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1 INTRODUCTION
A central issue that limits practical applicability of automated
planning under uncertainty is the scalability of available tech-
niques. Despite decades of progress in this field, humans can
reasonably well solve many planning problems beyond the
reach of general MDP solvers. Among the factors enabling
people to do it is our ability to see structure in a given problem
and utilize it to avoid unnecessary reasoning. For instance, we
know that to put a nail into the wall with a hammer in the liv-
ing room it is enough to pick up both and hit the former with
the latter. If we want to do it in the bedroom we use just the
same plan without thinking further. This is not “obvious” to
most MDP solvers, which, when faced with producing a plan
for something as simple as putting up two paintings in two
rooms, will do twice as much planning as necessary, a gross
inefficiency.

The research described in this dissertation empowers MDP
solvers by adding the capacity to extract problem structure in
a domain-independent way and use it to generalize informa-
tion gained by exploring one part of the MDP’s state space to
many others. The means of such knowledge transfer are the
elements of problem structure we call basis functions. From
a high-level perspective, basis functions are preconditions for
sequences of actions that take the agent from some state to
the goal. Like preconditions of single actions, they apply in
many states, and therein lies their power.

We have developed three techniques that leverage basis
functions and a host of machine learning algorithms to un-
cover the problems’ even richer structure, the knowledge
these techniques convert into large time and memory savings:
• RETRASE, an MDP solver that simultaneously discov-

ers basis functions and performs decision-theoretic anal-
ysis on them to estimate their “usefulness” expressed
as a numeric weight. By aggregating the weights, RE-
TRASE constructs better policies than IPPC participants
on many domains while using little memory.
• GOTH, a heuristic for MDP solvers that uses full-

fledged classical planners to come up with state esti-
mates. Such planners would be too expensive to call
from every state that needs evaluation. GOTH uses basis
functions to share values among states and avoid many
of these invocations. Comparative empirical evaluation
shows GOTH to be an informative heuristic that saves
MDP solvers a lot of time and memory.
• SIXTHSENSE, a technique for quickly and reliably iden-

tifying implicit dead ends in MDPs. These states have

no trajectories to the goal but are expensive to identify
as such due to the presence of executable actions. Acting
as a submodule of an MDP solver, SIXTHSENSE helps
it easily and soundly detect implicit dead ends. It does
so by employing basis functions in a machine learning
algorithm to derive literal conjunctions whose presence
in a state guarantees the state to be a dead end. The re-
source savings due to SIXTHSENSE can reach 90%.

In the rest of the paper, we briefly describe each of the
above algorithms and outline directions for future research.

2 BACKGROUND
Markov Decision Processes (MDPs). We focus on prob-
abilistic planning problems modeled by factored indefinite-
horizon MDPs. They are defined as tuples of the form
〈S,A, T , C,G, s0〉, where S is a finite set of states, A is a
finite set of actions, T is a transition function S × A × S →
[0, 1] giving the probability of moving from si to sj by exe-
cuting a, C is a map S × A → R+ specifying action costs,
s0 is the start state, and G is a set of (absorbing) goal states.
Indefinite horizon refers to the total action cost being accu-
mulated over an action sequence whose length is finite but
unknown. In factored MDPs, states are represented as con-
junctions of domain variable values.

Solving an MDP, i.e. finding a cost-minimizing policy
π : S → A that specifies the actions the agent should
take to eventually reach the goal, can be done by a variety
of value-iteration (VI) based or policy-iteration (PI) based
methods. VI-based techniques use Bellman equations in a
Bellman backup to update the value function and follow the
resulting policy until convergence. Trial-based improvements
on VI, RTDP [1] and LRTDP [3], serve as testbeds in some
of our experiments.
Heuristics. We define a heuristic as a value function used to
initialize the state values before the first time an algorithm
updates these values. In heuristic-guided algorithms (e.g.,
RTDP, LAO∗), heuristics help avoid visiting irrelevant states.
To guarantee convergence to an optimal policy, MDP solvers
require a heuristic to be admissible. However, inadmissible
heuristics tend to be more informative in practice. Informa-
tiveness often translates into a smaller number of explored
states (and the associated memory savings) with reasonable
sacrifices in policy optimality.
Determinization. Some of the most effective domain-
independent MDP solvers known today are based on deter-
minizing the domain D at hand, i.e. removing the uncertainty
about D’s action outcomes. For example, the all-outcomes
determinization, for each action a with precondition c and



Figure 1: RETRASE.

outcomes o1, . . . , on with probabilities p1, . . . , pn, produces
a set of deterministic actions a1, . . . , an, each with precondi-
tion c and effect oi, yielding a classical domain Dd.

3 BASIS FUNCTIONS
Consider a goal trajectory t = s, a1(oj1), . . . , an(ojn),
where s is the trajectory’s starting state, each action ak(ojk

)
represents the jk-th outcome of the probabilistic action ak,
and s modified by t’s action sequence is a goal state. For-
mally, a basis function b is the conjunction of literals resulting
from regressing the goal conjunction through some trajectory
t. Whenever all literals of b are present in a state s, we say
that b represents s. To a first approximation, b is a precon-
dition for the trajectory t that was regressed to obtain it. It
is not t’s precondition in the strict sense, since t is merely a
sequence of actions’ probabilistic outcomes, and hence trying
to execute t from a state represented by b may fail. Nonethe-
less, the crucial properties of basis functions are that (1) like
ordinary action preconditions, they typically represent many
states of the problem but (2) unlike action preconditions, they
guarantee the existence of a positive-probability trajectory to
the goal from any state they represent. These properties allow
basis functions to serve as a means to share goal reachability
information among many states.

4 ReTrASE
As the first example of how basis functions can help in plan-
ning, we present an approximate MDP solver RETRASE
(Regressing Trajectories for Approximate State Evaluation).
This algorithm successfully circumvents an issue plaguing
many VI-based techniques — the number of states whose val-
ues need to be estimated is often too large to store in memory.

On a high level, RETRASE explores the state space in the
same manner as RTDP, but, instead of performing Bellman
backups on states themselves, backups are performed over the
basis functions that represent the visited states. For each basis
function, RETRASE learns a weight that reflects the quality
of the trajectory/-ies enabled by that basis function. Indeed,
trajectories differ in their probability of reaching the goal, and
the weights are a numerical characterization of these distinc-
tions. A state’s value may then be computed by aggregating
the weights of the basis functions that represent it.

Operation of RETRASE is schematically depicted in Fig-
ure 1. At any moment during RETRASE’s state space ex-
ploration, there are three kinds of states: ones that have been
deemed dead ends, ones for which some representing basis
functions are known, and the rest. When RETRASE encoun-
ters a state s of the third type, it applies a classical planner
(e.g., FF [6]) to a determinized version of the domain starting
from s. If no classical plan exists, the state is marked a dead

end. If FF finds a plan, however, RETRASE via regression
generates a basis function b holding in s. Thereafter, RE-
TRASE learns a weight for b by modified Bellman backups
while continuing to visit other states.

As it turns out, there exists a relationship between the
weights of the basis functions representing a state and that
state’s value. The relationship is too expensive to compute
exactly but can be approximated by the minimum of the
state’s representing basis functions’ weights. Critically, since
a given basis function b represents many states, the informa-
tion encoded in its weight gets automatically shared among
all of them. Thus, b’s weight helps us approximately evalu-
ate many states, even those that RETRASE has not touched
yet. As a result, the number of basis functions needed to
get a value function approximation (and hence a policy de-
rived from it in the usual decision-theoretic way) is in prac-
tice much smaller than the number of states themselves. As
the experiments demonstrate, this approximation gives RE-
TRASE both a vast advantage in memory consumption over
planners like RTDP and a policy quality advantage over IPPC
winners on many benchmark domains.

5 GOTH
Reuse of information due to basis functions can bring not just
memory savings as in RETRASE but time savings as well.
The MDP heuristic function named GOTH, Generalization
Of Trajectories Heuristic, that we present next uses full-
fledged classical planners on the all-outcome determiniza-
tion of the domain at hand to produce heuristic state values.
Naively calling a deterministic planner from each state that
needs evaluation would be prohibitively expensive, and the
main idea underlying GOTH is to do such invocations from
only a few states and generalize the experience to the rest.

The trick of discarding the probabilistic aspects of an MDP
for the purpose of efficiently computing a heuristic is not new.
One of the most successful MDP heuristics, the FF heuris-
tic [6], which we will refer to as hFF , dispenses not only
with probabilities but also with delete effects of the actions to
quickly evaluate a state. It sets the value of a state to be the
length of a classical plan consisting of such relaxed actions
from this state to the goal. While fast in practice, its igno-
rance of actions’ negative consequences causes it to struggle
on domains where effects of some actions clobber the effects
of others, e.g. Machine Shop [11].

GOTH, on the other hand, operates on a non-relaxed ver-
sion of the determinized domain at hand. When a planner that
uses GOTH starts solving a problem, GOTH determinizes
the domain and initializes a set of basis functions, originally
empty. Whenever the MDP solver queries GOTH for a state
value, the latter first checks if any basis functions in its set
represent this state. If none do, it invokes a classical plan-
ner, which either returns a plan or concludes that the state is
a dead end. If it returns a plan, GOTH regresses it to obtain a
basis function, sets the weight of the basis function to be the
cost of the regressed, stores the basis function and its weight
for future use, and returns the plan’s cost as the state value.

If by the time GOTH evaluates a given state it does already
“know” a few basis functions that represent it, this effectively
means that GOTH is aware of several trajectories from this
state to the goal, since each basis function is a certificate of a
goal trajectory. Therefore, GOTH lets the value of the state
be the cost of the cheapest such trajectory, i.e. the smallest



weight of any known basis function that represents it. The
resulting heuristic value is not always admissible, as the clas-
sical planner may be suboptimal and because GOTH is not
aware of all basis functions (and hence goal trajectories) in
the domain. However, GOTH empirically proves to be sig-
nificantly more informative than hFF , often causing the MDP
solver to be both faster and more memory-efficient.

Note the different roles of generalization in GOTH and
RETRASE. In the former case, it serves primarily to save
time whereas in the latter — to save memory. In addition,
GOTH does not learn state values, merely providing an ini-
tial estimate for them.

6 SIXTHSENSE
As described, generalization schemes of RETRASE and
GOTH contain a large caveat. By definition, basis func-
tions support information transfer only between states with
goal trajectories. However, probabilistically interesting [10]
MDPs also contain states with no such trajectories, dead ends.
While explicit dead ends, i.e. states with no applicable ac-
tions, are easy to identify, implicit dead ends are not because
they have successor states.

To approach the problem of quickly and reliably recogniz-
ing dead ends, we note that both in real life and in benchmark
IPPC domains, most dead ends can often be explained by only
a few “reasons”. E.g., in the Drive domain of IPPC-06, the
agent can’t achieve the goal (and is hence in a dead end) if
its car has crashed. If we knew these explanations we could
swiftly conclude a state as a dead end if any of them apply
in it. In fact, we could do such checks on the fly and avoid
caching dead ends, thereby saving memory.

We propose a novel machine learning algorithm, SIXTH-
SENSE, to discover these explanations. It can act as a
submodule of any existing MDP solver and efficiently and
soundly tell its owner whether a given state is a dead end.
To do so, it discovers nogoods, conjunctions of literals that
guarantee non-existence of a goal trajectory from the states
they represent. Semantically, nogoods are opposites of basis
functions, which guarantee existence of such trajectories. Our
procedure for learning nogoods follows the generate-and-test
scheme and uses a small number of basis functions and dead
ends (both discovered in a standard way like running a de-
terministic planner from a few states). It is fast but fairly
involved, and here we merely outline its main ideas.
Generate step. Our foundational insight is that a literal con-
junction is a nogood if and only if it defeats all basis functions
in a problem, i.e. contains a negation of some literal in each
basis function. Thus, finding a nogood means finding such
a defeating literal conjunction. Since checking the candidate
against all basis functions is infeasible, to construct it we sam-
ple literals according to their frequencies in the training dead
ends (these statistics are intuitively indicative of the literals in
nogoods), aiming to defeat the few (100-200) basis functions
we have. This produces a valid nogood with a high chance
but not always, and we do a test to verify it.
Test step. For verification, we form a superstate by conjoin-
ing the candidate with the negation of the goal and all literals
whose negation is not contained in the resulting conjunction,
and expand the planning graph [2] starting from this super-
state. If the planning graph fails to achieve all the goal liter-
als, or fails to resolve all mutexes among them, the candidate
is considered to be a nogood.
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Figure 2: The big picture: GOTH has a significant advantage
on large problems. (Note that the axes are on the Log scale.)

The procedure is provably sound, requires little training
data in practice, and, with a few additional optimizations,
finds nogoods that account for most dead ends in a problem.

7 EXPERIMENTAL RESULTS
RETRASE. Our experiments explored two important aspects
of RETRASE – (1) scalability, to ensure that the positive ef-
fect of generalization is as strong as we predicted, and (2)
quality of solutions in complex domains. We ran RETRASE
on six probabilistically interesting hard problem sets — Tri-
angle Tire World (TTW) from IPPC-06 and -08, Drive from
IPPC-06, Exploding Blocks World (EBW) from IPPC-06 and
-08, and Elevators from IPPC-06. The experiments were con-
ducted under the restrictions resembling those of IPPC.

RETRASE’s scalability proved far better than that of
heuristically guided optimal or suboptimal planners. E.g.,
LRTDP with hFF ran out of memory on problems 8, 9, and
10 of TTW-08, whereas RETRASE solved them easily.

On five out of six domains, RETRASE dominated the
IPPC participants in solution quality as well, i.e. its success
rate was higher than the IPPC winner on that domain, and
showed average performance on Elevators. RETRASE’s ad-
vantage is especially impressive on EBW-06 because it grows
with the complexity of the problem . A more complete pre-
sentation of the results is in [7].
GOTH. The purpose of the experiments with GOTH was
to compare it in terms of informativeness and overall value
to MDP solvers against other heuristics, as well as to show
that without generalization, GOTH would be impractical. In
our experience, hFF is among the most informative exis-
ting MDP heuristics, and we used it as the benchmark. We
ran both heuristics in combination with LRTDP, denoted as
LRTDP+hFF and LRTDP+GOTH on the same domains as
RETRASE but excluding EBW-06, and Machine Shop, a do-
main in which actions’ effects have a particularly adversarial
structure for hFF .

The plots in Figure 2 provide the big picture of the compar-
ison. For each problem we tried, they contain a point whose
coordinates are the logarithms of the amount of time/memory
that LRTDP+RETRASE and LRTDP+hFF took to solve that
problem. Thus, points that lie below the Y = X line corre-
spond to problems on which LRTDP+GOTH did better ac-
cording to the respective criterion. The axes of the time plot
of Figure 2 extend to log2(86400), the logarithm of the time
cutoff (86400s, 24 hours) that we used. Similarly, the axes of
the memory plot reach log2(10000000), the number of mem-
oized states/basis functions at which the hash tables where
they are stored become too inefficient to allow a problem to



be solved within the 86400s time limit. Thus, the points that
lie on the extreme right or top of these plots denote problems
that could not be solved under the guidance of at least one of
the two heuristics. Overall, the time plot shows that GOTH
enjoys a comfortable advantage on most large problems, and
in terms of memory, this advantage extends to many medium-
sized and small problems as well.

In another experiment, we turned off generalization and
ran LRTDP+GOTH on several problems. As we expected,
LRTDP+GOTH without generalization is 30-40 times slower
than with it, and hence it is generalization that accounts for
GOTH’s successful operation.
SIXTHSENSE. To understand the advantages of using
SIXTHSENSE, we divided the existing MDP solvers into two
groups by their treatment of dead ends. The first group, which
we denote as “Fast but Insensitive”, tries to recognize implicit
dead ends via a fast but unreliable means. E.g., LRTDP+hFF

runs hFF on the newly encountered state; hFF is fast to
compute but, if the state is an implicit dead end it will often
nonetheless find a relaxed plan, and thus will make the state
look like a non-dead end to LRTDP. The second group, “Sen-
sitive but Slow”, uses more sophisticated but computation-
ally expensive methods for dead end recognition. RFF, for
instance, calls a deterministic planner on each state. Doing
so is costly but if the classical planner fails to find a plan, the
state is almost certainly a dead end. We run LRTDP+GOTH
to simulate the behavior of this group.

Our experiments with LRTDP+hFF and LRTDP+GOTH
on domains with one nogood (Drive) and several nogoods
(EBW) show that SIXTHSENSE helps both kinds of planners
to reduce planning time sometimes by as much as a factor of
2 and used memory by as much as 10 times. These numbers
are not the limit of SIXTHSENSE’s performance and depend
largely on what fraction of reachable state space consists of
implicit dead ends in current IPPC benchmarks. However,
the mechanism by which the two groups benefit from SIXTH-
SENSE are different. For the “Fast but Insensitive”, SIXTH-
SENSE greatly increases recognition accuracy. As an upshot,
LRTDP+hFF hardly ever wastes time exploring the succes-
sors of implicit dead ends, something it does a lot without
SIXTHSENSE; moreover, since these successors don’t need
to be stored anymore, it also saves memory. For the “Sensi-
tive but Slow”, nogoods bring savings primarily by sharing
dead-endness information across many states and preempting
unnecessary expensive state analysis, i.e. their role is similar
to basis functions.

8 DISCUSSION
The main research direction that will increase the demon-
strated potential of generalization is casting it in first-order
logic. Many IPPC domains contain repetitive structure (e.g.,
many blocks can be acted upon in the same way in EBW) that
can be succinctly described in first-order logic, and a lot of
structure that cannot be concisely expressed propositionally.

Other fruitful ideas include developing a richer theory of
basis functions. For instance, our current knowledge does not
tell us how many basis functions are enough for what kind
of approximations. It is also interesting to study how the
use of basis changes the computational complexity of exis-
ting MDPs. Indeed, solving MDPs is known to be PSPACE-
complete; however, a large fraction of the complexity may be
due to the difficulty in finding the basis functions. If a human

already knows the problem structure and is willing to specify
it, then learning a policy with it may not be that hard.

9 RELATED WORK
Perhaps the most systematic attempt to extract MDP prob-
lem structure has been explanation-based learning (EBL) [4].
However, EBL systems have tended to suffer from the pro-
liferation of rules they discovered during problem solving,
which significantly slowed them down. This does not hap-
pen with the algorithms we presented. The idea of discover-
ing basis functions by regression was originally described in
[5] but there they were only used for state space compacti-
fication (similarly in spirit to RETRASE but vastly different
in detail). For work more specifically related to RETRASE,
GOTH, and SIXTHSENSE, we refer the reader to the corre-
sponding sections of [7], [8], and [9].

10 CONCLUSION
This dissertation concentrates on exploiting problem struc-
ture in the form of basis functions to dramatically increase the
scalability of methods for solving MDPs. We have showed
three examples of how basis functions, used in their own
right (as in RETRASE and GOTH) or as a means to extract
even richer regularities (as in SIXTHSENSE), can generalize
knowledge across different parts of an MDP’s state space.
The experiments demonstrate basis functions to indeed make
solving MDPs much more efficient than before, and coming
up with their first-order logic analogue promises to extend the
potential of this idea much further.
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