
Monte-carlo search for deterministic planning

Hootan Nakhost and Martin Müller
Department of Computing Science

University of Alberta
{nakhost,mmueller}@cs.ualberta.ca

Abstract

A summary of Monte-carlo random walk (MRW) planning,
and tools that are needed to use this method effectively are
given. Some preliminary results that show MRW can be ef-
fective to solve resource constrained problems are presented,
and potential directions for future work are discussed.

Introduction
Greedy search-based approaches, such as Hill-climbing, and
Best-first Search are popular in classical planning. These
methods exploit all the knowledge obtained from strong
but slow heuristic functions such as planning graph-based
heuristics (Hoffmann and Nebel 2001) and do not try to ex-
plore the search space. This lack of exploration can cause
problems in case of misleading heuristic values.

For an example, Figure 1 shows a problem in the
Pipesworld domain. The task is to move all oil products
P3, P4, P5, and P6 from A to B through the connecting pipe.
The main action in this domain is to push a product into a
pipe, which forces the product inside the pipe to get out at
the other end. A valid short plan should first move the prod-
uct P2, which is in the pipe, to A, and then use P2 to push
all the other four products through the pipe. However, this is
not a plan that a good heuristic function like Fast Forward’s
(Hoffmann and Nebel 2001) suggests: ignoring delete lists
makes it possible to move all products to B without using
P2. Figure 2 shows parts of the search space of this problem.
While easy paths to a goal can be found by little exploration
in the search space (e.g., the first path on top), greedy search
methods, misguided by heuristic values will waste lots of
time exploring irrelevant search regions (the states inside the
dashed oval).

The focus in this thesis is on designing planning algo-
rithms that are more sophisticated than common greedy al-
gorithms to recover from areas where the heuristic evalua-
tion is poor. Monte-carlo random walk (MRW) planning
(Nakhost and Müller 2009) can be considered as a signifi-
cant step in this line of research. MRW uses random sam-
ples from local search space to balance the exploration and
exploitation in the search.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The initial state and goal of an example in
Pipesworld domain.

Figure 2: The search space of the problem in Figure 1. Cir-
cles signify states, arrows depict actions and numbers show
the heuristic values.



More exploration in the search does come at a cost.
Stochastic methods like MRW can generate unnecessary
long and inefficient solutions. To address this limitation
of strong but highly sub-optimal methods like MRW plan-
ning, fast post-processing tools are developed (Nakhost
and Müller 2010) to improve the quality of solutions gen-
erated by these planners. These methods use the sum
of costs of action in the plan as a measure of the qual-
ity. Another metric that can be used in make-span. The
post-processing approaches of (Do and Kambhampati 2003;
Veloso, Pérez, and Carbonell 1990) aim to reduce the make-
span of a given totally ordered plan by converting it to a
partially ordered plan.

The remainder of this paper is organized as follows: The
next section describes the main idea of MRW planning.
Then, two methods to improve the quality of sub-optimal
solutions are introduced, and finally potential directions for
future work are given.

Algorithm 1 Local Search Using Monte Carlo Random
Walks (Nakhost and Müller 2009)
Input Initial State s0, goal condition G and

available actions A
Output A solution plan

s← s0
hmin ← h(s0)
counter ← 0
while s does not satisfy G do

if counter > MAX STEPS or DeadEnd(s) then
s← s0 {restart from initial state}
counter ← 0

end if
s←MonteCarloRandomWalk(s, G)
if h(s) < hmin then
hmin ← h(s)
counter ← 0

else
counter ← counter + 1

end if
end while
return the plan reaching the state s

Monte-carlo random walks
Algorithms 1 and 2 illustrate an outline of the MRW method.
The basic idea is to use a local heuristic search, and at each
search step, instead of choosing the next state from the im-
mediate neighbors, choose the successor from a set of sam-
pled states from the local neighborhood. Each sample is ob-
tained by running a random walk, which is a sequence of
randomly selected actions. The sampled state is the endpoint
of the walk. Therefore, just the endpoints need to be eval-
uated. The endpoint that has the minimum heuristic value
is chosen as the next state in the local search. The number
and length of random walks are modified according to lo-
cal characteristics of the search space (For more details, see
(Nakhost and Müller 2009)). MRW search fails when the

minimum obtained h-value does not improve within a given
number of search steps, or when it gets stuck in a dead-end
state. In such cases the search simply restarts from the initial
state, s0.

Algorithm 2 MonteCarloRandomWalk (Nakhost and
Müller 2009)
Input current state s, goal condition G
Output smin

hmin ← INF
smin ← NULL
for i← 1 to NUM WALK do
s′ ← s
for j ← 1 to LENGTH WALK do
A← ApplicableActions(s′)
if A = φ then

break
end if
a← UniformlyRandomSelectFrom(A)
s′ ← apply(s′, a)
if s′ satisfies G then

return s′

end if
end for
if h(s′) < hmin then
smin ← s′

hmin ← h(s′)
end if

end for
if smin = NULL then

return s
else

return smin

end if

Two other variations of MRW methods are explored:
Monte-Carlo Deadlock Avoidance (MDA) and Monte-Carlo
with Helpful Actions (MHA). In contrast to the base algo-
rithm that uses uniformly random action selection, these
methods use statistics from earlier random walks to bias
the action selection towards previously successful actions,
or away from unsuccessful ones. MDA tries to avoid ac-
tions that frequently appear in failed walks, and MHA bi-
ases the action selection towards the actions that often are
among helpful actions according to FF relaxed plan. Help-
ful actions like the heuristic function are just computed at
the endpoints.

The performance of MRW planning, is competitive with
state of the art systems. The main drawback of the planner
is that it can generate very inefficient solutions.

Two Approaches to Plan Improvement
This section introduces the main ideas behind two methods
for plan improvement: Action Elimination improves an ex-
isting plan by repeatedly removing sets of irrelevant actions.
Plan Neighborhood Graph Search finds a new, shorter plan
by creating a neighborhood graph NG(P) of a given plan P,
and then solving a shortest path problem in NG(P).



Action Elimination
As it is explained in (Nakhost and Müller 2010), “Ac-
tion Elimination iteratively improves a given plan π =
(a1, . . . , an) by computing a plan reduction in each itera-
tion. The details are given in Algorithm 3. Starting from
a1, the algorithm tries to remove each action in turn. Af-
ter removing the action, other actions that consequently lose
their support - at least one of their preconditions becomes
unsatisfied - are removed from the plan. If the reduced se-
quence remains a solution, the algorithm commits to it as a
new plan, otherwise, the removed actions are restored, and
the plan remains unchanged. The process terminates when
the last action in the remaining plan is tried”.

Algorithm 3 A greedy algorithm to remove irrelevant ac-
tions (Nakhost and Müller 2010)
Input Initial State s0, plan π = (a1, . . . , an), and

goal condition G
Output A plan reduction
s← s0
i← 1
repeat

mark ai {try to remove ai}
s′ ← s
for j ← i+ 1 to length(π) do

if aj is not applicable to s′ then
mark aj

else
s′ ← apply(s′, aj)

end if
end for
if s′ satisfies G then

remove marked actions from π {commit}
else

unmark all actions
s← Γ(s, ai)

end if
i← i+ 1

until i > length(π)
return π

Plan Neighborhood Graph Search
Plan Neighborhood Graph Search (PNGS) tries to find the
optimal solution in a small subset of the original state space
of the problem. This subset that is built by using the infor-
mation in an initial plan is called the neighborhood graph.
The smallest neighborhood graph of a plan just includes the
states and actions that are visited and executed in the plan.
A given neighborhood graph can be expanded by using a
search method M . L new states are expanded by running
the search methodM starting from each node that is already
in the graph, and then adding these states and the actions
leading to them to the graph. Algorithm 4 gives pseudocode.

One good option for methodM is simply the baseline uni-
form cost search algorithm from the optimal track of IPC-
2008. This algorithm implements an A* search with the fol-

Algorithm 4 Computation of Neighborhood Graph
Input A neighborhood graph (V,E) of a state space with

V = {v0, . . . , vn}, E ⊆ V × V , nonnegative integer
L, and search method M

Output The graph NG(V,M,L)

V ′ ← V
for i← 0 to n do
M.initialize(vi) {search neigborhood of vi}
for j ← 1 to L do
s←M.get next state()
if is null state(s) then

return (V ′, E)
end if
V ′ ← V ′ ∪ s
E ← E ∪M .edgeto(s)

end for
end for
return (V ′, E)

lowing heuristic h: h = 0 for goal states and h is equal to
the minimum action cost in the problem otherwise.

After building a neighborhood graph, the lowest-cost path
from initial state to goal is computed.

Both Action Elimination and PNGS were implemented in
a postprocessor and were empirically shown to improve the
result of several planners, including the Monte-carlo plan-
ner above and the top four planners from IPC-2008, under
competition conditions.

Future and Ongoing Work
Planning with Resources
Most of the state of the art planners have problems dealing
with tasks with constrained resources. The main reason goes
back to the heuristic functions that are used. Most powerful
domain-independent heuristic functions ignore negative ef-
fects of actions, and consequently, can not capture the inter-
action between actions and resources. An interesting future
work, proposed by Jörg Hoffmann, is to see if algorithms
like MRW, which use more exploration in the search, can
handle these heuristic deficiencies.

Some preliminary tests were run for two domains with
highly constrained resources: Transport (Hoffmann et al.
2007) and Trucks, which is used in IPC-2006. Both do-
mains are transportation domains in which some packages
are to be delivered to target locations. In Transport, a truck
with an initial amount of fuel is available to move packages.
The amount of fuel used by the truck depends on the lengths
of the roads traversed. No refueling action is available in
this domain. In contrast to Transport, the critical resource
in Trucks is not the fuel but time: there are deadlines for
delivering packages.

Table 1 shows the percentage of solved tasks for each pair
of tested domains and methods. All the Transport instances
were generated randomly and each of them contains 8 loca-
tions and 8 packages. The initial fuel for each task was set to
1.1 times the minimum fuel that is needed to solve the task.



FF data are obtained by running best first search with the
implementation of Fast Forward’s heuristic that is available
in Fast Downward’s (Helmert 2006) code. Tests were run
on a 2.5 GHz machine using 4GB memory and 30 minutes
timeout.

In both domains, at least one of the variations of MRW
performs better than FF. A surprising result is that MHA
performs much better than MDA in Transport. This do-
main contains many dead-end states, and it was expected
that MDA that tries to avoid dead-ends performs better. This
initial result shows a great potential.

The results suggest that one direction that is worth explor-
ing is to combine MHA and MDA. The combination might
be better than each of them separately: while MDA keeps
random walks away from dead-ends, MHA guides the walks
towards the goal.

Figure 3: The minimum heuristic value obtained before each
restart of MDA for Trucks-18.

Figure 4: The minimum heuristic value obtained before each
smart restart of MDA for Trucks-18.

Smart Restarts
Figure 3 plots the minimum heuristic value reached in each
run of MDA in Trucks-18. MDA with the default restart-
ing mechanism did not solve this instance. The interesting

Domain MDA MHA FF
Trucks(30) 60 7 40
Transport(100) 76 100 43

Table 1: Percentage of tasks solved for MDA, MHA and FF
in two challenging domains. Total number of tasks shown in
parentheses after each domain name.

Domain Basic Restarts Smart Restarts
Trucks(30) 60 70

Table 2: Percentage of tasks solved for MDA with basic and
smart restarts in Trucks.

point is some runs of MDA are much more promising than
other: before they get stuck in a local minima or hit a dead-
end, they reach heuristic values that are much lower than the
average values reached in each run. This might be an in-
dication that they contain useful action sequences. In basic
restarting, no such information from previous runs are used.

A simple method to benefit from good runs, which
reached relatively small values, is to use the states visited
in n best previous runs as starting points of later runs. At
each restart, it is enough to select one of these states ran-
domly and use it as the starting point of the next run. Figure
2 shows the data obtained from running this method, called
smart restarts, to solve Trucks-18. The value n was set to
10 and smart restarts was activated after run 50. Before that
the basic restarting is used. The results show that on aver-
age the heuristic values obtained in later runs are smaller.
Trucks-18 was solved after 197 restarts, which confirms that
the information kept from previous runs is helpful. Table 2
shows that smart restarts solves three more problems in the
Trucks domain.

References
Do, M. B., and Kambhampati, S. 2003. Improving tempo-
ral flexibility of position constrained metric temporal plans.
In ICAPS, 42–51.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.
Hoffmann, J.; Kautz, H.; Gomes, C.; and Selman, B. 2007.
Sat encodings of state-space reachability problems in nu-
meric domains. In IJCAI, 1918–1923.
Nakhost, H., and Müller, M. 2009. Monte-Carlo explo-
ration for deterministic planning. In IJCAI, 1766–1771.
Nakhost, H., and Müller, M. 2010. Action elimination and
plan neighborhood graph search: Two algorithms for plan
improvement. Accepted for ICAPS10.
Veloso, M. M.; Pérez, M. A.; and Carbonell, J. G. 1990.
Nonlinear planning with parallel resource allocation. In
DARPA Workshop on Innovative Approaches to Planning,
Scheduling, and Control, 207–212. Morgan Kaufmann.


