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Abstract

The theoretical aspects of automated planning, and associ-
ated results, have for long outstripped the application of these
methods in problems of relevance in the real-world. Even to-
day, advances in planning-related theory are reported on a far
more regular basis than results on integrating and using these
methods in applications. One major reason for this discrep-
ancy is that the state-of-the-art planning systems that are used
to report theoretical advances are hard to integrate and use
in application scenarios. In this paper, we present work on
an integrated planning and robotic architecture that actively
directs an agent engaged in an urban search and rescue sce-
nario. We describe three salient features that comprise the
planning component of this system, namely (1) planning in a
world open with respect to objects, (2) execution monitoring
and replanning abilities, and (3) handling soft goals, and de-
tail the interaction of this trio in representing and solving the
application scenario at hand.

Introduction

In recent years, considerable progress has been made in de-
veloping highly efficient planners. While the class of prob-
lems handled by these planners is expanding every year,
most of them are still evaluated in closed-world conditions,
where the planner has knowledge of all the objects in the
world. In many real world applications, such closed-world
assumptions do not hold. A case in point is robots exploring
a partially known world, such as in a search and rescue sce-
nario. An important challenge for the planning community
is to understand what aspects of current planning systems
are relevant for handling such scenarios and what extensions
need to be made. This is precisely the broader aim of the
current paper. Before elaborating on the specifics of our in-
vestigation, we begin by giving the details of our application
scenario.

We consider a human-robot team engaged in an urban
search and rescue (USAR) scenario inside a building of in-
terest. The robot is placed at the beginning of a long cor-
ridor, while the human team member (who has intimate
knowledge of the building’s layout) removed from the scene
and can only interact with the robot via on-board wireless
audio communication. The corridor in which the robot is lo-
cated has doors leading off from either side into rooms, a fact
known to the robot. However, unknown to the robot (and the

human team member) initially is the possibility that these
rooms may contain injured humans (victims). The robot is
initially given a hard goal of reaching the end of the corridor
by a given deadline based on wall-clock time. As the robot
executes a plan to achieve that goal, the team is given addi-
tional information regarding victims being in rooms. Also
specified with this information is a new soft goal, to report
the location of victims.

The fallibility of human experts in completely specify-
ing information relevant to the given problem and goals up-
front makes it quite likely that knowledge needed to achieve
some soft goals may be specified at some later stage dur-
ing the planning process. This partial knowledge may be
unbounded, existing in both the problem dynamics and ob-
jectives. In the USAR scenario, for example, the knowledge
that injured people are in rooms may be relayed to the plan-
ner while it is engaged in planning for the executing robot.
In order to handle the specification of such statements in the
midst of an active planning process, and enable the use of
knowledge thus specified, we need to relax two crucial as-
sumptions that most modern planners rely on. The first is the
closed world assumption with respect to the constants (ob-
jects) in the problem — the planner can no longer assume that
the only objects and facts in the scenario are those specified
in the initial state alone. We must also interleave planning
with execution monitoring and, if required, replanning in or-
der to account for the new information.

Planning in an Open World

We use SapaReplan (Cushing, Benton, and Kambhampati
2008), a state-of-the-art planner that (like most current plan-
ners) operates in a closed world by assuming that all objects
and facts related to those objects are known up-front in the
initial state. In the rest of this paper, we use closed world
assumption to indicate this. There exists an obvious prob-
lem with making such an assumption within an open world
environment. The planner does not have complete a priori
knowledge of all objects (e.g., injured people) — because of
this, we must consider general, quantified goals while at the
same time allowing for the discovery of new objects that en-
able the achievement of goals. This combination shows the
inherent connection between sensing and goal achievement
— some goals only exist given particular facts whose truth
value remains unknown at the initial state. It further high-



lights a strict need for sensing in order to ensure high reward
for a given plan (in terms of goal achievement). On top of
this, we have a set of objects that imply certain facts; for ex-
ample, a door implies the existence of a room and hence the
potential for goal (and reward) achievement.

Interleaving Planning and Execution

For most of the sensors on the robot, it is too expensive to
sense at every step, so knowing exactly when to engage in
perceptual monitoring is of critical importance. Planning
through an open world also introduces the possibility of dan-
gerous faults or nonsensical actions. While in some sense,
this risk can be quantified with a measure (see Garland and
Lesh (2002), for example), indicating the risk of a plan does
nothing to address those risks. A more robust approach in an
online scenario involves planning to sense in a goal-directed
manner.

Problem Updates New sensory information can be sent to
the planner at any time, either during planning or after a plan
has been output. New data can become known from other
sources as well (e.g., a commander may issue a new goal
or give new facts about the world). Regardless of the orig-
inating source, the monitor receives updates from the goal
manager and correspondingly modifies the planner’s repre-
sentation of the problem. Updates can include new objects,
timed events (i.e., an addition or deletion of a fact at a partic-
ular time, or a change in a numeric value such as action cost),
the addition or modification (on the deadline or reward) of a
goal, and a time point to plan from. Updates from the world
consist of some number of: (1) new objects, (2) exogenous
events, (3) new or updated goals, and (4) the current time.

Partial Satisfaction Planning A Partial Satisfaction Plan-
ning (PSP) problem involves actions and (soft) goals with
varying costs and rewards. This contrasts with classical
planning, which focuses on hard goal achievement. The
planning objective is to find plans with high net benefit (cu-
mulative goal reward minus plan action cost) by consider-
ing which goals should be achieved and which should be
ignored due to their high cost or other resource constraints
(such as time). The selection process occurs during an A*
search. At each search state, the planner’s heuristic evalu-
ates the cost for achieving individual goal facts and removes
those goals (and supporting actions) that appear too costly to
achieve. That is, a goal will not be pursued at a given state
if the estimated cost of achievement outweighs the reward.

Goals in an Open World

To handle the issues inherent with specifying information
critical to goal achievement in an open world, we intro-
duce a novel construct called an open world quantified goal
(OWQG) (Talamadupula et al. 2010) that combines infor-
mation about objects that may be discovered during execu-
tion with partial satisfaction aspects of the problem. Us-
ing an OWQG, the domain expert can furnish details about
what new objects may be encountered through sensing and
include goals that relate directly to the sensed objects. This
can be seen as a complementary approach to handling open

world environments using local closed world (LCW) infor-
mation produced by sensing actions (Etzioni, Golden, and
Weld 1997).

An OWQG is a tuple Q = (F,S,P,C,G) where F and
S are typed variables that are part of the problem II, where
F belongs to the object type that Q is quantified over, and S
belongs to the object type about which information is to be
sensed. P is a predicate which ensures sensing closure for
every pair (f, s) such that f is of type F' and s is of type S,
and both f and s belong to the set of objects in the problem,
O € II; for this reason, we term P a closure condition.
C=A , Ci 18 a conjunctive first-order formula where each ¢;
is a statement about the openness of the world with respect to
the variable S. For example, c = (in ?hu - human 2z
- zone) with S = ?hu - human means that ¢ will hold
for new objects of the type ‘human’ that are sensed. Finally,
G is a quantified goal on S.

Of the components that make up an open world quanti-
fied goal Q, P is required! and F and S must be non-empty,
while the others may be empty. If G is empty, i.e., there is
no new goal to work on, the OWQG Q can be seen sim-
ply as additional knowledge that might help in reasoning
about other goals. Newly discovered objects may enable the
achievement of goals, granting the opportunity to pursue re-
ward. For example, detecting a victim in a room will allow
the robot to report the location of the victim (where reporting
gives reward). Given that the reward in our scenario is for
each reported injured person, there exists a quantified goal
that must be allowed partial satisfaction. In other words, the
universal base, or total grounding of the quantified goal on
the real world, may remain unsatisfied while its component
terms may be satisfied. To handle this, we use partial satis-
faction planning (PSP) (van den Briel et al. 2004), where the
objective is to maximize the difference between the reward
given to goals, and the cost of actions. Reward is associated
with each term g € G satisfied, u(G). Additionally each
term ¢ is considered soft in that it may be “skipped over”
and remain unachieved.

Implementation

To handle open world quantified goals, the planner grounds
the problem into the closed world using a process similar to
Skolemization. More specifically, we generate runtime ob-
Jjects from the sensed variable S that explicitly represent the
potential existence of an object to be sensed. These objects
are marked as system generated runtime objects. Given an
OWQG Q = (F,S,P,C,G), one can look at S as a Skolem
function of F', and runtime objects as Skolem entities that
substitute for the function. Runtime objects are then added
to the problem and ground into the closure condition P, the
conjunctive formula C, and the open world quantified goal G.
Runtime objects substitute for the existence of .S dependent
upon the variable F'. The facts generated by following this
process over C are included in the set of facts in the problem

'If P were allowed to be empty, the planner could not gain
closure over the information it is sensing for, which will result in
it directing the robot to re-sense for information that has already
been sensed for.
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Figure 1: A schematic outline of methods to deal with Conditional Goals.

through the problem update process. The goals generated
by G are similarly added. This process is repeated for every
new object that ' may instantiate.

We treat P as an optimistic closure condition, meaning
a particular state of the world is considered closed once the
ground closure condition is true. On every update the ground
closure conditions are checked and if true the facts in the cor-
responding ground values from C and G are removed from
the problem. By planning over this representation, we pro-
vide a plan that is executable given the planning system’s
current representation of the world until new information
can be discovered (via a sensing action returning the clo-
sure condition). The idea is that the system is interleaving
planning and execution in a manner that moves towards re-
warding goals by generating an optimistic view of the true
state of the world.

Conditional Goals

Open World Quantified Goals can however really be viewed
as a specific instantiation of a more general class of goals,
known as “conditional goals”.

Conditional Goal Given ground predicates A and B, a
conditional goal A ~~ B is defined as the requirement that
if A is true in the initial state I, then any plan p is a solution
to a given planning problem if and only if B is true in the
final state resulting from applying p in 1.

Note that conditional goals may be labeled as “hard” or
“soft” using the same criteria as those used in Partial Sat-
isfaction Planning (PSP): a goal is hard if every plan must
achieve it in order to succeed, and soft otherwise. In this set-
ting, OWQGs can be seen as an “optimistic” determinization
of conditional goals, where we always assume that the con-
dition associated with a given goal is true, and consequently
add that goal to the set of goals to be achieved. For exam-
ple, in the USAR scenario, the partial observability of the
world is resolved by optimistically assuming the presence
of victims in all known rooms, and all associated goals are
included in the set of goals to be achieved.

Conditional goals themselves can be seen as constructs
that condition on the observability of the initial state of
a given planning problem in order to provide a complete
compilation to known methods of achieving a given set of
goals. In specific, if the initial state is fully observable, then
these goals can be compiled away into simple classical or
oversubscription planning (depending on if they are hard or
soft respectively) by observing the values of the antecedents
of each goal to decide its inclusion in the set of goals to
be achieved. When the initial state is partially observable,
things get more interesting: if it is known that the condi-
tional goal c under consideration is a hard goal, then there is
no option but to sense completely to resolve the uncertainty
in the initial state. However, if c is known to be a soft goal,
then there is the additional problem of weighing the benefits
of achieving c versus the cost of sensing for its antecedent.
The problem is further compounded in the presence of mul-
tiple soft goals (conditional or otherwise), in which case an
“expected net benefit” analysis must be performed. A de-
tailed outline of the various ways of dealing with conditional
goals is provided in figure 1. We now illustrate the process
of planning for these goals with an example.

Suppose the planner decided to sense the conditional
goals G¢ : {P} ~ G, Pi ~ G ...,Pl ~ Gi}. We
analyze the costs and benefits of this decision. First, let
S(G?) denote the cost of sensing the status of the conditions
{Pj---P{}. The results of sensing cannot be predicted at
planning time; to decide whether this sensing cost will be
offset by the increased net benefit, the planner has to com-
pute the expected net benefit achievable. In order to do this,
it needs to have (or assume) some prior knowledge on how
the truth values of the antecedents P : P; of the conditional
goals are jointly distributed. Let this distribution be ¥ (P).
Further, let Qé \ P be the set of conditional goals that are
triggered by a specific valuation of the antecedents. For each
such valuation P, the optimal net benefit achievable by the
planner is B(G, U [G \ P]). The expected net benefit is
EpuB(G,U[G:\ P)). The crux of the problem thus lies in
efficiently computing the expectation, and this can be done
either by making assumptions on the form of ¥ (e.g. using



OWQGs), or sampling from W¥. The optimal set of condi-
tional goals to be sensed G, is computed as:

G = argmax EpyB(G, U[G!\ P]) — S(G))
Gicge

Alternative Formalisms Thus far, we have examined
methods of dealing with conditional goals that fall within
the purview of deterministic planning. However, when ad-
ditional information about objects in the world (and facts
about those objects) is available, it would be unwise to
ignore such knowledge. Very often, such information is
specified in probabilistic terms, via distributions (such as
W above). There exist a number of established formalisms
within the planning literature to handle such scenarios?. Par-
tially observable worlds may be handled by POMDPs; un-
known objects (and open-worlds in general) may be added
by moving to a first-order MDP framework. Sensing ac-
tions can be accomodated too, by using belief-state MDPs
and casting them as information-gathering MDPs. Com-
bining these frameworks into the system required to solve
a problem such as the USAR scenario presented previously
presents an exciting line of future research.

Expected Impact

The contributions described in this paper may be viewed as
steps toward solving the problem of enabling planners (in
their current mould) to make plans for and control robots
acting in real-world application scenarios. A common criti-
cism that is leveled at application work in the planning com-
munity is that it is often too disconnected from the state-
of-the-art in academic planning, and thus tends not to affect
the evolution of the latter. Existing industrial applications
of planning such as interplanetary rovers and modular print-
ers are hard to integrate in an out of the box fashion with the
current best planners; indeed, to achieve the levels of robust-
ness that these scenarios demand, either specialized plan-
ning algorithms or carefully crafted problems are required.
This also explains the paucity of robotic applications that
use frontline planners; planning for robots requires a degree
of low-level detail that cannot be handled by current plan-
ning formalisms without significantly increasing the size of
the problem.

The hope for the future of this work is that it will result
in methods of capturing and translating useful knowledge
available from the application scenario into a format that
planning systems may use to generate better plans. An ex-
ample of such a task would be generating or learning prob-
abilistic distributions over the occurrence of certain prob-
lem features in specific domains — in the USAR scenario,
for example, this may entail things like specifying and sub-
sequently using distributions over humans being in specific
types of rooms. More generally, the logical culmination of
such a direction of work would be to automate the creation
of benchmarks based on detailed data from the application
scenario, thus eliminating the burden of domain modeling

The author wishes to thank the anonymous reviewer for point-
ing out the connections that follow.

and the various errors that accompany it. We believe that
this is a very promising direction of work.

Conclusion

In this paper, we presented a novel approach to reconcile a
planner’s closed world representation with the open world
that a robot has to typically execute it. To enable this
approach, we presented the integration of techniques that,
combined, are sufficient to represent and solve the scenario
described. We showed that we could handle information
about new objects in the world using open world quanti-
fied goals, and that our replanning and execution monitoring
system is able to handle the new information specified by
these goals in order to produce plans that achieve a higher
net benefit. We also discussed that our system could support
soft goals, thus ensuring that opportunities retain their bonus
nature, and do not turn into additional hard goals that may
constrain existing hard goals.

In addition, we showed that open world quantified goals
can be seen as a special case of a more general class of
goals known as conditional goals, and illustrated the pro-
cess of computing the expected net benefit of a given set of
such goals. We are currently looking into ways of extending
this work by using hindsight optimization and anticipatory
planning techniques (Yoon et al. 2008; Hubbe et al. 2008).
Methods such as these would likely produce a more robust
system capable of better balancing sensing costs with ex-
pected reward. We are also considering methods of coun-
terfactual domain analysis to determine what objects should
be attended to by the robotic system before plan execution
begins, in a bid to limit sensing cost and direct the planner
better.
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