
On the Inference of Intermediate Goals in Automated Planning

Vidal Alcázar
Departamento de Informática

Universidad Carlos III de Madrid
Avda. de la Universidad, 30. Leganés (Madrid). Spain

valcazar@inf.uc3m.es

Abstract

Using intermediate goals to guide the search or decom-
pose a problem into smaller instances has proved to be a
successful approach in Automated Planning. Goal sub-
sets and more recently landmarks have been used for
this purpose, potentially reducing the search in an ex-
ponential way. However, these approaches have limita-
tions on their own. In this paper, we propose alterna-
tive ways of obtaining possible intermediate goals. In
particular, we analyze how using information extracted
from the last actions in the relaxed plan can be used
to generate intermediate goals backwards. Besides, we
propose other lines of research that aim to accomplish
this, overcoming some of the limitations that goal sub-
sets and landmarks have.

Introduction
The use of intermediate goals is one of the most promis-
ing techniques in Automated Planning. Both providing
the search with additional information and reducing the
depth of the search space are benefits of using intermedi-
ate goals. Many state-of-the-art planners are based on this
premise (Hoffmann, Porteous, and Sebastia 2004; Burfoot,
Pineau, and Dudek 2006; Richter, Helmert, and Westphal
2008). Those planners depend on goal subsets and land-
marks used as intermediate goals to partition the problem or
to develop new heuristics. However, the difficulty of guess-
ing the right orderings and the assumption of independence
between goals/landmarks make their usage non-trivial. To
overcome this, we will consider different methods to obtain
intermediate goals. This paper describes the first steps of
one of the approaches we are developing and proposes in
the last section an additional line of research to be followed
during the elaboration of the thesis.

Most state-of-the-art planners are forward state heuristic
planners that use a reachability analysis to compute their
heuristic function. The most common one is the Relaxed
Plan (RP) heuristic used by FF (Hoffmann 2001). Apart
from the heuristic numeric value obtained, the actions that
compose the RP offer additional information that can be
exploited in the search process. Examples are helpful ac-
tions (Hoffmann 2001), look-ahead states (Vidal 2003) and

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

macro-actions (Botea, Müller, and Schaeffer 2007) that can
be inferred online from the RP. Here we propose taking ad-
vantage of information from the last actions of the RP to
generate intermediate goals.

The motivation behind this approach is that the last ac-
tions in the RP are often similar across different calls to the
heuristic function. By doing regression using those actions,
intermediate goals can be generated online. In subsequent
computations of the heuristic, the closest intermediate goal
to the current state in the relaxed problem can be detected
and the search biased towards it. We have called this tech-
nique the Backwards Generated Goals (BGG) heuristic.

Those goals provide additional information that can be
used to reduce the number of levels used in the reachabil-
ity heuristic or to get heuristic estimations closer to the real
value than other heuristics. Besides, this technique allows
to finish the search earlier when satisfying an intermediate
goal, as the path to the original goal can be built by tracing
back the generation of the intermediate goal. This relies on
a careful generation of extra information together with the
intermediate goal.

To ensure the validity of the backwards generated goals,
actions must legally support the reached goal. This is done
by using concepts from regression heuristic planners like
HSPr (Haslum and Geffner 2000): considering delete effects
when supporting goals and taking into account static mu-
texes between the preconditions of the actions and the goal
propositions not satisfied by the supporting actions. Exper-
imental evaluation of the techniques presented in this paper
shows improvements in coverage and number of expanded
nodes over the regular RP heuristic.

Intermediate Goals and Reachability
Heuristics

Reachability heuristics are computed using a breadth-first
search in a relaxed version of the problem. The relaxation
consists on ignoring the delete effectes of the operators.
Once the goals are reached, a non-optimal relaxed plan is
extracted. Due to the breadth-first search nature of the pro-
cess, it not only gives an estimation of the distance to a goal,
but also estimates that the first reached goal is the closest to
the state in the relaxed problem in case multiple goal states
are present. In most domains the set of goal propositions



does not describe a complete state (an exception being the
N-Puzzle domain, for instance), so the reachability analysis
deals with multiple goal states implicitly. The goal (set of
goal propositions in G) does not describe a complete state
when the value of some proposition in the instantiated prob-
lem is not defined. For example, if S={a,b} and G={a},
both s1={a,b} and s2 = {a,¬b} are goal states. However,
this fact does not change the behavior of the heuristic, mean-
ing that regular reachability heuristics effectively take into
account multiple potential goals. This interesting property
can be extended to the case in which there are different sets
of goal propositions as well.

Taking advantage of this fact, the key observation of this
work is to generate multiple intermediate goals that lead to
the original goal. Actions known to lead to the problem
goals are used to generate them. At each call to the heuris-
tic function, a new intermediate goal set G′ is obtained so
it can be added to the set of goals G. Initially, G = {G}.
In the first call to the heuristic function, there will only be a
set of goals G. Then, G′ is generated by choosing an action
a from the RP that supports one of the goal propositions
g ∈ G. We remove the propositions in G supported by a
and add the preconditions of the action (technique known
as goal regression, which determines the qualification of a
backwards generated goal). Then, this new set G′ may be
added to G, a list of goals relevant to subsequent computa-
tions of the heuristic. Whether a backwards generated goal
is added or not to the list depends on its potential useful-
ness. Usually, the intermediate goal obtained from a node
with a bad heuristic value is probably not useful and hence
discarded, although the criteria may vary depending on the
forward search algorithm used. Lastly, the chosen action a
and the originally reached goal proposition g are also stored
together with G′ with two purposes: allowing reconstructing
a path by tracing back the chosen actions; and obtaining the
distance from the intermediate goal to the original goal, that
is the cost of the intermediate goal. Optimality on this dis-
tance cannot be ensured, as there may be shorter paths from
the intermediate goal to the original goal.

In the following iterations, there will be several goal sets
in G. So, instead of finishing the expansion of the relaxed
planning graph when all goal propositions g ∈ G appear in
a given layer Pi, the expansion finishes in a propositional
layer Pi when ∃Gj ∈ G such that Gj ⊆ Pi. In that case,
the steps in the previous paragraph are executed to generate
a new goal set G′ to be added to G.

The implementation of this technique is closely related to
how actions are known to be applicable at a given level, as
the preconditions of any action form a subgoal themselves.
Each proposition maintains a list of indexes of the sets of
goals Gi ∈ G they appear in. Also, we define a counter
that keeps the number of unsatisfied propositions in each in-
termediate goal set Gi. Whenever a goal proposition p is
satisfied by a new action in the relaxed planning graph, the
counter of the goal sets Gi where it appears (p ∈ Gi) is de-
creased. When the counter of any Gi reaches zero, there is
a RP that can reach Gi.

A key difference with respect to the standard computation
of the RP heuristic is that we require at least one action that

reached the intermediate goal set in the last step to be a legal
support. The concept of legal support is based on the appli-
cation of the action in the search space: it must be able to
appear as the last action in a valid solution plan. There are
three conditions that must be fulfilled to ensure that a sup-
porting action a is legal for supporting Gi (thus, being able
to generate a new G′):

• its delete effects must not include a proposition appearing
in the reached goal (del(a) ∩Gi = ∅);

• the preconditions of the action must not be mutually ex-
clusive with any proposition of the goal not supported by
the action; and

• the new set of goal propositions must not have been pre-
viously generated (G′ 6∈ G)

The first constraint is straightforward: an action that
deletes a goal proposition can never be the last action of a
plan, as it necessarily leads to a non-goal state. In fact, this
constraint ensures that there is a legal path from a given in-
termediate goal to the original goal, although alone it does
not suffice as unreachable sets of goal propositions may be
generated.

The second constraint is related to the concept of static
mutual exclusivity between propositions as it was originally
described in (Haslum and Geffner 2000). Static mutexes
may not suffice to detect all the unreachable sets of propo-
sitions in the search space, but in many domains they are
able to prune most unreachable states, as shown by regres-
sion planners. In this work, only mutexes between pairs of
propositions will be computed, as such sets can be computed
in a reasonable time.

The basic idea of the third constraint is that when a du-
plicated goal is generated, that goal was necessarily already
supported in the relaxed graphplan. Then, if the heuristic
computation did not stop at an earlier level when supporting
that goal, this means that it may be an unreachable goal as
no legal action was found for it so far.

Preliminary Experimentation
Both the RP heuristic and the technique presented in this
work (which we called BGG, Backwards Generated Goals)
have been implemented on top of JavaFF (Coles et al. 2008)
using a dual queue. One of the queues uses the BGG heuris-
tic, while the other uses the regular RP heuristic. The reason
behind this is that when computing the BGG heuristic, ex-
tracting a RP from the original goal takes little additional
effort and may be helpful for the cases in which the BGG
heuristic is strongly guided towards an unreachable interme-
diate goal.

Greedy best-first search has been used as the search al-
gorithm. Greedy best-first search expands in every step the
most promising node determined by the function f(n) = h(n)
in which h(n) is the heuristic function of the node. Inter-
mediate goals are associated with the state along with its
heuristic value in the open list instead of being added to the
goal list. When a state is expanded, its intermediate goal is
added to the list. This way, all the goals are generated from
the best state at every iteration.



Helpful actions for the BGG heuristic are the union of the
sets of helpful actions obtained using the BGG RP and the
regular RP from the original goal. Helpful action pruning
has been enabled, but no restarts with the full set of suc-
cessors have been enabled. This is done in order to analyze
the impact of the extra helpful actions provided by the more
informed RPs from intermediate goals.

The focus of the experimentation is the coverage (percent-
age of solved problems out of the total number of problems).
In the experimentation, domains generaly regarded as dif-
ficult for FF were preferred. The selected domains were
Gold-Miner, Matching-BW, N-Puzzle and Sokoban from the
learning track of IPC-6; Peg-Solitaire and Scanalyzer from
the deterministic track of the same competition; and Stor-
age from IPC-5. For the sake of completeness, three more
traditional domains were also included: Transportation from
IPC-6; Driverlog from IPC-3; and Pipesworld No-Tankage
from IPC-4.

Table 1 shows the results for these domains in terms of
percentage of solved problems. Geometric mean of the ra-
tio between states evaluated by BGG and RP for problems
solved by both is also displayed, with values above one
meaning that BGG evaluates fewer nodes. Overall, the cov-
erage improves for BGG, mostly in the domains in which
the RP alone does not behave well. Not taking into account
Gold-Miner, which has a very hard constraint close to the
goal and hence is the ideal case for BGG, domains in which
BGG performs better have dead-ends and strong order in-
teractions (Matching-BW, Sokoban) whereas in those with-
out them there is no improvement. Regarding the number
of evaluated nodes, BGG shows a similar behavior. Also,
as the size of the problem increases, BGG tends to expand
fewer nodes compared to the regular RP heuristic in spite of
having a higher branching factor because of the additional
helpful actions.

Domain RP BGG Mean-S Ratio-BGG
Driverlog 70 80 0.89 0.17

Gold-Miner 50 100 5.59 0.27
Matching-BW 3 33 9.72 0.24

N-Puzzle 10 13 4.13 0.01
Peg-Solitaire 97 80 1.67 0.32
Pipesworld 28 22 0.94 0.14
Scanalyzer 33 67 1.47 0.25
Sokoban 13 17 5.52 0.19
Storage 53 60 1.91 0.21

Transportation 63 70 0.7 0.04
Average 42 57.5 3.25 0.18

Table 1: Comparison between the RP heuristic and the
BGG heuristic in terms of coverage and number of evalu-
ated nodes (geometric mean of the ratio between evaluated
states). Ratio-BGG is the percentage of the length of the
solution part that belongs to the sequence of actions traced
back from the reached intermediate goal.

Also, theoretically, the higher the average length of the
part of the solution plan traced back from the reached inter-

mediate goals is, the more relevant the backwards generation
of goals is. Therefore, this can be considered a measure of
how appropriate BGG is for some domains. Table 1 shows
that this holds for most domains with the exceptions of N-
Puzzle and Transportation. On average, around a fifth of the
plan is retrieved from the reached intermediate goal. This
also explains why BGG expands fewer nodes: the search
space that must be explored to find a solution is potentially
much smaller due to the reduced depth.

Related Work
A field under intense study, landmarks for automated plan-
ning (Hoffmann, Porteous, and Sebastia 2004; Richter,
Helmert, and Westphal 2008) is our main frame of refer-
ence. Being computed in a previous step to the search, land-
marks are intermediate goals themselves and thus provide
some valuable information to the search. In particular, they
capture some constraints in the problem as well as orders
among propositions, in a similar fashion to what backwards
generated goals do in areas close to the original goal. How-
ever, they have important shortcomings derived from the
way they are generated. Landmarks are generated from a
relaxed instance of the problem in the initial state. They are
either actions or propositions that are necessary for some of
the goals to be achieved in a reachability analysis or propo-
sitions which are common preconditions of the achievers of
other landmarks (including goals, which are landmarks by
definition). Because of this, unachieved landmarks from any
state during the search will always be achieved in the RP.
Therefore, if the RP is used as a heuristic, using landmarks
as a guide conceptually represents little advantage over the
RP heuristic alone. A similar case occurs when landmarks
are used to partition a problem (as the RP heuristic already
guides the search towards landmarks), although the greedier
nature of this approach can be useful.

From a search point of view, there are many links between
backwards goal generation and bidirectional/perimeter
search (Dillenburg and Nelson 1994). In fact, this approach
can be seen as a sort of imbalanced bidirectional algorithm
in which the backwards search uses the last actions of the
RPs as a guide and the forward search estimates the distance
to the frontier of the backwards search instead of to the orig-
inal goal. Nevertheless, the difficulty of formally defining
the technique as such (no generation of successors when do-
ing regression, no heuristic evaluation per se,...) leaves the
study of this relationship for future work.

A conceptually close idea, RRT-Plan (Burfoot, Pineau,
and Dudek 2006), relies on generating intermediate states
by incrementally choosing subsets of the goal and satisfy-
ing them. The intermediate goals generation is completely
different, being a random selection of subsets of the origi-
nal goal set in each iteration in their case. The main critique
to this work though is that it benefits from guesses over the
order of the goals and not so much from actual intermediate
states. Interestingly, the authors proposed implementing a
bidirectional search algorithm as future work, but this idea
has not been further developed.

From a procedural point of view, a recent work on low-
conflict RPs (Baier and Botea 2009) shares important as-



pects with this approach. In their work, they take into ac-
count delete effects and pairs of mutually exclusive propo-
sitions in the backwards search done to retrieve a RP from
the reachability analysis to provide more accurate RPs. Fur-
thermore, they expand additional levels in the computation
of the heuristic, being the main difference that the number of
extra levels are expanded based on a preliminary estimation
whereas the expansion of levels in this work is systematic.

Future Work
Future work for the presented approach can be: on a further
analysis of the impact of the techniques developed in this
work; and implementing other known techniques to improve
the performance. It is still unclear how much every tech-
nique helps to improve the traditional RP heuristic. An in-
sightful example of this is the aforementioned work on low-
conflict plans (Baier and Botea 2009), which uses a similar
approach by taking into account delete effects and mutexes,
but in a less ambitious way. This way, ideas like forcing
the reachability analysis to legally support every proposition
instead of only one might greatly affect the performance,
which requires a deeper understanding.

On the other hand, some known techniques intuitively
seem to be well suited to the backwards generation of goals.
Look-ahead techniques are a prominent example, which are
known to work well in many domains with forward state
planners. The twist in this case is to combine actions from
the last part of the RP to generate intermediate goals more
than one step farther from the reached goal. Another inter-
esting potential improvement is the use of reasonable orders.
So far, they have been used to create a goal agenda (Hoff-
mann 2001) and to add precedence constraints in heuris-
tic computations (Cai, Hoffmann, and Helmert 2009). The
most notable advantage is that reasonable orders are as
sound as necessary orders when working with goals or in
regression. This way, they can be used to prune actions that
support goals reasonably ordered before other goals, greatly
reducing the search space when doing regression.

As a last remark, we propose an alternative way of gen-
erating intermediate goals. One of the main difficulties of
Automated Planning is the strong interaction between ac-
tions and propositions. The assumption on the independence
of goals is one of the greatest shortcomings of many of the
techniques used in the field. In order to overcome this, we
propose estimating the probability of some propositions and
actions to be true at some point in a solution plan (in opposi-
tion to landmarks, which ensure that an action or proposition
is true with a probability of 1). For this, we plan on build-
ing a planning graph enriched with landmarks and apply a
message passing algorithm like survey propagation (Braun-
stein, Mézard, and Zecchina 2005) to estimate the likelihood
of propositions and actions to be true at the different levels
of the graph. This way, since probabilities are affected by
all the goals and landmarks of the problem, they are more
likely to capture the possible interactions among them. Once
the probabilities are computed, a sampling method can be
used to generate intermediate goals to be used in a Rapidly-
Exploring Random Tree (Lavalle 1998) search algorithm.
Of course, estimation of probabilities can be exploited in

different ways, like for example as a heuristic in local search
algorithms, although that possibility is currently out of our
scope.

Acknowledgments
This work has been partially supported by a FPI grant from
the Spanish government associated to the MICINN project
TIN2008-06701-C03-03.

References
Baier, J. A., and Botea, A. 2009. Improving planning per-
formance using low-conflict relaxed plans. In 19th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 10–17.
Botea, A.; Müller, M.; and Schaeffer, J. 2007. Fast plan-
ning with iterative macros. In IJCAI’07: Proceedings of
the 20th International Joint Conference on Artificial Intel-
ligence, 1828–1833. San Francisco, CA
Braunstein, A.; Mézard, M.; and Zecchina, R. 2005. Sur-
vey propagation: An algorithm for satisfiability. Random
Struct. Algorithms 27(2):201–226.
Burfoot, D.; Pineau, J.; and Dudek, D. 2006. RRT-Plan: a
randomized algorithm for STRIPS planning. In 16th Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS), 362–365.
Cai, D.; Hoffmann, J.; and Helmert, M. 2009. Enhancing
the context-enhanced additive heuristic with precedence
constraints. In ICAPS.
Coles, A. I.; Fox, M.; Long, D.; and Smith, A. J. 2008.
Teaching forward-chaining planning with JavaFF. In Col-
loquium on AI Education, Twenty-Third AAAI Conference
on Artificial Intelligence.
Dillenburg, J. F., and Nelson, P. C. 1994. Perimeter search.
Artificial Intelligence 65(1):165–178.
Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In 5th International Conference on
AI Planning and Scheduling (AIPS), 140–149.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of Artificial Intelligence
Research 22:215–287.
Hoffmann, J. 2001. The FF Planning System: Fast Plan
Generation Through Heuristic Search. Journal of Artificial
Intelligence Research 14:253–302.
Lavalle, S. M. 1998. Rapidly-exploring Random Trees:
A new tool for path planning. Technical report, Computer
Science Dept, Iowa State University.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence (AAAI-2008), 975–
982.
Vidal, V. 2003. A lookahead strategy for solving large plan-
ning problems. In IJCAI’03: Proceedings of the 18th Inter-
national Joint Conference on Artificial Intelligence, 1524–
1525.


