Integrating Planning and Scheduling: From A Resource Perspective

Debdeep Banerjee

The Australian National University and NICTA
debdeep.banerjee @rsise.anu.edu.au

Motivation and Introduction

Many real world problems include a planning component,
where some choices have to be made, and a scheduling
component where resources are allocated to these commit-
ted choices. Scarcity of resources makes these choices to
have cascading effects on other choices. For example, con-
sider production scheduling problem (Focacci, Laborie, &
Nuijten 2000; Bartdk 2003) where a set of order has to be
made within given deadlines. Each task of an order can be
processed on a set of alternative machines, and may require
additional resources such as workers, special tools etc. To
make a plan, one needs to decide which task must be as-
signed to which machines (planning choice), and when it
must be processed (scheduling choice), depending on the
availability of machines, workers, and tools. Once a deci-
sion is made for a task, it will have effects on other tasks
that need the same set of resources. Other examples of
problems where action choices occur with complex temporal
and resource constraints include, surgical case scheduling
in hospitals (Pham & Klinkert 2008), vehicle routing prob-
lems (Kilby, Prosser, & Shaw 2000) and many more. Al-
though these problems have been studied in academic liter-
atures, complexity of constraints over choices and resources
are ever increasing. For example, when assigning drivers to
trucks in a VRP, complex labor laws must be respected (Goel
2009). For any automated system, that would able to handle
the complexity of this type of problems, it would essential to
unify planning (choices among alternatives) and scheduling
(temporal and resource reasoning) techniques to be efficient.

In recent years there is a growing interest in integrating
planning and scheduling to solve problems similar to the
above examples. Constraint-based scheduling techniques
model planning choices via allowing alternative activities
(Laborie & Rogerie 2008; Bartak & éepek 2007). Planners
like CPT (Vidal & Geffner 2006) and timeline-based ap-
proaches (Pralet & Verfaillie 2008; Fratini, Pecora, & Cesta
2008), compiles a bounded planning problem into a schedul-
ing problem (Homogeneous P&S (Smith, Frank, & Jonsson
2000)), where action selection and action ordering decisions
can be made in a unified fashion.

In this PhD project we would like to solve planning

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

problems with temporal and resource constraints within a
constraint-based framework. Solution to a planning prob-
lem here is a set of actions and precedence ordering between
them such that all goals are achieved and none of the tem-
poral and resource constraints are violated. To find a solu-
tion we need to decide on two things: which action should
we choose to achieve (sub)goals, and if these choices cre-
ate resource conflicts, then how to resolve them by applying
precedence ordering between them. We specify a planning
problem in a transition-based formulation (Banerjee 2009)
where we represent resources explicitly and represent ac-
tions as set of effects on the state variables and resources of
the planning problem. The main building-blocks of this for-
mulation are transitions and resource requirements. Each
transition represents an effect of an action on a state vari-
able, which can be either a change of values or a persistent
requirement on a specific value of the state variable. A re-
source requirement denotes an effect of an action on a re-
source. The motivation behind the transition-based formula-
tion is to exploit the fact that the evolution of each state vari-
able, over a time period , can be represented by a sequence of
transitions, which induces temporal constraints between the
transitions and ordering constraints between the related ac-
tions. Similarly, we would also like to exploit that over time
resource requirements on a resource have to be partially or-
dered (given the capacity constraint of the resource). The
advantage of this formulation is that it allows us to incor-
porate important features such as deadlines, time windows,
release times, resource reasoning into the planning formal-
ism in a straightforward way. Given a planning problem,
we compile it to a CSP by bounding the problem with the
number of occurrences of actions. There are two important
aspects of this CP model: (1) we model multi-valued state
variables as a special type of unary resource, which pro-
vides an unified framework for resource reasoning and (2)
the bound lets us reason about not only the actions that are
in the partial plan, but all possible actions that can appear in
the plan in future. A solution to a planning problem, in the
transition-based formulation, is a partially ordered set of ac-
tions that achieves the goal while maintaining the temporal
and resource constraints, thus producing a flexible schedule.

Problem Representation

A planning problem in transition-based formulation can be
represented with 4 components: a set of state variables (SV)),
a set of resources (R), a set of (grounded) actions (A4), an
initial state (Z) and a goal description (G). In the multi-
valued state variable representation each state variable has
a finite discrete domain of possible values. Each action is
made up of a set of transitions, i.e. changes or persistent
value requirements on a subset of state variables, and a set of
resource requirements on a subset of resources. For a transi-
tion T, T'.var denotes the state variable affected by the tran-
sition, T'. from denotes the value that the transition changes,
T'.to denotes the changed value, and T'.act is the action as-
sociated with the transition. T.duration denotes the time
the transition takes. There are two types of transitions: EF-
FECT transitions and PREVAIL transition. An EFFECT
transition T, represents a change (T.to # T.form) in the
related state variable’s value caused by the action T.act. A
PREVAIL transition 7', represents that the associated action
requires T.var’s value to be same (7. from = T.to) through-
out its execution. Similarly, for each resource requirement
RR, RR.act and RR.duration has the same meaning as
transitions, and RR.var and RR.amount denotes the asso-
ciated resource and the quantity needed respectively. Note
that, when RR.amount > 0, it represents consumption and
when RR.amount < 0, it represents production. We say
that the action causes these transitions (resource require-
ments) or that the transitions (resource requirements) are as-
sociated with the action. 7 is a complete assignment of the
state variables to their initial values and G is a partial assign-
ment of a subset of state variables to their goal values.

For notational simplicity from now on, we will use the
term “EFFECT transition” to refer both EFFECT transitions
and resource requirements, and we will use “transition” to
denote any effect of actions (EFFECT and PREVAIL transi-
tions and resource requirements).

Precedence Relations: We define a binary precedence re-
lation — between two actions as Act; — Acts, to represent
that Act; must be executed before Acts. The precedence
relation — is a transitive relation that is conditioned on the
inclusion of the actions. That means, if Act; — Acty and
Acty — Acts, then Act; — Acts iff Acts is part of the final
plan.

A precedence relation between two actions induces a
precedence relation between the related transitions of the ac-
tions and vice versa. That means, if 77 and 75 are two tran-
sitions or resource requirements on the same state variable
or resource (11.var = Ty.var), then Ty — Ty < TY.act —
Ts.act.

As a special case of the precedence relation between two
transitions, we define an “immediate” precedence relation,
--+, where T} --» 715 means that T5 must be executed af-
ter 77 and there exists no EFFECT transition or resource
requirement 7", such that 7) — 7" and T’ — T holds.

Solution

A solution to a planning problem represented in the
transition-based formulation is a set of action and consis-

tent (acyclic) precedence constraint between them, such that
goals, and all the temporal and resource constraints are sat-
isfied. An action can occur more than once in a plan, this
will cause cycles in the action ordering, which is not desir-
able. To avoid this we will assume each action can occur at
most once in the plan, i.e. plans are canonical. If an action
is needed more than once, then we will create distinct copies
(renaming) of that action.

Resources in Planning and Scheduling

Resources are important features of the most real world
problems. Actions in planning problems consumes or pro-
duce resources. Resource availability serves as a precondi-
tion of enabling actions to execute. Each resource R has a
finite capacity Cap(R). A consumption profile for R is a
function over time, ConProf(R,t) € [levelmin, Cap(R)],
that denotes the total consumption (recall produce require-
ments have negative consumption) of the resource R at time
point ¢.In general resource requirements on a resource 12 can
be executed simultaneously given that at each time point ¢,
ConProf(R,t) is defined. In this work we will only con-
sider a class of resources where resource requirements can
only be executed sequentially as defined below.

e Sequential Borrow (Unary Resources): A sequential
borrow resource, or a unary resource, allows sequential
execution of borrow resource requirements. There can be
possibly infinite number of borrow requirements that can
be executed on this type of resources. Example of this
type of resource includes machines in job shop schedul-
ing problems.

e Sequential Discrete: A sequential discrete resource al-
lows sequential execution of finite number of consume re-
source requirements. One example of sequential discrete
resource would be available space in a truck in a vehicle
routing problem with only pick-up operation. Note that
the consumption profile of a sequential discrete resources
is a monotonically increasing function.

e Sequential Reservoir: A reservoir resource is a gen-
eral class of resource model that allows execution of both
consume and produce resource requirements while main-
taining a consistent consumption profile. The sequential
reservoir model add an extra restriction that each resource
requirements must be executed sequentially. For exam-
ple, available space in a truck in a vehicle routing prob-
lems with pick-up (consumes space) and delivery (pro-
duces space) operation. Note that the consumption pro-
file of a sequential reservoir resource is a non monotonic
function, it goes up when a consume resource requirement
is executed, and goes down when a produce (negative con-
sumption) resource requirement is executed.

We will use the notation Setup(RR;, RR3) to denote the
setup time between RR; and RRy, when they are executed
in the given order on the same resource. Each resource can
be restricted to be available within specified interval. Let
TimeBound(R) = [Tmin, Tmaz] denote such an interval
for a resource R. Each resource requirement on R must be
executed within TimeBound(R).

State Variable as Unary Resource: Transitions on a state
variable either change a state (EFFECT) or require a state
(PREVAIL) over an interval of time. Only one EFFECT
transition can be executed at any one point of time, whereas
many (unrestricted) PREVAIL transitions can be executed
simultaneously on a given state. In this sense a state vari-
able without any PREVAIL transition is same as an unary
resource with additional precedence relations. Given this
similarity we will consider each state variable as an unary
resource, with special care for PREVAIL transitions. A time
bound [T}in, Tinmax) ON a state variable will mean that initial
state of the state variable can only be changed after 7,
and goal value must be achieved before 7;,,,,. Note that, a
time bound on a state variable makes the representation of
time window, deadline etc. on the state variable simpler.

From now on we will use the term “resource” to mean
sequential resource, and leave the constraint modeling of the
general resources (where actions can execute parallely) as
future work.

CSP Encoding

In this section we describe a CSP model for solving
transition-based formulation that can be automatically de-
rived from the problem description. This CSP encoding is
similar to the CP-based path-model developed in context of
job shop problems with alternative resources (Focacci, La-
borie, & Nuijten 2000) and vehicle routing problems (Kilby,
Prosser, & Shaw 2000), and constraint-based representation
of precedence constraint (Bartik & Cepek 2006).

For each state variable, we add one initial transition and
a goal transition such that they must be present in any plan,
and are constrained to appear first and last, respectively.
If the goal condition doesn’t mention the variable we add
a dummy goal value and add dummy EFFECT transitions
from each original value of the variable to the dummy goal
value. We do the same for the resources. Here we list the
CSP variables and constraints and refer to the previous work
(Banerjee 2009) for more detail discussion.

CSP Variables and Constraints

e Temporal Variables: For each transition 7T,
start_time[T], and end_time[T] represent the start
and end time of T respectively. The constraint

start_time[T] 4+ T.duration = end_time[T

holds for each transition 7. For each action A,
start_time[A] denotes the start time of A and it is syn-
chronized with the start time of its related transitions.

e Resource Consumption Variables: For each resource
requirement 7" on a sequential discrete or reservoir re-
source, start_cons|T] represents the total consumption
of resource T.var before T can start executing, and sim-
ilarly end_cons|[T] denotes the total consumption after T’
finished its execution. In other words, start_cons|[T] and
end_cons[T] denotes the consumption profile of T.var
over the time interval start_time[T| and end_time[T)
respectively. Similar to the temporal variables, for each

resource requirement 7' the following constraint holds.

start_cons[T| + T.amount = end_cons[T]

e Precedence Variables: For each transition T, next[T]
represents which EFFECT transitions can occur imme-
diately next to T', and previous|[T] represents the set of
EFFECT transitions that can appear immediately before
T. An assignment next[T] = T' (< previous[T'] = T)
implies T' --» T”, which means that 7' must be executed
before T on the resource T.var, which implies the fol-
lowing constraints,

start_time[T'] > end_time[T]

start_cons[T'] > end_cons|T)|

The next[T] and previous|T] variables can be assigned
to a not-in-plan value |, which will denote that the tran-
sition T will not be part of the final plan. For each ac-
tion A, a boolean variable inplan[A] represents if A is
in the plan or not. If an action is excluded from the
plan, all the related transitions must be also excluded, i.e.
VT : T.act = A,

—inplan[A] < next[T) = previous[T] = L

Since canonicity assumption is implicit in the transition-
based formulation, we always assume that each action can
occur in the plan at most once, i.e. each action is either in
the plan or not in the plan. Problems that are in between
planning and scheduling, often need an action at most once
in a solution (Vidal & Geffner 2006) or could be modeled
that way. For example, in a transportation problem move
actions can be modeled as setup times between two pickup
(or delivery) actions on a truck. Thus issue of making copies
of move actions can be avoided. Canonicity allows us to
reason with not only the actions that are included in the plan,
but also with those actions that can appear in the future.

Each solution of the CSP, which is an assignment of the
next, previous and inplan variables that satisfies all the con-
straints, corresponds to a solution of the planning problem.
The final plan corresponds to the following set of tuples:

PLAN = {< A, A.start > | inplan[A] = true}.

Example

Consider a simple vehicle routing problem where we have
three packages A, B and C with load requirements 10, 20
and 30 respectively, and two trucks T1 and T2 with capac-
ity 35. The problem is to pickup these packages within the
time windows [2,12], [5,12] and [2,12] respectively where
each pickup operation takes 3 units of time. Let assume that
trucks are initially at a depot (D) and travel time between the
location are described in Figure 1. For each package we de-
fine a state variable with two states: ready(R) and picked up
(P), and a time bound based on the time window. For exam-
ple, state variable for package A have time bound [2,(12+3)].
Each action represents a pickup operation of a package into
a truck as decried below:

ACTION: T1_A
A:<ready, picked_up>:3
T1:3:10:A

PickUp_T1_A: [3, 4] PickUp_T1.8 : [11, 12]

Truck 2

Figure 1: Example Problem Figure 2: Solution

The second line describes that the action changes the value
of the state variable A from ready to picked_up and the du-
ration of the change is 3. The next line describes that it re-
quires the resource T1 for 3 units of time, and consumes 10
unit of space, and its action location' is A. To avoid model-
ing explicit move actions for trucks, we model each truck as
a sequential discrete resource and associate a setup time ma-
trix to each truck that denotes the time needed for the truck
to go from one action location to another. Figure 1 describes
the initial state of the problem in the transition-based formu-
lation. Figure 2 describes the solution of the problem.

Initial Results and Future Work

We have implemented a system, TransPlan, that reads a
planning problem in transition-based formulation (similar to
the example above) and converts it into a CSP and solves
the CSP using the propagation and inference techniques as
discussed in this paper. The first problem we have solved is
meeting scheduling problem, where a set of meetings need
to be scheduled among a group of teams of agents within a
given time horizon. Each team consists of two team mem-
bers, and exactly one member from each team can attend a
meeting. Each meeting has a duration, and a team mem-
ber needs an x amounts of time to travel from one meeting
to other. TransPlan solves all 27 problems? under a sec-
ond. As the second problem set, TransPlan has solved a set
of jobshop problems? , where each problem consists of 20
jobs with due dates, where each job has 10 tasks, and each
task can be executed on two alternative resources. Trans-
Plan was able to solve all 20 problems within on average
Sms. The third set of problems that TransPlan has solved is
the Solomon’s instances* of vehicle routing problem. Each
problem consists of 100 packages with time windows and
load requirement, 25 trucks with capacity 100. TransPlan
was able to solve all these instances on average under 6 sec-
onds, trying to fill up one truck at a time.

Note that, the current implementation of TransPlan
doesn’t guarantee any quality measure on a solution. The
main purpose of these experiments is to show that variety of
scheduling problems with planning choices can be modeled

! An action location is the location of the associated package.

2These problems downloaded and modified from CSPLib http://www.cs.
st-andrews.ac.uk/~ianm/CSPLib/prob/prob046/MSP.html

3These problems downloaded and modified from http://palette.ecn.
purdue.edu/~uzsoy2/Problems/classic/nomenclature.html

4http ://www.sintef.no/Projectweb/TOP/Problems/VRPTW/
Solomon-benchmark/

in the transition-based formulation, and the corresponding
CSPs are scalable. To find good quality solutions for these
problem we need good heuristic to guide the CSP search.
We consider developing such heuristics as our next step.

In addition to developing heuristics to guide the CSP
search, there are 2 other directions that we would like to
pursue next. The first goal is to extend our sequential re-
source model to more general case where resource require-
ments can be executed parallely, and the second goal is to
relax our canonicity assumption.

References

Banerjee, D. 2009. Integrating planning and scheduling in
a cp framework: A transition-based approach. In Proceed-
ings of ICAPS’09, September 19-23, Thessaloniki, Greece.

Bartdk, R., and Cepek, 0. 2006. Incremental maintenance
of double precedence graphs: A constraint-based approach.
In Proceedings of ICAPS 06, June 6-10, Lake District, UK.

Bartak, R., and éepek, 0. 2007. Temporal networks with
alternatives: Complexity and model. In Proceedings of
FLAIRS 07.

Bartak, R. 2003. Real-life manufacturing problems: A
challenge. In Proceedings of ICAPS 03 Workshop on the
Competition: Impact, Organization, Evaluation, Bench-
marks, Trento, Italy.

Focacci, F.; Laborie, P.; and Nuijten, W. 2000. Solving
scheduling problems with setup times and alternative re-
sources. In Proceedings of AIPS 00, USA.

Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying Plan-
ning and Scheduling as Timelines in a Component-Based
Perspective. Archives of Control Sciences 18(2):231-271.

Goel, A. 2009. Vehicle scheduling and routing with
drivers’ working hours. Transportation Science 43(1):17-
26.

Kilby, P.; Prosser, P.; and Shaw, P. 2000. A comparison
of traditional and constraint-based heuristicmethods on ve-
hicle routing problems with side constraints. Constraints
5(4):389-414.

Laborie, P., and Rogerie, J. 2008. Reasoning with condi-
tional time-intervals. In Proceedings of FLAIRS 08.
Pham, D.-N., and Klinkert, A. 2008. Surgical case schedul-
ing as a generalized job shop scheduling problem. Euro-
pean Journal of Operational Research 185(3):1011-1025.
Pralet, C., and Verfaillie, G. 2008. Using Constraint
Networks on Timelines to Model and Solve Planning and
Scheduling Problems. In Proceedings of ICAPS’08, Syd-
ney, Australia.

Smith, D. E.; Frank, J.; and Jonsson, A. K. 2000. Bridg-
ing the gap between planning and scheduling. Knowledge
Engineering Review 15(1):47-83.

Vidal, V., and Geftner, H. 2006. Branching and pruning:
An optimal temporal pocl planner based on constraint pro-
gramming. Artificial Intelligence 170(3):298-335.

