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Abstract

Goal recognition is generally considered to follow plan
recognition. The plan recognition problem is typically de-
fined to be that of identifying which plan in a given library of
plans is being executed, given a sequence of observed actions.
Once a plan has been identified, the goal of the plan can be
assumed to follow. In this work, we address the problem of
goal recognition directly, without assuming a plan library.
We present a formalisation of the problem and motivate its
interest, before describing some simplifying assumptions we
have made to arrive at a first implementation of a goal recog-
nition system, AUTOGRAPH. We discuss the techniques em-
ployed in AUTOGRAPH to arrive at a tractable approximation
of the goal recognition problem and show results for the sys-
tem we have implemented, before discussing future research
possibilities and their impact.

1. Introduction
Goal Recognition (GR) is the process of inferring an agent’s end
goals given a series of observed actions. This is clearly related to
the Plan Recognition (PR) problem which aims to also find the plan
being executed. Planning is simply the generation of these plans
in an efficient and sensible manner. Yet despite both being based
on actions, states and goals, and effectively mirroring one another,
advances in research have rarely overlapped.

Previous work has often focused on a single application of
the recognition problem, such as identification of human goals
through observation of behaviour (Huntemann et al. 2008), giving
speech/text context (Gorniak and Roy 2005) or responding with
natural dialogue (Mott, Lee, and Lester 2006). These have all re-
sulted in systems and algorithms that lack generality or widespread
application.

AUTOGRAPH (AUTOmatic Goal Recognition with A Planning
Heuristic), is a new approach to Goal Recognition which makes
use of Planning techniques. The system uses a standard planning
domain model, avoiding the construction of a goal/plan library.

2. Motivation and Prior Approaches
Plan and Goal Recognition problems are motivated by the desire
to anticipate the actions or objectives of an agent that is being ob-
served. There are many situations in which this could be useful,
including detection and prevention of crime, in teaching, in moni-
toring the elderly or infirm in their own homes, in military opera-
tions and in games. In computer games, intelligent responses to hu-
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man player activity depend on recognising what that activity might
be. Creating a believable and responsive environment that allows
players to participate in a truly immersive experience requires that
computer controlled agents react to human players with plausible
levels of understanding of the human players’ actions. This con-
text, in particular, motivates two assumptions underlying our work:
first, that the actions are fully observable (game software mediates
every action on behalf of the players) and, second, that we are inter-
ested in identifying goals as early as possible during the execution
of the plan.

Kautz (1987) defines the plan recognition problem as minimis-
ing the number of top-level, hierarchical plans which explain a se-
quence of observed actions. Plans were taken from a plan graph
and every action is assumed to be relevant to the plan being exe-
cuted. The library containing known, valid plans has remained a
key element of plan recognition ever since. This structure presents
several drawbacks such as the time, effort and space required to
construct it and its inevitable incompleteness and irrelevant con-
tent. AUTOGRAPH attempts to address these problems in three ar-
eas: Completeness, Scalability and Domain Independence.

Completeness: It is impossible to generate and store every valid
plan in a library for non-trivial problems. Previous work has
often made use of tree-like structures to represent a large number
of plans efficiently but cannot hold all possible plans or goals.
In our work, any conjunction of literals may form a hypothesis.

Scalability: The scaling behaviour of plan recognition systems is
highly dependent on library sizes. This and the previous prob-
lems combine to create a tension between scalability and com-
pleteness.

Domain Independence: Generating plan libraries is time-
consuming and restricts application to domains for which li-
braries are available.

We note that these objectives have been tackled previously, but
never in conjunction. Blaylock and Allen (2003) and Lesh and
Etzioi (1995; 1997) have also explored adapting recognition to a
previously unseen plan but require that their systems be trained
first and/or have access to an explicit representation of the goal set.

Hong (2001) and more recently Ramı́rez and Geffner (2009)
have also applied Planning techniques to recognition, but both still
require an enumerated set of goals.

3. Problem Definition
We start with the same framework that is used in classical planning,
based on a propositional action model structure. A goal recogni-
tion problem is based on a standard planning problem (the facts,
actions and initial state). Of course, the goal recognition problem



does not contain a goal specification — the problem is to find this
specification.

Definition 1. Goal Recognition Problem Base
A goal recognition problem base is a triple 〈F, A, I〉, where F is
a set of primitive (propositional) facts, A is a set of actions and
I ⊆ F is the initial state for the problem. Each action a ∈ A is
a triple 〈prea, adda, dela〉, where prea, adda, dela ⊆ F are the
preconditions, add effects and delete effects of a, respectively.

In addition to the base, a goal recognition problem requires ob-
servations: a sequence of actions. We assume that all actions and
states are fully observable, but we want to identify the goals as
early as possible during execution of the plan. Before we define
the goal recognition problem, however, we briefly consider the na-
ture of the solutions we seek and the implications this has on the
problem itself. Our expectation is that we should be presented with
a goal recognition problem base and a series of actions, with the
objective being to identify the target goals of the agent performing
the actions. We assume that the agent actually has a target and is
not simply executing actions at random.

In general, there are many goal sets consistent with a sequence
of observed actions, ranging from the possibility that the most re-
cent state was in fact the goal state to the possibility that there are
many goals towards which the agent has not yet even begun to act.
However, these possibilities are not all equally likely: in most do-
mains there is a clear bias towards certain kinds of goals. This
motivates the following definition:

Definition 2. Goal Hypothesis and Goal Hypothesis Space
Given a goal recognition problem base, G, with facts F , a goal hy-
pothesis for G is a probability distribution over subsets of F reach-
able from the initial state using actions in G. The goal hypothesis
space for G,H, is the set of all goal hypotheses for G.

Definition 3. Goal Recognition Problem
A goal recognition problem is a triple, 〈G, HI , (o1, o2, ..., on)〉,
where G is a goal recognition problem base, HI is an initial goal
hypothesis and (o1, ..., on) is the sequence of actions observed
one-by-one during the problem.

Each observation in a goal recognition problem updates the hy-
pothesis space, so that candidate goals that are further away from
the new state than the previous state are assigned an updated prob-
ability of 0, while the remaining probability mass is re-normalised
across the other states.

Unfortunately, explicit representation of H for anything other
than trivial problems is impossible due to its exponential size.
We therefore introduce an approximation of the space which is
tractable, but at the price that we cannot accurately represent all
possible goal hypotheses.

Definition 4. Approximate Goal Hypothesis
An nth order approximation to a goal hypothesis, H , is a goal hy-
pothesis, Ĥ , where Ĥ(f) = H(f) when |f | 6 n and, Ĥ(f) =

minx∈f Ĥ(f \{x}) · Ĥ({x})/N , where N is an appropriate nor-
malising factor to ensure that Ĥ is a probability distribution.

An approximate goal hypothesis is not necessarily a member of
the same goal hypothesis space as the goal hypothesis it approxi-
mates, because the approximation can assign non-zero probabilities
to unreachable sets of facts. Identifying unreachable sets is as hard
as planning, so allowing these sets to be assigned non-zero values
is a useful efficiency measure. The method by which probabilities
are combined in the recursive extension of the approximation to the
whole space of possible goals is somewhat arbitrary and alterna-
tive approximations are certainly possible. In our current work we
only consider 1st order approximations, so the probability of sets
of facts is the product of the probabilities of the individual facts

they include. This is equivalent to assuming that the individual
goals have independent probabilities of appearing. Although 1st
order approximations are poor in domains where goals are strongly
correlated, in many domains we see goals falling into independent
selections of states of a collection of objects (such as packages in a
delivery domain).

This independence assumption clearly does not hold for all do-
mains, for example BLOCKSWORLD problems often have the same
numbers of goal and initial-state literals. We currently focus on
problems which do exhibit this property, although we also con-
sider the performance of the approximation on other benchmark
domains.

Within the framework we have now defined, it is apparent that
each successive observation implies an update of the current goal
hypothesis reducing the probabilities of reachable facts that are
subsets of those states which are now no closer in the state than
the prior state. However, it is impractical to identify exactly which
states these are. Furthermore, the assumption that the agent that is
being observed has the capability to identify the shortest path to its
goal, without error, is unreliable. For this reason, we work with 1st
order approximations and update by reducing the probability asso-
ciated with facts that get further away following observed actions
and increasing the probabilities of facts that get closer.

4. Recognition without Libraries
AUTOGRAPH performs goal recognition in four stages: Analysis,
wherein the problem is instantiated and analysed to reveal useful
aspects of the domain; Observation, in which a single, ordered ac-
tion is fed into the recogniser and the current state updated to reflect
its effects; Intermediate Hypothesis Generation, in which a single
hypothesis is produced after each observation1; and, lastly, a Final
Hypothesis is generated once the plan is known to have finished.

4.1 Analysis
Domain analysis can provide rich information to aid subsequent
search (Fox and Long 1998; Helmert 2004), lowering search time
and shortening plan length. We apply relevant prior research to GR
and develop new techniques that allow the recogniser to make more
informed hypotheses.

Problem Representation We use domains encoded in
PDDL2.1 (Fox and Long 2003) and then apply Helmert’s trans-
lator (2009) to translate these into a SAS+ formalism. Two key
products of this translation process are Domain Transition Graphs
(DTGs) and a Causal Graph (CG), both of which encode aspects
of the original PDDL problem in another form. We use both the
PDDL and SAS+ representations of the problem during analysis, as
they can each reveal aspects of the domain that aid in recognition.
The Causal Graph reveals how objects influence others within the
domain through actions: of particular interest are the leaf nodes,
corresponding to objects with no influence on others. Should a
causal graph contain leaf nodes, any fact containing a leaf variable
that is not true in the initial state can be seen as a likely goal, as it
can play no role other than to be altered.

Predicate Partitioning Geib (Geib 2009) proposed the con-
cept of plan heads in Plan Recognition as a way to highlight impor-
tant plan actions and allowing lazy commitment to plans, resulting
in faster runtimes. We adapt this idea for GR through the concept
of predicate partitioning. By automatically classifying proposi-
tions into mutually-exclusive sets it can often become clear which
are more or less likely to be goals. For example, in a standard Lo-
gistics problem it is unlikely that the goal will be to simply have a

1If the plan has further actions to be observed, steps 2 and 3 are
repeated until this is no longer the case.



package inside a truck and far more likely that it must be delivered
to a warehouse. Facts can be placed in the following sets through
analysis of the two domain representations, which can then be ap-
plied to the initial probability distribution. Formal definitions of
each partition have been excluded due to space limitations.
Definition 5. Predicate Partitions– A fact f is:
1. strictly activating Cannot be removed if present in the initial

state and therefore extremely unlikely to be goals.
2. unstably activating Can be deleted by at least one action, but

once removed from the current state cannot be re-added. Once
deleted they can be removed from future hypotheses.

3. strictly terminal Do not appear as a precondition, and once
added these cannot be removed, meaning they must appear in
the final state. Thus they are highly likely to be goals.

4. unstably terminal Unlike strictly terminal facts, these can be
removed once they have been added, but they are never used as
preconditions to any actions.

5. waypoint It is common for problems to involve transforming ob-
jects through a chain of related states, all defined by the same
predicate. Any facts located within this predicate-chain (exclud-
ing end-points) are assigned a low initial probability.

6. transient These facts are transitions between facts of the same
predicate. It is unlikely that the goal will be to leave the object
within this transient state.

7. binary Facts which can only transition between 2 values are as-
signed low initial probabilities as it is difficult to assess which
of them might be relevant to the goal.
In addition to these sets, a further neutral set is defined, contain-

ing all facts that have not been partitioned into one of the above
sets.

The population of the various partitions is dependent on the do-
main being analysed. For example the ROVERS domain populates
5 partitions, while others such as ZENOTRAVEL largely categorise
facts in the waypoint and transient sets. The populations of these
partitions are used during construction of the initial-probability dis-
tribution.

Unhelpful Facts While Helmert’s SAS+ translation also ap-
proximates the set of all reachable facts, it is likely that some will
never appear as a goal. We begin to reduce the set of facts by
first observing that it is extremely unlikely that a problem will be
considered a planning problem if its goals can be achieved in a
single step, since this could be achieved by purely greedy action
selection. Therefore, any action applicable in the initial state is
considered unhelpful and its effects are assigned negligible proba-
bility in the initial hypothesis. Additionally, if the domain contains
strictly-terminal facts, we assign negligible probability to the pre-
conditions of any action which achieves them by reasoning that the
enabling conditions for achievement of a strictly-terminal fact are
very unlikely to be goals instead of the terminal itself.

Initial Probability Distribution Once the analysis phase has
been completed, each fact f in the approximate hypothesis space
H can be assigned an initial probability. This figure is dependent
on which, if any, of the previous domain analysis criteria the fact
has met.

4.2 Execution
Once the domain has been analysed and the initial goal-space popu-
lated, plan observation can begin. After each observation we record
the heuristic estimate to each fact in the approximate hypothesis
space.

By observing the estimated distance to each fact after action ob-
servations, it is possible to determine those which are being moved

towards and away from. Each fact which has a lower heuristic es-
timate at time t than it did at t − 1 has its probability of being a
goal increased, while those which now have a larger estimate have
their probability set to 0. Facts whose estimate remains unchanged
do not have their probability updated as they may be goals which
have been achieved at time t.

4.3 Hypothesis Generation
By using a 1st order approximation of a goal hypothesis we rely on
goal sets being small. However, it would be naı̈ve to assume that
all domains only contain a single literal as their goal. We therefore
construct an intermediate greedy hypothesis hi from the approxi-
mate goal hypothesis constructed at each timestep i, representing
the single most likely goal of the agent being observed.

To produce this set, facts are considered in mutually exclusive
clusters (the sets that make up the nodes in a single DTG). The fact
with highest probability within each cluster is selected, provided
it has probability higher than a specified threshold (this eliminates
highly unlikely candidates from the set).

Definition 6. Greedy-Hypothesis
Given an aptproximate hypothesis space H, a greedy-hypothesis
hgr is the set of facts with the highest probabilities above a base
threshold, Tmin, with ties broken randomly. If a fact f is chosen,
then all facts that are mutex with it will not be added to hgr .

4.4 Final Hypothesis
Once the plan is known to have terminated and the final state is
known, a more accurate final hypothesis can be produced. This is
simpler than generating an intermediate hypothesis since G ⊆ Sn,
and the state is certainly mutex-free. Along with the final proba-
bility distribution, this can produce a very accurate goal hypothesis
without considering fact probabilities.

5. Initial Results
We now present empirical results of several tests performed on the
techniques presented previously. While others have previously ex-
pressed a desire for plan and goal recognition to have a standard
evaluation method (Carberry 2001), there is still no agreement on
standard benchmarks. Therefore, we have used classical planning
benchmarks as an alternative. The system is evaluated using pre-
cision and recall, a technique used to score database document-
retrieval which has also previously been applied to a GR context
(Blaylock and Allen 2006), where the number of required facts in
each hypothesis is the precision and the number of correct facts is
the recall.

We have tested the system using the Max (hmax), FF
(hff ) and Causal Graph (hcg) heuristics (Bonet and Geffner 2001;
Hoffmann and Nebel 2001; Richter, Helmert, and Westphal 2008)
in order to determine how this choice affects performance.

5.1 Intermediate Hypothesis Results
The results of precision versus recall for intermediate hypotheses
over all domains and heuristics can be seen in Table 5.1. Also in-
cluded are the average precision and recall over all problems using
hff at various timepoints. These latter results show heuristic con-
vergence as precision and recall increase at over the course of plan
execution.

Perhaps of most interest is that there is no clear leader in terms
of heuristic chosen to generate estimates. While hcg has the high-
est overall P+R results, this is primarily caused by the results of
ROVERS, which contains more tests than other domains. The nor-
malised results show the difference between this and hmax is only
0.06 and 0.03 for precision and recall respectively.
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Figure 1: Intermediate P+R results for a single problem instance in
ZENOTRAVEL.

Domain hmax hff hcg

Depots 0.22 / 0.3 0.22 / 0.28 0.22 / 0.28
Driverlog 0.42 / 0.32 0.47 / 0.32 0.47 / 0.32
Rovers 0.78 / 0.54 0.82 / 0.5 0.86 / 0.56
Zenotravel 0.46 / 0.32 0.49 / 0.33 0.48 / 0.31
Storage 0.19 / 0.42 0.22 / 0.39 0.22 / 0.39

Total 0.54 / 0.43 0.58 / 0.4 0.6 / 0.43

Domain hff 25% hff 50% hff 75% hff 100%
Depots 0.15 / 0.07 0.2 / 0.21 0.34 / 0.5 0.52 / 0.93
Driverlog 0.43 / 0.12 0.56 / 0.29 0.72 / 0.5 0.94 / 0.73
Rovers 0.62 / 0.22 0.81 / 0.42 0.93 / 0.66 0.96 / 1
Zenotravel 0.3 / 0.1 0.42 / 0.26 0.61 / 0.48 0.81 / 0.7
Storage 0.17 / 0.14 0.29 / 0.49 0.27 / 0.64 0.3 / 0.91

Average 0.33 / 0.13 0.46 / 0.33 0.57 / 0.56 0.7 / 0.85

Table 1: The total normalised intermediate precision and recall re-
sults for each heuristic, and the average precision and recall for hff

over all problems at 25%, 50%, 75% and 100% plan completion.

5.2 Final Hypothesis Results

Once the plan being observed is known to have finished, the fi-
nal hypothesis can be generated. Knowing that the goal is defi-
nitely contained within the final state increases hypothesis accuracy
greatly, as we know G ⊆ SF . Table 2 shows the total normalised
P+R values for the final hypotheses in each problem. We note that
the seeming indifference of heuristic choice is further reinforced
by these results, as all three heuristics produce identical final P+R
results.

With the exception of DEPOTS and STORAGE, the recogniser
produces highly accurate hypotheses for all problems in terms of
both precision and recall. ROVERS shows particularly accurate re-
sults due to the presence of strictly-terminal facts, which results in
a perfect score for recall, and 95% average for precision.

In the case of DEPOTS and STORAGE, precision scores average
only 52% and 32% respectively. This is caused by the large num-
ber of facts which become true during execution of a typical plan,
which along with a small goal set combine to form a large hypoth-
esis with extraneous facts. For instance, the location of certain
trucks is often not a required goal in DEPOTS, but will be put for-
ward as a goal because trucks will stop moving once its last pack-
age has been delivered to its destination.

6. Conclusions and Future Work
We have presented AUTOGRAPH, a new method of tackling Goal
Recognition by applying Planning technology. The approach and
empirical evidence presented has successfully shown that libraries

Domain Depots Driverlog Rovers Zenotravel Storage
Precision 0.52 0.94 0.96 0.86 0.32
Recall 0.93 0.73 1 0.7 0.95

Table 2: Normalised total values for precision and recall values
associated with the final hypothesis for each domain

are not required to achieve online recognition of an agent’s activi-
ties.

The work presented offers a novel approach to the problem in
the form of heuristic estimation, as well as several new methods
of refining valid goal facts. Perhaps most importantly it offers a
viable solution to the problem of offline library construction and
allows any domain to be recognised without prior analysis.

AUTOGRAPH is complete in the sense that it can construct a hy-
pothesis from any conjunction of literals within H. The system is
scalable because it is based on a 1st order approximation of the
true goal hypothesis, meaning that the hypothesis grows only lin-
early with the size of the grounded problem. Finally, it is domain-
independent because it only relies on the use of a standard problem
definition schema and use of generic heuristics and algorithms.

A drawback of the system is the inability to know if a hypothe-
sis is valid, due to the problem of detecting all mutually-exclusive
propositions neing NP-Hard. Future work will explore the approxi-
mation of mutex information by recording facts which never appear
together during intermediate plan-states.

The current linear convergence rate of the recogniser is to be
expected from the heuristic estimation process, but a faster conver-
gence rate would obviously be preferable. One method of increas-
ing convergence rates could be to rule out any facts which cannot
be reached within n steps, where n > |P |. However, in order to do
this the problem of plan-length estimation would need to be solved
first, along with the detection of accurate goal-conjunctions. Ad-
ditionally, automating the process of selecting initial probabilities
for each partition and during updates on a domain-by-domain basis
using a system such as Hutter et al (2007) would reveal the optimal
set of values for generating fast and accurate hypotheses.
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