
Planning as QBF

Michael Cashmore and Maria Fox
University of Strathclyde

Abstract

Planning can be solved by general purpose satisfiability
algorithms using an efficient encoding. Introduced here
is a translation from STRIPS-style planning problems to
an encoding as a Quantified Boolean Formula, which is
sound and complete. It exploits the structure of the QBF
problem to place an bound on the plan length that is
exponential in the size of the formula, an improvement
over the linear bounds of similar SAT encodings.

1. Introduction and Definitions
A STRIPS-style planning problem is described as a set F of
propositional facts, a set of actionsA, and an initial and goal
state I,G ⊆ F . An action (a) contains three sets of states
from F ; adds [adds(a)], deletes [dels(a)] and preconditions
[precs(a)]. An action can be applied to a state S ⊆ F , in
which all of its preconditions are present (precs(a) ⊆ S).
Applying an action a in state Si produces a new state Si+1 ⊆
F where Si+1 := (Si − dels(a)) ∪ adds(a).
A planning problem has a solution if there is a sequence of
actions that can be applied to each state, beginning with the
initial state, ending in a final state Sg such that G ⊆ Sg . In a
parallel plan a set of actions can be applied to a single state,
as long as the resultant state is identical whatever order those
actions are applied.
There has been success in solving bounded planning prob-
lems by first encoding them as SAT instances, as both prob-
lems are NP-complete. However there are some practical
limits on the size complexity of the resulting transformation
(Kautz, McAllester, and Selman 1996).
Quantified Boolean Formula (QBF), for which SAT is a
subproblem, is PSPACE complete (Cadoli, Giovanardi, and
Schaerf 1998). It is possible to encode a planning problem
instance as a QBF and achieve a formula size that is expo-
nentially smaller than that of an equivalent SAT translation.
As there are QBF solvers which solve the formula without
an exponential blowup in memory (Giunchiglia, Narizzano,
and Tacchella 2001) this prospect seems attractive. There
are already encodings into QBF for conformant planning,
(c.f. (Littman 2003) and (Rintanen 2007)). These encod-
ings make use of the QBF’s structure to handle uncertainty,

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

rather than simply reduce the size of the encoding. This pa-
per will describe a basic encoding, with reference to an ex-
ample, in section 2. Section 3. displays results on running
an initial implementation of these encodings on a selection
of STRIPS PDDL instances. Section 4. lists some improve-
ments that can be made to the basic encoding, without going
into detail.
An example of a simple planning problem will be used in
order to demonstrate the basic ideas of the translation. The
problem describes a truck moving between locations. The
problem is described by:

Facts : (atA), (atB) and (atC)

Actions : (driveAB) and (driveB C)
With the obvious adds, deletes and preconditions, eg:

adds(driveAB) : (atB)

dels(driveAB) : (atA)
precs(driveAB) : (atA)

There are also three actions for doing nothing (noopA),
(noopB) and (noopC). These actions contain the associ-
ated fact as an add effect and precondition, with no deletes.
The initial state is (atA), and the goal is (atC).

Quantified Boolean Formula
The QBF problem extends SAT by allowing the quantifica-
tion of variables, either existentially (∃) or universally (∀).
A QBF has the form

Q1x1, Q2x2, ..., Qnxnφ

where φ is the propositional formula containing exactly the
variables xi, (i = 1..n). Since ∃x∃yφ = ∃y∃xφ and
∀x∀yφ = ∀y∀xφ the formula can be written as

Q1X1, ..., QnXnφ

where Xi’s are mutually disjoint sets of variables, and the
quantifiers alternate between ∀ and ∃.
A set of variables is said to be quantified before or above
another set that follows it in the quantification layer, or is in-
side or below a set which precedes it. These terms are used
interchangeably.
A QBF is said to be satisfied by the assignment of truth or



falsity to its existentially quantified variables. A truth as-
signment or assignment is used to refer to a complete or par-
tial satisfying certificate for the QBF instance, or proposed
partial certificate during the search process. The context will
make obvious which usage is intended.
The encoding uses the idea that a QBF can be represented as
a tree structure, (c.f. proof of QSAT’s PSpace-completeness
in (Papadimitriou 1993)). However it uses a novel scheme of
using existentially quantified descriptions of the state, with
universal variables limited to branching the structure in or-
der to allow far more propagation.
A QBF

∀x1, Q2x2, ..., Qnxnφ(x1, ..., xn)
can be written as

A&B
A = Q2x2, ..., Qnxnφ(0, x2, ..., xn)
B = Q2x2, ..., Qnxnφ(1, x2, ..., xn)

with A and B as separate QBF instances. A satisfying as-
signment can be represented as a binary tree in which univer-
sally quantified variables mark branches, with the outermost
universal variable forming the root. Existentially quanti-
fied variables are given truth assignments directly above the
branches which immediately follow them in the quantifica-
tion layer. This representation will be used to describe the
translation in section 2. with the leaves of the tree referring
to the innermost existentially quantified set of variables.

2. QBF Encoding
The approach described here uses the branching structure of
the QBF to reuse a single set of clauses that describe a single
state in the plan. The two assignments inside each universal
variable represent the first and second half of the plan split
around that branch. The assignments to each existential set
represent action choices within a single state. The bound on
the length of the plan can be increased exponentially with a
linear increase in variables and clauses. This places an upper
bound on the plan length of 2n+1−1 parallel actions layers,
where n is the number of universally quantified variables.
In the truck example a QBF can be formulated with a sin-
gle branch node and two existential sets. These sets contain
variables associated with the actions described in section 1.
and written as (action)1 or (action)2 depending on whether
it is quantified in the first or second existential set. The quan-
tification layer will be:

∃(driveAB)1, (driveB C)1, (noopA)1,

(noopB)1, (noopC)1
∀b

∃(driveAB)2, (driveB C)2, (noopA)2,
(noopB)2, (noopC)2

Figure 1 shows how this quantification line corresponds to
the branching structure described in section 1. The clauses in
the formula are drawn from a Plan Graph, which is generated
until level off, as described in (Blum and Furst 1997) with
improvements as described in (Fox and Long 1999). These
clauses ensure that:

• An action chosen at stepi implies a disjunction of achiev-
ers for each of its preconditions in stepi−1.

• Two mutex actions cannot be chosen in the same step.

• Only actions applicable in the initial state can be chosen
in step0.

• The effects of the actions chosen in the final step of the
plan must satisfy the goal.

A clause may include a set of universal variables in order to
become satisfied in every step except for those in which the
implications of the clause are required - in which case one
of the remaining existential literals must satisfy the clause.
Negative preconditions in the original planning problem
would cause the encoding to become unsound. Additional
clauses (a small number, dwarfed by the mutex clause sets)
could be added to further constrain the problem - forcing a
noop action to be chosen for any present facts that are not
deleted. This would allow for negative preconditions, but
since they can be easily avoided in writing the domain, these
clauses have not yet been included in the encoding.

Action Preconditions and Mutual exclusions
Encoding a single step is performed in a similar way to SAT
based encodings ((Kautz, Selman, and Hoffmann 2006) and
(Kautz, McAllester, and Selman 1996)) except that variables
are not duplicated for each step in the plan. Instead each ex-
istential set of variables has a set of clauses which are reused
at each node of the tree of the appropriate depth. These
clauses assert:

• If two actions are mutex then the variables corresponding
to those action choices cannot both be selected.

• If an action variable is true then for each of its precondi-
tions a disjunction of action variables, which achieve that
precondition, is implied in the previous node.

The schema for mutual exclusions is:

(¬a1 ∨ ¬a2), for all (a1mutexwith a2)

for each existential set. For example (driveAB) is mutu-
ally exclusive with (noopA), so two clauses are asserted:

(¬(driveAB)1 ∨ ¬(noopA)1)

(¬(driveAB)2 ∨ ¬(noopA)2)
The plan under this encoding is read with a false → true
traversal of the tree, hence the steps in the plan alternate
between leaf and non-leaf nodes. The schema for the pre-
condition clauses follows, with a1, Ai referring to action
variables in the leaf nodes and a2, Aj referring to variables
quantified immediately above branch node b:

(¬a1 ∨A1 ∨B1 ∨ ¬b)

A1 : {aj : aj ∈ Aj st. f ∈ adds(aj)}
for all f ∈ precs(a1), and a1 ∈ Ai

and,
(¬a2 ∨A2 ∨B2 ∨ b)

A2 : {ai : ai ∈ Ai st. f ∈ adds(ai)}



Figure 1: The universal variable is used to create a branch, and does not represent an element of the planning problem.

for all f ∈ precs(a2) and a2 ∈ Aj

where:
B1 : {bi|b ≺ bi}
B2 : {¬bi|b ≺ bi}

Using the example, in order for the action (driveB C)1 to
be used in the second step of the plan (the root node) the
following clause is involved:

(¬(driveB C)1 ∨ (driveAB)2 ∨ (noopB)2 ∨ b)

This states that either the action is not performed, or one of
the two actions which achieve its precondition (at B) are per-
formed in the innermost existential set, or the branch is true
- indicating that the innermost existential set represents the
state after this. Figure 2 shows the variables involved. They
are constrained only when the branch is assigned false. The
other branch is formed in a similar way, with the roles of
the two existential sets reversed. Since the formula must be
true for any assignment to b then both transitions between
the outer and inner sets are used to constrain the innermost
existential variables, albeit in different branches of the tree
- however, every precondition clause includes at least one
variable from the outer existential set as it must must achieve
the preconditions of the last step, as well as having its own
preconditions met. Because of this overlap between clauses,
information can propagate throughout the tree.

Figure 2: The variables affected by the example clause.

Initial state and goal state
It has been shown that a stage, or multiple stages, of a plan
can be specified by a clause that is satisfied by any other
assignment of branch variables, also that the assignment on
the false side of a universal branch is the preceding part of
the plan. The initial state is described by the assignments
in the first leaf, and therefore must hold when all universal

branch variables are assigned false. To ensure the initial state
holds the following clauses are included:

(¬a ∨B), for all a st. precs(a) * I

B : {b|b ∈ Universal vars}
The goal state is similarly described:

(A ∨ ¬B), for all f ∈ G,where

A : {a|f ∈ adds(a)}
So, in our truck example the initial state would include three
clauses, which state that either it is not the initial state (b is
true), or the actions whose preconditions are not met by the
initial state must be false.

(¬(driveB C)2 ∨ b), (¬(noopB)2 ∨ b)

(¬(noopC)2 ∨ b),
The goal state would be represented by a single clause, as
only one fact is present in the goal state. This clause states
that either it is not the goal state (b is false), or one of the
achievers of this goal fact (at C) must be applied in this state.

((driveB C)2 ∨ (noopC)2 ∨ ¬b)

Increasing the bound
The bound on the plan length can be doubled by adding an-
other universally quantified variables and existentially quan-
tified variable set to the outside of the quantification layer:

∃(driveAB)3, (driveB C)3, (noopA)3,

(noopB)3, (noopC)3
∀b1 ∃(driveAB)1, (driveB C)1, (noopA)1,

(noopB)1, (noopC)1
∀b2 ∃(driveAB)2, (driveB C)2, (noopA)2,

(noopB)2, (noopC)2
The number of new clauses generated is linear in the size
of the domain, as the only clauses that must be introduced
are mutex clauses in the new existential set and precondition
clauses for the two transitions to and from the leaf nodes,
as noted previously. The new sets are added to the outside
of the quantification layer, so the previous clauses do not
require modification, the structure being recursive.



Clauses Variables
QBF SAT-BASED QBF SAT-BASED

prob. 15 31 63 15 31 63 15 31 63 15 31 63
dl01 4214 5352 6480 24052 74068 174100 483 604 725 1881 4761 10521
dl02 5063 6434 7787 41792 107296 238304 591 739 887 2619 6171 13275
dl03 5625 7141 8645 41369 106873 237881 659 824 989 2559 6111 13215
dl07 14956 18926 22874 149239 367063 802711 1311 1639 1967 5128 12136 26152
dl08 15991 20238 24459 162793 401929 880201 1407 1759 2111 5402 12890 27866
dl09 25438 32127 38792 292521 847449 1957305 1915 2394 2873 6480 16912 37776

Table 2: Showing the growth of SAT and QBF encodings as the plan bound is increased.

3. Results
The translation process was implemented and run on the
driverlog and zeno domains from IPC-3 and the pipesno-
tankage domain from IPC-4. The QBF solvers Qube, Skizzo
and Quantor were applied to the instances generated, and
Ozziks was used to extract a resulting plan from Skizzo’s
satisfying certificate. Descriptions of the solvers can be
found in (E. Giunchiglia and Tacchella 2004), (Benedetti
2005) and (Biere 2005).
The results from Quantor are shown in table 1, displaying
the time taken to solve the QBF instances of the driverlog
and pipesnotankage problems, with a plan bound of 15. The
table also shows results from the SAT based encoding used
in Blackbox42b, with the same bound on plan length. The
SAT cnf encoding was solved using picosat, the same SAT
solver called by Quantor. Table 2 compares the growth in the
number of variables and clauses in the driverlog problems
with increasing plan bound. Blackbox42b is used as a com-
parison as it uses the same actions-only encoding scheme
as the QBF encoding described, without quantification. Any
advanced SAT encoding could be represented in a tree struc-
ture - the same is true of many Markov Chain problems.

QBF Encoding SAT based encoding
prob. vars clauses time (s) vars clauses time (s)
dl01 483 4214 0.14 1881 24052 0.16
dl02 591 5063 0.21 2619 41792 0.25
dl03 659 5625 0.2 2559 41369 0.24
dl07 1311 14956 0.68 5128 149239 0.83
dl08 1407 15991 0.81 5402 162793 0.91
dl09 1915 25438 7.53 6480 292521 1.63
pt01 691 12958 0.53 2791 68019 0.39
pt02 691 12960 4.86 2861 70174 0.43
pt03 1131 28966 2.09 3490 130119 0.72
pt04 1131 28968 5.08 3516 131324 0.71
pt05 1763 60852 5.04 5527 363474 2.08

Table 1: Times to solve the SAT and QBF encodings.

4. Improvements and Future Work
Further improvements to this encoding have been imple-
mented and others considered, viable in both QBF and SAT
representations, including ideas related to:
• Using landmarks, (c.f. (Porteous, Sebastia, and Hoffmann

2001) and (Richter and Westphal 2008)), to further con-
strain the problem, and introduce new information to en-
courage propagation between the initial and final states.

Table 3 shows preliminary promising results on rovers
problems with a subset of these improvements.

• A SAS+ based or Lifted representation, (c.f. (Kautz,
McAllester, and Selman 1996)) reducing the size of the
problem, break symmetry, and integrate with landmark
strategies.

• Using clauses to add lower and upper bound constraints
to actions based on the levels at which they appear in the
Plan Graph in order to aid propagation.

prob. extra vars extra clauses t1 t2
rov01 410 84 21.86 18.31
rov02 446 92 120.94 82.63
rov03 212 48 117.7 83.25

Table 3: Times with and without landmark clauses.

5. Conclusion
Solving this proposed encoding with the referenced QBF al-
gorithms has shown that this approach is feasible.
It is hoped that applications such as this will encourage fur-
ther improvements to QBF solving algorithms, and this ap-
proach will become comparable to other good general and
specialised systematic search engines, and be applied to
other PSPACE problems.

References
Benedetti, M. 2005. Evaluating qbfs via symbolic skolemization. In Proceedings of 11th Interna-
tional Conference on Logic for Programming Artificial Intelligence and Reasoning (LPAR04). n.
3452 in LNCS, Springer.

Biere, A. 2005. Resolve and expand. In Proceedings of 7th Intl. Conf. on Theory and Applications
of Satisfiability Testing (SAT’04). Lecture Notes in Computer Science (LNCS), vol. 3542.

Blum, A., and Furst, M. 1997. Fast planning through planning graph analysis. Artifcial Intelligence
90:281–300.

Cadoli, M.; Giovanardi, A.; and Schaerf, M. 1998. An algorithm to evaluate quantied boolean
formulae. In Proceedings of 15th National Conference on Artificial Intelligence (AAAI 98).

E. Giunchiglia, M. N., and Tacchella, A. 2004. Qube++: an efficient qbf solver. In Proceedings
of 5th International Conference on Formal Methods in Computer-Aided Design (FMCAD’04).

Fox, M., and Long, D. 1999. Efficient implementation of the plan graph in stan. Journal of
Artificial Intelligence Research 10:87–115.

Giunchiglia, E.; Narizzano, M.; and Tacchella, A. 2001. Qube: a system for deciding quan-
tified boolean formulas satisfiability. In Proceedings of International Joint Conf. on Automated
Reasoning (IJCAR’01).

Kautz, H.; McAllester, D.; and Selman, B. 1996. Encoding plans in propositional logic. In
Proceedings of the Fifth International Conference on Principles of Knowledge Representation and
Reasoning.

Kautz, H.; Selman, B.; and Hoffmann, J. 2006. Satplan: Planning as satisfiability.

Littman, S. M. . M. 2003. Contingent planning under uncertainty via stochastic satisfiability. AIJ
147.

Papadimitriou, C. H. 1993. Computational Complexity. Addison Wesley.

Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the extraction, ordering, and usage of land-
marks in planning. In Pre-proceedings of the Sixth European Conference on Planning (ECP01).

Richter, S., and Westphal, M. 2008. The lama planner: Using landmark counting in heuristic
search.

Rintanen, J. 2007. Asymptotically optimal encodings of conformant planning in qbf. AAAI.


