in
which we have attempted to optimize long-run and short-
run objectives: minimizing the total completion time of each
sub-problem also leads to better mean flow time in the long-
run than does minimizing makespan.

Future Work
We have shown that integrating queueing theory and
scheduling on a conceptual level can lead to a better under-
standing of dynamic scheduling. In subsequent work, we
would like to combine queueing and scheduling on an algo-
rithmic level, with the goal being the development of more
effective methods for scheduling in dynamic environments.
The polling system described above and a multi-class dy-
namic flow shop can serve as a basis for such research.

The queueing theory methods that we would like to in-
vestigate are based on fluid models, which treat jobs as a
continuous fluid rather than as discrete entities and focus on
system dynamics. These models, expressed as linear pro-
grams and solved periodically, can give the proportion of
time that should be allocated to each class within the next
scheduling period (Atkins and Chen 1995). Fluid models
have a global view of the system: they are based on proper-
ties of classes rather than individual jobs and provide high
level guidance of how machine time should be used rather
than exact sequencing decisions. As a consequence, they
are likely to optimize long-run objectives but may perform
poorly for a given short time horizon.

Since scheduling methods, in contrast, achieve good
short-run performance but may be myopic, combining a
scheduling method with a fluid model-type approach ap-
pears promising. For example, we can use a fluid model
to determine the percentage of machine time within the next
period that should be allocated to each class, then select and

schedule the first lk jobs from each class k such that the
sum of the processing times of these jobs would be smaller
than or equal to the amount of time that is allocated. We
would like to empirically show whether such hybrids outper-
form pure queueing or pure scheduling approaches as well
as determine the reasons for differences in the relative per-
fomance of these methods.

Conclusion
In this paper, we have considered the problem of minimizing
the mean flow time in two-machine dynamic flow shop
environments from the perspectives of queueing theory and
scheduling. Queueing theory approaches tend to optimize
the long-run expected performance of the system, while
scheduling focuses on actual short-run objectives. Taking
both viewpoints into account, we have found that, in a
polling system, a method which incrementally constructs
the schedule by minimizing the makespan of each subse-
quent set of jobs results in a better mean flow time than
does a method that minimizes the mean flow time itself. In
a dynamic flow shop, the reverse is true. Our work shows
the importance of considering both short-run and long-run
objectives in dynamic scheduling, and demonstrates that
combining ideas from scheduling and queueing theory can
lead to new insights about dynamic scheduling.

Acknowledgments This work was supported by the Natural
Sciences and Engineering Research Council of Canada.

References
Atkins, D., and Chen, H. 1995. Performance evaluation
of scheduling control of queueing networks: Fluid model
heuristics. Queueing Systems 21:391–413.
Branke, J., and Mattfeld, D. C. 2002. Anticipatory schedul-
ing for dynamic job shop problems. In Proceedings of the
ICAPS’02 Workshop on Online Planning and Scheduling,
3–10.
Conway, R. W.; Maxwell, W. L.; and Miller, L. W. 1967.
Theory of Scheduling. Addison-Wesley.
Levy, H., and Sidi, M. 1990. Polling systems: Applica-
tions, modeling, and optimization. IEEE Transactions on
Communications 38(10):150–1760.
Pinedo, M. 2003. Scheduling: Theory, Algorithms, and
Systems. Prentice-Hall, 2 edition.
Takagi, H. 2000. Analysis and application of polling mod-
els. In Performance Evaluation: Origins and Directions,
Lecture Notes in Computer Science. Springer. 423–442.
Terekhov, D.; Tran, T. T.; and Beck, J. 2010. Investigat-
ing two-machine dynamic flow shops based on queueing
and scheduling. In Proceedings of ICAPS’10 Workshop on
Planning and Scheduling Under Uncertainty. To Appear.
Towsley, D., and Baccelli, F. 1991. Comparisons of service
disciplines in a tandem queueing network with real time
constraints. Operations Research Letters 10(1):49–55.
Wierman, A.; Winands, E.; and Boxma, O. 2007. Schedul-
ing in polling systems. Performance Evaluation 64:1009–
1028.


