
MacroSatPlan: Combining macros and SAT planning

Mauro Vallati∗
Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, Via Branze 38, 25123 Brescia, Italy

mauro.vallati@ing.unibs.it

Abstract

Planning based on propositional satisfiability is a pow-
erful approach for computing makespan-optimal plans.
However, it is usually slower then heuristic-based sub-
optimal approaches. In this work we propose MacroSat-
Plan; a SatPlan based planner which exploits macros ex-
tracted by Macro-FF and uses a predictive model of the
optimal solution length that is constructed by WEKA, a
commonly used toolkit of machine learning algorithms.
First we briefly present the SatPlan approach. Then we
describe the architecture of MacroSatPlan. Finally we
present the results of an experimental study evaluating
MacroSatPlan.

Background
SatPlan (Kautz and Selman 1992; 1999; Kautz, Selman, and
Hoffmann 2006) is a planner based on the satisfiability ap-
proach. It constructs a planning graph (Blum and Furst
1995) up to the first level k that contains all the problem
goals. The graph is converted into a set of clauses in con-
junctive normal form (CNF). The CNF is solved by a SAT-
solver. If the set of clauses is unsatisfiable, the planning
graph level k (and the corresponding SAT encoding) is in-
creased and the process repeats. Otherwise the solution of
the CNF is translated into a solution for the original planning
problem.

MiniSat (Niklas and Niklas 2003) is the SAT-solver used
in this work. The search of MiniSat is based on the DPLL
algorithm (Davis, Logemann, and Loveland 1962), extended
with backtracking by conflict analysis and clause recording
(Silva and Sakallah 1996), and boolean constraint propaga-
tion (BCP) (Moskewicz et al. 2001).

Algorithm 1 gives the general search procedure of Min-
iSat. Function selectVariable(Ω) selects a variable which is
currently unassigned, and assignes the false value to it. This
process is called decision. Then the effects of the decision
are propagated by unit propagation: as soon as a clause be-
comes unary under the current assignment, the remaining
literal in the clause is set to true and this decision is propa-
gated, possibly reducing other clauses to unary clauses. The

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The work described in this paper is the result of a joint work
with Alfonso E. Gerevini and Alessandro Saetti.

propagation process continue until no more information can
be propagated. If a conflict is encountered (all literals of a
clause are false), a conflict clause is constructed and added to
the SAT problem; The decisions made are canceled by back-
tracking until the conflict clause becomes unary; this unary
clause is propagated and the search process continues.

Algorithm 1
Input: A CNF formula encoding a planning problem
Output: SAT or UNSAT
v← null;
while TRUE do

propagate(v);
if not conflict then

if all variables assigned then
return SAT;

else
v← selectVariable(Ω);
Ω← Ω - v;

else
analyze conflicting clause;
if top level conflict then

return UNSAT;
else

backtracking;

Figure 1: The MiniSat search algorithm. Ω indicates the
set of unassigned variables.

A critical component of Algorithm 1 is the heuristic for
selecting the next variable to assign. MiniSat uses a dynamic
variable order that prefers the variables involved in recent
conflicts (each variable has an activity indicator associated
with it (Moskewicz et al. 2001)). The activity of a variable is
increased every time it is involved in a conflict. Periodically,
all the activity values are divided by a constant. Therefore
variables involved in recent conflicts have a greater activity
value.

MiniSat employs search restarts. A search restart consists
of clearing all the decisions made, keeping some of the in-
formation gained from the conflict analysis, and then start-
ing again the search.

Figure 2: A sketch of MacroSatPlan’s architecture

Architecture of MacroSatPlan
The architecture of MacroSatPlan, sketched in Figure 2,
consists of three main modules, briefly described below.
Learning. MacroSatPlan computes some macro-actions (or
simply macros) using the techniques described in Macro-FF
(Botea and Schaeffer 2007). The approach incorporated into
Macro-FF computes macros by analyzing the solutions of a
set of problems generated by the FF planner (Hoffmann and
Nebel 2001). The macros that appear more frequently and
that reduce the required search effort significantly are pre-
ferred. Macro-FF orders the extracted macros by evaluating
their impact on the run-time performance of FF. MacroSat-
Plan selects only the best macro computed by this approach.

Moreover, MacroSatPlan learns a predictive model about
the length of optimal plans using WEKA. The model is built
from the set of features in Table 1. This approach is inspired
by and related to the work in (Howe et al. 2008), with some
significant differences. Howe et al.’s system is used to pre-
dict the behavior of 17 planners; in particular to predict if a
planner will be able to solve problems in a large set of known
domains. On the contrary, MacroSatPlan’s model is specific
to one given domain and it estimates the length of the so-
lution plans. Moreover the set of features is different: our
approach considers also the number of actions in the relaxed
plan of FF, which is not considered in (Howe et al. 2008).
Preprocessing. For every test problem, FF computes the
corresponding relaxed plan. The relaxed plan is used by
MacroSatPlan to order and select macros during SAT solv-
ing. The more actions of the relaxed plan are included in
a macro, the more promising this macro is, considered in
terms of its possible presence in a solution (and hence of its
usefulness in generating the solution).

SatPlan constructs the planning graph up to the level k

Metrics Description
number of problem goals
number of problem objects
number of facts in the initial state
number of actions in the relaxed plan of FF

Table 1: The set of features for a planning problem used of
MacroSatPlan.

Algorithm 2
Input: A CNF formula encoding a planning problem
Output: SAT or UNSAT
v← null;
while TRUE do

propagate(v);
if not conflict then

if all variables assigned then
return SAT;

else
if v corresponds to an action then

res← propagateNoop(v);
if res = SAT or res = UNSAT then

return res;

v← selectVariableFromMacros(Ω,M);
if v = null then

v← selectVariable(Ω);
Ω← Ω - v;

else
analyze conflicting clause;
if top level conflict then

return UNSAT;
else

backtracking;

Figure 3: The modified MiniSat algorithm. M represents
the set of all computed macros. Underlined lines indicate
the new parts of the algorithm

estimated by the learned predictive model. If MiniSat solves
the problem, the level of the planning graph is (iteratively)
decremented in order to find an optimal plan. Otherwise the
current planning graph is too short, and the SAT encoder
increments k.
Planning. A modified version of MiniSat tries to solve the
SAT problem received from the SAT encoder. The new SAT
solver exploits macros and the relaxed plan computed by FF
to guide the satisfiability search.

The revised MiniSat algorithm
The original MiniSat algorithm has been modified for taking
advantage of macro-actions. Algorithm 2 is an overview of
the modified search procedure. First it tries to select and
assign variables belonging to macros. If these choices fail,
the original MiniSat heuristic decides the next variable.

The procedure selectVariableFromMacros, in Algorithm
3, selects the next variable to decide by analyzing macros.

Algorithm 3
Input: The set of all computed macros M; the set of

unassigned variables Ω; the current variable
assignmentW .

Output: next variable to assign or null
MF ← {m ∈M | @v ∈ m, ·W |= (v = False)}
MT ← {m ∈M | ∀v ∈ m, ·W |= (v = True)}
MS ← {m ∈M \MF ∪MT | ∀v ∈ m,@m′ ∈
MT · v ∈ m′}
if |MS |= 0 then

return null
m← select(MS)
v ← first(m ∩ Ω)
return v
Figure 4: The selectVariableFromMacros procedure.

It operates on M , the set of all computed macros, and de-
fines three subsets: MS, MT and MF . MF contains all
macros with at least a variable assigned as false; MT con-
tains only macros with all the variables assigned as true (we
call them “completely assigned macros”); MS (Macros Se-
lected) contains “activable” macros: macro-actions in which
there exists at least one not yet assigned variable.
MS does not include macros with a variable assigned as

false. This is to avoid promoting variables in macros that,
given the current variable assignment, it is likely that will
not appear in the solution plan. MS even does not con-
tain macros with a variable in another completely assigned
macro, since we observed that, for several domains, two
macro-actions including at least one common action do not
happen simultaneously in a solution plan.

If the MS set is empty, the procedure returns null. That
is the procedure cannot find a variable to assign. Otherwise,
the select function is called to order macros and returns the
most promising one. Algorithm 4 shows the select proce-
dure. It orders macros by (i) number of actions that appear
in the relaxed plan, (ii) the ratio between the number of vari-
ables assigned as true and the cardinality of the macro, (iii)
the sum of the activity values of variables, (iv) the time step
of the first action. If none of the ordering criteria returns
a single macro, a random macro from the M ′′′′ set will be
returned. From the returned macro, the selectVariableFrom-
Macros procedure extracts the unassigned variable that en-
codes the action at the earlier time step, by function first.

Moreover, MacroSatPlan tries to assign Noops everytime
it assigns an action. Only Noops of goals’ facts are con-
sidered. The propagateNoop procedure, shown in Figure 6,
tries to decide variables corresponding to Noops that are en-
coded in time steps subsequent to the last assigned action.

Further, MacroSatPlan uses the search restarts to switch
between the original MiniSat algorithm and the modified
one. This policy is intended to combine both the strategies.

Preliminary Experimental results
In this section, we present the results of an experimental
study about MacroSatPlan. The main goal is testing the ef-

Algorithm 4
Input: The set of Selected Macros MS; the current

variable assignmentW .
Output: The most promising macro
M ′ ← argmax

m∈MS
{ |{v∈m|Action(v)∈π}|

|m| }

if |M ′ |= 1 then return M ′

M ′′ ← argmax
m∈M ′

{ |{v∈m|W|=v=True}|
|m| }

if |M ′′ |= 1 then return M ′′

M ′′′ ← argmax
m∈M ′′

{
∑
v∈m activity(v)}

if |M ′′′ |= 1 then return M ′′′

M ′′′′ ← argmin
m∈M ′′′

{level(first(m))}

if |M ′′′′ |= 1 then return M ′′′′

return random macro in M ′′′′
Figure 5: The select procedure. π indicates FF’s relaxed
plan. Function Action(v) returns the action in macro m
corresponding to variable v. Procedure level(first(m))
returns the time step of the variable that encodes the action
istanced at the earlier time step. activity(v) calculates the
activity of the variable v.

Algorithm 5
Input: An assigned variable v; the set of unassigned

variables Ω; the current variable assignmentW .
Output: SAT or UNSAT or DONE
l← level(v)+1;
PrevG← GN(l);
for l to EndLevel do

G← { g ∈ GN(l) | PrevLevVar(g) ∈ PrevG };
foreach g in G do

if g ∈ Ω then
W ←W ∪ {g = True};
propagate(g);
if not conflict then

if all variables assigned then
return SAT;

else
analyze conflicting clause;
if top level conflict then

return UNSAT;
else

backtracking;
G← G - g;

PrevG← G;
return DONE;

Figure 6: The propagateNoop algorithm. Function Pre-
vLevVar(g) returns the variable corresponding to g, at the
precedent time step. Function level(v) returns the time step
of the action corresponding to variable v. EndLevel repre-
sents the last time step of the encoded problem. GN(l) is
the set variables encoding noops of the goals’ facts at time
step l

 0.1

 1

 10

 100

 1000

 0 6 12 18 24 30

FerrySeconds

Demonstrate_Optimality (15 solved)
Find_Optimal_Solution (30 solved)
Original_Solver (12 solved)

Number of istance
Figure 7: CPU time for Ferry

fectiveness of the learned knowledge. We compare the re-
sults of MacroSatPlan with the original SatPlan.

The experimental analysis uses a collection of prob-
lems in the well-known domains Gripper, Ferry and
Depots. The set of problems used for learning the domain
knowledge and the one used for testing MacroSatPlan are
disjoint.

Figures 7, 8 and 9 show the results of MacroSatPlan for
finding the optimal solution (Find Optimal Solution) and
demonstrating its optimality (Demonstrate Optimality) ver-
sus the original SatPlan (Original Solver).1

Concerning the results of MacroSatPlan for Ferry and
Gripper domains (Figures 7 and 8), we observe that
MacroSatPlan always performs better than the original Sat-
Plan for finding the optimal solution. Furthermore it is gen-
erally faster for demonstration of optimality and it is able to
demonstrate the optimality of more solutions than SatPlan.

Figure 9 gives a picture of the performance of MacroSat-
Plan and SatPlan for Depots. In this domain, there is no
significant difference between the compared systems. For
MacroSatPlan the predictive model learned is not accurate
and the macro computated for Depots isn’t useful.

Finally, the most expensive step in the SAT-based plan-
ning is the demonstration of optimality. MacroSatPlan finds
quickly the optimal solution and uses most of the CPU time
for demonstrating its optimality. The original SatPlan does
not demonstrate the solution optimality because, like Graph-
Plan, it generates encodings where plan length is incre-
mentally increased, starting from a proved lower (or equal)
bound of the optimal plan length.

Conclusions
In this paper, we have presented an approach to learning
macros and a predictive model for improving SAT planning.
Preliminary experimental study shows that this knowledge
can be useful for an enhanced SAT solver.

Future works include additional experiments and the in-
tegration of Wizard (Newton et al. 2007) as another system
for learning macro-actions.

1For the problems with unknown optimal solution, we carefully
checked the solutions found by MacroSatPlan to verify that they are
optimal.

 0.01

 0.1

 1

 10

 100

 1000

 0 6 12 18 24 30

GripperSeconds

Demonstrate_Optimality (10 solved)
Find_Optimal_Solution (30 solved)
Original_Solver (8 solved)

Number of balls
Figure 8: CPU time for Gripper

 0.1

 1

 10

 100

 1000

 10000

 3 4 5 6 7 8 9 10 11 12

DepotsSeconds

Demonstrate_Optimality (33 solved)
Find_Optimal_Solution (34 solved)
Original_Solver (32 solved)

Number of crates
Figure 9: CPU time for Depots

References
Blum, A., and Furst, M. 1995. Fast planning through planning graph analysis. In
Proceedings of the 14th International Joint Conf. on Artificial Intelligence.

Botea, A. Muller, M., and Schaeffer, J. 2007. Fast planning with iterative macros.
Proceedings of the International Joint Conf. on Artificial Intelligence.

Davis, M.; Logemann, G.; and Loveland, D. 1962. A machine program for theorem-
proving. Commun. ACM.

Hoffmann, J., and Nebel, B. 2001. The ff planning system: fast plan generation
through heuristic search. Journal of Artificial Intelligence Research.

Howe, A. E.; Roberts, M.; Wilson, B.; and desJardins, M. 2008. What makes
planners predictable? In Proceedings of the 18th International Conf. on Automated
Planning and Scheduling.

Kautz, H., and Selman, B. 1992. Planning as satisfiability. In Proceedings of 10th
European Conference on Artificial Intelligence (ECAI-92).

Kautz, H., and Selman, B. 1999. Unifying sat-based and graph-based planning. In
Proceedings of the International Joint Conf. on Artificial Intelligence.

Kautz, H.; Selman, B.; and Hoffmann, J. 2006. Satplan: Planning as satisfiability.
In Abstracts of the 5th International Planning Competition.

Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.; and Malik, S. 2001. Chaff:
Engineering an efficient sat solver. In Proceedings of the 38th Design Automation
Conf.

Newton, M. A. H.; Levine, J.; Fox, M.; and Long, D. 2007. Learning macro-actions
for arbitrary planners and domains. In Proceedings of the 17th International Conf.
on Automated Planning and Scheduling.

Niklas, E., and Niklas, S. 2003. An extensible sat-solver. In SAT 2003.

Silva, J. P. M., and Sakallah, K. A. 1996. Grasp a new search algorithm for satisfia-
bility. In Proceedings of the 1996 International Conf. on Computer-aided design.

