Symbolic Methods for Hybrid Inference, Optimization, and Decision-making

Scott Sanner

With much thanks to research collaborators: Zahra Zamani, Ehsan Abbasnejad, Hadi Afhsar, Karina Valdivia Delgado, Leliane Nunes de Barros, Luis Gustavo Rocha Vianna, Cheng (Simon) Fang
Graphical Models are Pervasive in AI

- **Medical**
 - Pathfinder: Expert System
 - BUGS: Epidemiology

- **Text**
 - LDA and 1,000 Extensions

- **Vision**
 - Ising Model!

- **Robotics**
 - Dynamics and sensor models
Graphical Models + Symbolic Methods

• Specify a graphical model for problem at hand
 – Text, vision, robotics, etc.

• Goal: efficient inference and optimization in this model
 – Be it discrete or continuous

• Symbolic methods (e.g., decision diagrams) facilitate this!
 – Useful as building block in any inference algorithm
 – Exploit structure for compactness, efficient computation
 • Automagically!

 Still partially a dream, but many recent advances

 Exploit more structure than graphical model alone
Tutorial Outline

• Part I: Symbolic Methods for Discrete Inference
 – Graphical Models and Influence Diagrams
 – Symbolic Inference with Decision Diagrams

• Part II: Extensions to Continuous Inference
 – Case Calculus
 – Extended ADD (XADD)

• Part III: Applications
 – Graphical Model Inference
 – Sequential Decision-making
 – Constrained Optimization
Part I: Symbolic Methods for Discrete Inference and Optimization
Directed Graphical Models

Bayesian Network:

– compact (factored) specification of joint probability
– e.g., have binary variables B, F, A, H, P:

$$P(B,F,A,H,P) = P(H|B,F) \cdot P(P|F,A) \cdot P(B) \cdot P(F) \cdot P(A)$$
Undirected Graphical Models

• Markov Random Fields (MRFs)

- \(P(V_1, V_2, V_3, V_4) = \frac{1}{Z} F(V_1, V_2) F(V_2, V_4) F(V_1, V_3) F(V_3, V_4) \)

• Conditional MRFs (CRFs)

- \(P(V_1, V_2 | V_3, V_4) = \frac{1}{Z_{(V_3, V_4)}} F(V_1, V_2) F(V_2, V_4) F(V_1, V_3) F(V_3, V_4) \)

Note: representation above is factor graph (FG), which works for directed models as well. For FGs of directed models, what conditions also hold?)
Dynamical Models & Influence Diagrams

• Dynamical models…
 – Represent state @ times t, t+1
 • Assume stationary distribution

• Influence diagrams…
 – Action nodes [squares]
 • Not random variables
 • Rather “controlled” variables
 – Utility nodes <diamonds>
 • A utility conditioned on state, e.g.
 \[U(X_1',X_2') = \text{if } (X_1' = X_2') \text{ then 10 else 0} \]
Discrete Inference & Optimization

• Probabilistic Queries in Bayesian networks:
 • Want $P(\text{Query}|\text{Evidence})$, e.g.

\[
P(E|X) = \frac{P(E,X)}{P(X)} \propto \sum_A \sum_B P(A,B,E,X) \\
= \sum_A \sum_B P(A|B,E) P(X|B) P(E) P(X)
\]

• Maximizing Exp. Utility in Influence Diagrams:
 • Want optimal action $a^* = \arg\max_a E[U|A=a,…]$, e.g.

\[
a^* = \arg\max_a E[U|A=a,X=x] \\
= \arg\max_a \sum_{X'} U(X') P(X'|A=a,X=x)
\]
Manipulating Discrete Distributions

• Marginalization

\[\sum_{b} P(A, b) = P(A) \]

\[\sum_{b} P(A; b) = P(A) \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>.1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>.3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>.4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>.2</td>
</tr>
</tbody>
</table>

\[\begin{array}{c|c}
 A & Pr \\
 \hline
 0 & .4 \\
 1 & .6 \\
\end{array} \]
Manipulating Discrete Distributions

- Maximization

\[\max_b P(A, b) = P(A) \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>.1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>.3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>.4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>.2</td>
</tr>
</tbody>
</table>

\[
\max_b \left(\begin{array}{c}
A \\Pr \\
0 \ \ .1 \\
0 \ \ .3 \\
1 \ \ .4 \\
1 \ \ .2 \\
\end{array} \right) = \left(\begin{array}{c}
A \ \Pr \\
0 \ \ .3 (B=1) \\
1 \ \ .4 (B=0) \\
\end{array} \right)
\]
Manipulating Discrete Distributions

• Binary Multiplication

\[P(A|B) \cdot P(B|C) = P(A, B|C) \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>.1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>.9</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>.2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>.1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>.9</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>.2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>.8</td>
</tr>
</tbody>
</table>

• Same principle holds for all binary ops
 – +, -, /, max, etc…
Discrete Inference & Optimization

- **Observation 1:** all discrete functions can be tables

\[P(A,B) = \begin{array}{ccc}
0 & 0 & .1 \\
0 & 1 & .3 \\
1 & 0 & .4 \\
1 & 1 & .2 \\
\end{array} \]

- **Observation 2:** all operations computable in closed-form
 - \(f_1 \oplus f_2, f_1 \otimes f_2 \)
 - \(\max(f_1, f_2), \min(f_1, f_2) \)
 - \(\sum_x f(x) \)
 - \((\arg\max f(x), (\arg\min f(x) \)

Now can do exact inference and optimization in discrete graphical models and influence diagrams!
Discrete Inference & Optimization

• Probabilistic Queries in Bayesian networks:
 • Want $P(\text{Query}|\text{Evidence})$, e.g.

 \[
 P(E|X) = \frac{P(E,X)}{P(X)} \\
 \propto \sum_A \sum_B P(A,B,E,X) \\
 = \sum_A \sum_B P(A|B,E) P(X|B) P(E) P(X)
 \]

• Maximizing Exp. Utility in Influence Diagrams:
 • Want optimal action $a^* = \arg\max_a E[U|A=a,\ldots]$, e.g.

 \[
 a^* = \arg\max_a E[U|A=a,X=x] \\
 = \arg\max_a \sum_{X'} U(X')P(X'|A=a,X=x)
 \]
Where are we?

We can specify discrete models

We know operations needed for inference

Can we optimize the order of operations?
Variable Elimination

- When marginalizing over y, try to factor out all probabilities independent of y:

$$P(X_1) = \sum_{x_2,\ldots,x_n,y} P(y|x_1,\ldots,x_n)P(X_1)\cdots P(x_n)$$

$$= P(X_1)\sum_{x_2} P(x_2)\cdots \sum_{x_n} P(x_n)\sum_y P(y|X_1,\ldots,x_n)$$

$$= O(1)\sum_{x_2} P(x_2)\cdots \sum_{x_n} P(x_n)\sum_y P(y|X_1,\ldots,x_n) = O(n)$$

- Curly braces show number of FLOPS

In tabular case.
VE: Variable Order Matters

• Sum commutes, can change order of elimination:

\[
P(X_1) = \sum_{y,x_n,\ldots,x_2} P(y|x_1,\ldots,x_n) P(X_1) \cdots P(x_n)
\]

\[
= \sum_{y,x_n,\ldots,x_3} P(X_1) P(x_3) \cdots P(x_n) \sum_{x_2} P(x_2) P(y|X_1,\ldots,x_n)
\]

\[
= O(2^{n+1})
\]

• With different variable order: \(O(n) \rightarrow O(2^{n+1})\)
 – Good variable order:
 • minimizes \#vars in largest intermediate factor
 • a.k.a., \(\sim\) tree width \((TW) = n+1\)
 – Graphical model inference is \(\sim O(2^{TW})\)

Actually TW+1 but the point is exponential
Recap

• Graphical Models and Influence Diagrams
 – why should you care?

• Versus non-factored models… GMs and IDs allow
 – exponential **space savings** in representation
 – exponential **time savings** in inference
 • exploit factored structure in variable elimination

 – exponential **data reduction** for learning
 • smaller models = fewer parameters = less data
Where are we?

We can specify discrete models

We know operations needed for inference

We know how to optimize order of operations

Is this it? Is there more structure to exploit?
Symbolic Inference with Decision Diagrams

For Discrete Models
DD Definition

• Decision diagrams (DDs):
 – DAG variant of decision tree
 – Decision tests ordered
 – Used to represent:
 • \(f: B^n \rightarrow B \) (boolean – BDD, set of subsets \(\{\{a,b\},\{a\}\} \) – ZDD)
 • \(f: B^n \rightarrow Z \) (integer – MTBDD / ADD)
 • \(f: B^n \rightarrow R \) (real – ADD)

We’ll focus on ADDs in this tutorial.
What’s the Big Deal?

- More than compactness
 - Ordered decision tests in DDs support efficient operations

 - ADD: \(-f, f \oplus g, f \otimes g, \max(f, g)\)
 - BDD: \(\neg f, f \land g, f \lor g\)
 - ZDD: \(f \setminus g, f \cap g, f \cup g\)

- Efficient operations key to inference
Function Representation (Tables)

- How to represent functions: $\mathbb{B}^n \rightarrow \mathbb{R}$?
- How about a fully enumerated table…
- …OK, but can we be more compact?

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>$F(a,b,c)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Function Representation (Trees)

• How about a tree? Sure, can simplify.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>F(a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Context-specific independence!
Function Representation (ADDs)

- Why not a directed acyclic graph (DAG)?

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>F(a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Exploits context-specific independence (CSI) and shared substructure.
Trees vs. ADDs

- Trees can compactly represent AND / OR
 - But not XOR (linear as ADD, exponential as tree)
 - Why? Trees must represent every path
Binary Operations (ADDS)

- Why do we order variable tests?
- Enables us to do efficient binary operations...

Result: ADD operations can avoid state enumeration
Summary

• We need $B^n \rightarrow B / Z / R$
 – We need compact representations
 – We need efficient operations

 \rightarrow DDs are a promising candidate

• Great, tell me all about DDs…
 – OK 😊

Not claiming DDs solve all problems… but often better than tabular approach
Decision Diagrams: Reduce

(how to build canonical DDs)
How to Reduce Ordered Tree to ADD?

- Recursively build bottom up
 - Hash terminal nodes \(R \rightarrow ID \)
 - leaf cache
 - Hash non-terminal functions \((v, ID_0, ID_1) \rightarrow ID \)
 - special case: \((v, ID, ID) \rightarrow ID \)
 - others: keep in (reduce) cache
GetNode

- Removes redundant branches
- Maintains cache of internal nodes

Algorithm 1: \(\text{GetNode}(v, F_h, F_l) \) \(\rightarrow \) \(F_r \)

\textbf{input} : \(v, F_h, F_l : \) Var and node ids for high/low branches
\textbf{output}: \(F_r : \) Return values for offset, multiplier, and canonical node id

begin
 // If branches redundant, return child
 \textbf{if} \((F_l = F_h) \) \textbf{then}
 \textbf{return} \(F_l \);

 // Make new node if not in cache
 \textbf{if} \((\langle v, F_h, F_l \rightarrow \text{id} \rangle \text{ is not in node cache}) \) \textbf{then}
 \textbf{let} \(\text{id} := \text{currently unallocated id} ; \)
 \textbf{insert} \(\langle v, F_h, F_l \rangle \rightarrow \text{id} \) \text{in cache} ;

 // Return the cached, canonical node
 \textbf{return} \(\text{id} ; \)
end
Reduce Algorithm

Algorithm 1: $\text{Reduce}(F) \rightarrow F_r$

<table>
<thead>
<tr>
<th>input</th>
<th>F : Node id</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>F_r : Canonical node id for reduced ADD</td>
</tr>
</tbody>
</table>

begin

// Check for terminal node
if (F is terminal node) then
 return canonical terminal node for value of F;

// Check reduce cache
if ($F \rightarrow F_r$ is not in reduce cache) then
 // Not in cache, so recurse
 $F_h := \text{Reduce}(F_h)$;
 $F_l := \text{Reduce}(F_l)$;

 // Retrieve canonical form
 $F_r := \text{GetNode}(F^{\text{var}}, F_h, F_l)$;

 // Put in cache
 insert $F \rightarrow F_r$ in reduce cache;

// Return canonical reduced node
return F_r;

end
Reduce Complexity

- Linear in size of input
 - Input can be tree or DAG

- Because of caching
 - Explores each node once
 - Does not need to explore all branches
Claim: *if two functions are identical, Reduce will assign both functions same ID*

By induction on var order

- **Base case:**
 - Canonical for 0 vars: terminal nodes

- **Inductive:**
 - Assume canonical for k-1 vars
 - GetNode result canonical for k\(^{th}\) var (only one way to represent)
Impact of Variable Orderings

- Good orders can matter
- Good orders typically have related vars together
 - e.g., low tree-width order in transition graphical model

Graph-Based Algorithms for Boolean Function Manipulation
In-diagram Reordering

- Rudell’s sifting algorithm
 - Global reordering as pairwise swapping
 - Only need to redirect arcs
 - Helps to use pointers
 → then don’t need to redirect parents, e.g.,

Can also do reorder using Apply... later
Beyond Binary Variables

- Multivalued (MV-)DDs
 - A DD with multivalued variables
 - straightforward \(k \)-branch extension
 - e.g., \(k=6 \)

- Works for ADD extensions as well
Decision Diagrams: Apply

(how to do efficient operations on DDs)
Recall the Apply recursion

Need to handle base cases

Need to handle recursive cases

Result: ADD operations can avoid state enumeration
Apply Recursion

• Need to compute $F_1 op F_2$
 - e.g., $op \in \{\oplus, \otimes, \land, \lor\}$

• Case 1: F_1 & F_2 match vars

\[F_h = \text{Apply}(F_{1,h}, F_{2,h}, op) \]
\[F_l = \text{Apply}(F_{1,l}, F_{2,l}, op) \]
\[F_r = \text{GetNode}(F_{1}^{\text{var}}, F_h, F_l) \]
Apply Recursion

• Need to compute $F_1 \text{ op } F_2$
 – e.g., $\text{ op } \in \{\oplus, \otimes, \land, \lor\}$

• Case 2: Non-matching var: $v_1 \prec v_2$

$$F_h = \text{Apply}(F_1, F_{2,h}, \text{ op})$$

$$F_l = \text{Apply}(F_1, F_{2,l}, \text{ op})$$

$$F_r = \text{GetNode}(F_{2 \var}, F_h, F_l)$$
Apply Base Case: ComputeResult

- Constant (terminal) nodes and some other cases can be computed without recursion

<table>
<thead>
<tr>
<th>Operation and Conditions</th>
<th>Return Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_1 \text{ op } F_2; F_1 = C_1; F_2 = C_2$</td>
<td>$C_1 \text{ op } C_2$</td>
</tr>
<tr>
<td>$F_1 \oplus F_2; F_2 = 0$</td>
<td>F_1</td>
</tr>
<tr>
<td>$F_1 \oplus F_2; F_1 = 0$</td>
<td>F_2</td>
</tr>
<tr>
<td>$F_1 \ominus F_2; F_2 = 0$</td>
<td>F_1</td>
</tr>
<tr>
<td>$F_1 \ominus F_2; F_2 = 1$</td>
<td>F_1</td>
</tr>
<tr>
<td>$F_1 \ominus F_2; F_1 = 1$</td>
<td>F_2</td>
</tr>
<tr>
<td>$F_1 \ominus F_2; F_2 = 1$</td>
<td>F_1</td>
</tr>
<tr>
<td>$\min(F_1, F_2); \max(F_1) \cdot \min(F_2)$</td>
<td>F_1</td>
</tr>
<tr>
<td>$\min(F_1, F_2); \max(F_2) \cdot \min(F_1)$</td>
<td>F_2</td>
</tr>
</tbody>
</table>

similarly for max

other | null

Table 1: Input and output summaries of ComputeResult.
Algorithm 1: \(\text{Apply}(F_1, F_2, \text{op}) \rightarrow F_r \)

input: \(F_1, F_2, \text{op} \): ADD nodes and op
output: \(F_r \): ADD result node to return

begin

 // Check if result can be immediately computed
 if (ComputeResult\((F_1, F_2, \text{op}) \rightarrow F_r \) is not null) then
 return \(F_r \);

 // Check if result already in apply cache
 if (\(\langle F_1, F_2, \text{op} \rangle \rightarrow F_r \) is not in apply cache) then
 // Not terminal, so recurse
 var := GetEarliestVar\(F_{1\text{var}}, F_{2\text{var}} \);

 // Set up nodes for recursion
 if (\(F_1 \) is non-terminal \&\& var = \(F_{1\text{var}} \)) then
 \(F_{v1} := F_{1,1} \); \(F_{h1} := F_{1,h} \);
 else
 \(F_{v1} := F_1 \); \(F_{h1} := F_1 \);
 end

 if (\(F_2 \) is non-terminal \&\& var = \(F_{2\text{var}} \)) then
 \(F_{v2} := F_{2,1} \); \(F_{h2} := F_{2,h} \);
 else
 \(F_{v2} := F_2 \); \(F_{h2} := F_2 \);
 end

 // Recurse and get cached result
 \(F_l := \text{Apply}(F_{v1}, F_{v2}, \text{op}) \);
 \(F_h := \text{Apply}(F_{h1}, F_{h2}, \text{op}) \);
 \(F_r := \text{GetNode}(\text{var}, F_h, F_l) \);

 // Put result in apply cache and return
 insert \(\langle F_1, F_2, \text{op} \rangle \rightarrow F_r \) into apply cache;

 return \(F_r \);
end

Note: Apply works for any binary operation!

Why?
Apply Properties

• **Apply uses** *Apply cache*
 – \((F_1, F_2, \text{op}) \rightarrow F_R\)

• **Complexity**
 – Quadratic: \(O(|F_1| \cdot |F_2|)\)
 • \(|F|\) measured in node count
 – Why?
 • Cache implies touch every pair of nodes at most once!

• **Canonical?**
 – Same inductive argument as Reduce
Reduce-Restrict

• Important operation

• Have
 – $F(x,y,z)$

• Want
 – $G(x,y) = F|_{z=0}$

• Restrict $F|_{v=value}$ operation performs a **Reduce**
 – Just returns branch for $v=value$ whenever v reached
 – Need *Restrict-Reduce cache* for $O(|F|)$ complexity

Trivial when restricted var is root node
Marginalization, etc.

- Use Apply + Reduce-Restrict
 - $\sum_x F(x, \ldots) = F|_{x=0} \oplus F|_{x=1}$, e.g.

- Likewise for similar operations…
 - **ADD:** $\min_x F(x, \ldots) = \min(F|_{x=0}, F|_{x=1})$
 - **BDD:** $\exists x F(x, \ldots) = F|_{x=0} \lor F|_{x=1}$
 - **BDD:** $\forall x F(x, \ldots) = F|_{x=0} \land F|_{x=1}$
Apply Tricks I

• Build $F(x_1, \ldots, x_n) = \sum_{i=1}^{n} x_i$
 – Don’t build a tree and then call Reduce!
 – Just use indicator DDs and Apply to compute

• $x_1 \oplus x_2 \oplus \ldots \oplus x_n$

– In general:
 • Build *any* arithmetic expression bottom-up using Apply!

$$x_1 + (x_2 + 4x_3) \ast (x_4)$$
$$\rightarrow x_1 \oplus (x_2 \oplus (4 \otimes x_3)) \otimes (x_4)$$
Apply Tricks II

• Build *ordered* DD from *unordered* DD

![Diagram showing the transformation process from unordered to ordered DD](image)

z is out of order

result will have z in order!
Affine ADDs
ADD Inefficiency

• Are ADDs enough?
• Or do we need more compactness?
• Ex. 1: Additive reward/utility functions
 – \(R(a,b,c) = R(a) + R(b) + R(c) \)
 \(= 4a + 2b + c \)

• Ex. 2: Multiplicative value functions
 – \(V(a,b,c) = V(a) \cdot V(b) \cdot V(c) \)
 \(= \gamma^{(4a + 2b + c)} \)
Affine ADD (AADD)

- Define a new decision diagram – **Affine ADD**

- Edges labeled by **offset** \((c) \) and **multiplier** \((b) \):

- **Semantics**: if \((a) \) then \((c_1 + b_1 F_1) \) else \((c_2 + b_2 F_2) \)
Affine ADD (AADD)

- Maximize sharing by **normalizing** nodes \([0,1]\)

- Example: if (a) then (4) else (2)

Need top-level affine transform to recover original range
AADD Reduce

Key point: automatically finds additive structure
AADD Examples

• Back to our previous examples...

• Ex. 1: Additive reward/utility functions

 • \(R(a,b) = R(a) + R(b) \)
 \[= 2a + b \]

• Ex. 2: Multiplicative value functions

 • \(V(a,b) = V(a) \cdot V(b) \)
 \[= \gamma^{2a + b}; \gamma < 1 \]
AADD Apply & Normalized Caching

- Need to normalize Apply cache keys, e.g., given

\[\langle 3 + 4F_1 \rangle \oplus \langle 5 + 6F_2 \rangle \]

- before lookup in Apply cache, normalize

\[8 + 4 \cdot \langle 0 + 1F_1 \rangle \oplus \langle 0 + 1.5F_2 \rangle \]

<table>
<thead>
<tr>
<th>Operation and Conditions</th>
<th>Normalized Cache Key and Computation</th>
<th>Result Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle c_1 + b_1 F_1 \rangle \oplus \langle c_2 + b_2 F_2 \rangle; F_1 \neq 0)</td>
<td>(\langle c_r + b_r F_r \rangle = \langle 0 + 1F_1 \rangle \oplus \langle 0 + (b_2/b_1)F_2 \rangle)</td>
<td>(\langle (c_1 + c_2 + b_1 c_r + b_1 b_r F_r)\rangle)</td>
</tr>
<tr>
<td>(\langle c_1 + b_1 F_1 \rangle \oplus \langle c_2 + b_2 F_2 \rangle; F_1 \neq 0)</td>
<td>(\langle c_r + b_r F_r \rangle = \langle 0 + 1F_1 \rangle \oplus \langle 0 + (b_2/b_1)F_2 \rangle)</td>
<td>(\langle (c_1 - c_2 + b_1 c_r + b_1 b_r F_r)\rangle)</td>
</tr>
<tr>
<td>(\langle c_1 + b_1 F_1 \rangle \oplus \langle c_2 + b_2 F_2 \rangle; F_1 \neq 0)</td>
<td>(\langle c_r + b_r F_r \rangle = \langle (c_1/b_1) + F_1 \rangle \hat{\ominus} \langle (c_2/b_2) + F_2 \rangle)</td>
<td>(\langle b_1 b_2 c_r + b_1 b_2 b_r F_r\rangle)</td>
</tr>
<tr>
<td>(\langle c_1 + b_1 F_1 \rangle \oplus \langle c_2 + b_2 F_2 \rangle; F_1 \neq 0)</td>
<td>(\langle c_r + b_r F_r \rangle = \langle (c_1/b_1) + F_1 \rangle \hat{\ominus} \langle (c_2/b_2) + F_2 \rangle)</td>
<td>(\langle (b_1/b_2)c_r + (b_1/b_2)b_r F_r\rangle)</td>
</tr>
<tr>
<td>(\max(\langle c_1 + b_1 F_1 \rangle, \langle c_2 + b_2 F_2 \rangle); F_1 \neq 0)</td>
<td>(\langle c_r + b_r F_r \rangle = \max(\langle 0 + 1F_1 \rangle, \langle (c_2 - c_1)/b_1 + (b_2/b_1)F_2 \rangle))</td>
<td>(\langle (c_1 + b_1 c_r + b_1 b_r F_r)\rangle)</td>
</tr>
<tr>
<td>any (\langle op \rangle) not matching above: (\langle c_1 + b_1 F_1 \rangle \langle op \rangle \langle c_2 + b_2 F_2 \rangle)</td>
<td>(\langle c_r + b_r F_r \rangle = \langle c_1 + b_1 F_1 \rangle \langle op \rangle \langle c_2 + b_2 F_2 \rangle)</td>
<td>(\langle c_r + b_r F_r\rangle)</td>
</tr>
</tbody>
</table>
ADDs vs. AADDs

• Additive functions: $\sum_{i=1..n} x_i$

Note: no context-specific independence, but subdiagrams shared: result size $O(n^2)$
ADDs vs. AADDs

• Additive functions: $\sum_i 2^i x_i$
 - Best case result for ADD (exp.) vs. AADD (linear)
ADDs vs. AADDs

• Additive functions: $\sum_{i=0..n-1} F(x_i, x_{(i+1) \mod n})$

Pairwise factoring evident in AADD structure
Main AADD Theorem

- AADD can yield exponential time/space improvement over ADD
 - and never performs worse!

- But...
 - Apply operations on AADDs can be exponential
 - Why?
 - Reconvergent diagrams possible in AADDs (edge labels), but not ADDs
 - Sometimes Apply explores all paths if no hits in normalized Apply cache
Recap: Symbolic Inference with DDs

- Probabilistic Queries in Bayesian networks:
 \[P(E|X) = \frac{P(E,X)}{P(X)} \]
 \[\propto \sum_A \sum_B P(A,B,E,X) \]
 \[= \sum_A \sum_B P(A|B,E) \ P(X|B) \ P(E) \ P(X) \]

- Maximizing Exp. Utility in Influence Diagrams:
 \[a^* = \text{argmax}_a E[U|A=a,X=x] \]
 \[= \text{argmax}_a \sum_{X'} U(X')P(X'|A=a,X=x) \]

DDs can be used in any algorithm: use in VE, Loopy BP, Junction tree, etc. DDs automatically exploit structure in factors / msgs.
Approximate Inference

Sometimes no DD is compact, but bounded approximation is…
Problem: Value ADD Too Large

- Sum: \(\left(\sum_{i=1}^{3} 2^i \cdot x_i \right) + x_4 \cdot \varepsilon \text{-Noise} \)

- How to approximate?
Solution: APRICODD Trick

- Merge \approx leaves and reduce:

- Error is bounded!

(St-Aubin, Hoey, Boutilier, NIPS-00)
Can use ADD to Maintain Bounds!

- Change leaf to represent range $[L,U]$
 - Normal leaf is like $[V,V]$
 - When merging leaves…
 - keep track of min and max values contributing

For operations, see “interval arithmetic”: http://en.wikipedia.org/wiki/Interval_arithmetic
More Compactness? AADDs?

• Sum: $\left(\sum_{i=1}^{3} 2^i \cdot x_i \right) + x_4 \cdot \varepsilon$-Noise

• How to approximate? Error-bounded merge
Solution: MADCAP Trick

• Merge \(\approx \) nodes from bottom up:

```
ROOT

<0 + 7.11 * >

x1

<0 + 0.852 * > <0.142 + 0.858 * >

x2

<0.332 + 0.668 * > <0 + 0.665 * >

x3

<0 + 0 * > <1 + 0 * >

0
```
Key Approximation Message

- automatic, efficient methods for finding logical, CSI, additive, and multiplicative structure in bounded approximations!
Example Inference Results using Decision Diagrams

Do they really work well?
Empirical Comparison: Table/ADD/AADD

- **Sum:** $\sum_{i=1}^{n} 2^i \cdot x_i \oplus \sum_{i=1}^{n} 2^i \cdot x_i$

- **Prod:** $\prod_{i=1}^{n} \gamma^{(2^i \cdot x_i)} \otimes \prod_{i=1}^{n} \gamma^{(2^i \cdot x_i)}$

Running Time vs. #Vars for Sum

- Table
- ADD
- AADD

Running Time vs. #Vars for Product

- Table
- ADD
- AADD

#Nodes/Entries vs. #Vars for Sum

- Table
- ADD
- AADD

#Nodes/Entries vs. #Vars for Product

- Table
- ADD
- AADD
Application: Bayes Net Inference

• Use variable elimination
 – Replace CPTs with ADDs or AADDs
 – Could do same for clique/junction-tree algorithms

• Exploits
 – Context-specific independence
 • Probability has logical structure:
 \[P(a|b,c) = \text{if } b \? 1 : \text{if } c \? .7 : .3 \]
 – Additive CPTs
 • Probability is discretized linear function:
 \[P(a|b_1...b_n) = c + b \cdot \sum_i 2^i b_i \]
 – Multiplicative CPTs
 • Noisy-or (multiplicative AADD):
 \[P(e|c_1...c_n) = 1 - \prod_i (1 - p_i) \]

• If factor has above compact form, AADD exploits it
Bayes Net Results: Various Networks

<table>
<thead>
<tr>
<th>Bayes Net</th>
<th>Table</th>
<th>ADD</th>
<th>AADD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># Entries</td>
<td># Nodes</td>
<td>Time</td>
</tr>
<tr>
<td>Alarm</td>
<td>1,192</td>
<td>689</td>
<td>2.97s</td>
</tr>
<tr>
<td>Barley</td>
<td>470,294</td>
<td>139,856</td>
<td>EML*</td>
</tr>
<tr>
<td>Carpo</td>
<td>636</td>
<td>955</td>
<td>0.58s</td>
</tr>
<tr>
<td>Hailfinder</td>
<td>9,045</td>
<td>4,511</td>
<td>26.4s</td>
</tr>
<tr>
<td>Insurance</td>
<td>2,104</td>
<td>1,596</td>
<td>278s</td>
</tr>
<tr>
<td>Noisy-Or-15</td>
<td>65,566</td>
<td>125,356</td>
<td>50.2s</td>
</tr>
<tr>
<td>Noisy-Max-15</td>
<td>131,102</td>
<td>202,148</td>
<td>42.5s</td>
</tr>
</tbody>
</table>

*EML: Exceeded Memory Limit (1GB)
Application: MDP Solving

- SPUDD Factored MDP Solver (Hoey et al, 99)
 - Originally uses ADDs, can use AADDs
 - Implements factored value iteration...

\[
V^{n+1}(x_1 \ldots x_i) = R(x_1 \ldots x_i) + \gamma \cdot \max_a \sum_{x_1' \ldots x_i'} \prod_{F_1 \ldots F_i} P(x_1' | \ldots x_i) \ldots P(x_i' | \ldots x_i) V^n(x_1' \ldots x_i')
\]
Application: SysAdmin

- SysAdmin MDP (GKP, 2001)
 - Network of computers: c_1, \ldots, c_k
 - Various network topologies
 - Every computer is running or crashed
 - At each time step, status of c_i affected by
 - Previous state status
 - Status of incoming connections in previous state
 - Reward: $+1$ for every computer running (additive)
Results I: SysAdmin (10% Approx)
Results II: SysAdmin

Graphs showing the relationship between true approximation error and space (number of nodes) for different methods:

- APRICODD (ADD)
- MADCAP (ADD)
Traffic Domain

• Binary **cell transmission model (CTM)**

• Actions
 – Light changes

• Objective:
 – Maximize empty cells in network
Results Traffic

The graph shows the comparison between APRICODD and MADCAP in terms of time and space for different variable sets and approximations.

- **Time (s)**: APRICODD consistently outperforms MADCAP across different variable sets and approximations.
- **Space (# Nodes)**: APRICODD also shows superior performance in terms of space, particularly in the 20 Vars, Exact and 24 Vars, Exact scenarios.

The abbreviations EML likely represent Error Minimization Level, which might be a measure of accuracy or a specific parameter in the context of the experiment.
Application: POMDPs

• Provided an AADD implementation for Guy Shani’s factored POMDP solver

• Final value function size results:

<table>
<thead>
<tr>
<th></th>
<th>ADD</th>
<th>AADD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Management</td>
<td>7000</td>
<td>92</td>
</tr>
<tr>
<td>Rock Sample</td>
<td>189</td>
<td>34</td>
</tr>
</tbody>
</table>
Inference with Decision Diagrams vs. Compilations (d-DNNF, etc.)

Important Distinctions
BDDs in NNF

- Can express BDD as NNF formula
- Can represent NNF diagrammatically

Definitions / Diagrams from "A Knowledge Compilation Map", Darwiche and Marquis. JAIR 02
d-DNNF

- **Decomposable NNF:** sets of leaf vars of conjuncts are disjoint

- **Deterministic NNF:** formula for disjuncts have disjoint models (conjunction is unsatisfiable)
d-DNNF

- D-DNNF used to **compile single formula**
 - d-DNNF does not support efficient binary operations (\lor, \land, \lnot)
 - d-DNNF shares some polytime operations with OBDD / ADD
 - (weighted) model counting (CT) – used in many inference tasks
 - \rightarrow Size(d-DNNF) \leq Size(OBDD) so more efficient on d-DNNF

Definition / Diagrams from
“**A Knowledge Compilation Map**”, Darwiche and Marquis. JAIR 02

Ordered BDD, in previous slides I call this a BDD

Children inherit polytime operations of parents

Size of children \geq parents

<table>
<thead>
<tr>
<th>Notation</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>polytime consistency check</td>
</tr>
<tr>
<td>VA</td>
<td>polytime validity check</td>
</tr>
<tr>
<td>CE</td>
<td>polytime clausal entailment check</td>
</tr>
<tr>
<td>IM</td>
<td>polytime implicant check</td>
</tr>
<tr>
<td>EQ</td>
<td>polytime equivalence check</td>
</tr>
<tr>
<td>SE</td>
<td>polytime sentential entailment check</td>
</tr>
<tr>
<td>CT</td>
<td>polytime model counting</td>
</tr>
<tr>
<td>ME</td>
<td>polytime model enumeration</td>
</tr>
</tbody>
</table>

Table 4: Notations for queries.
Compilations vs Decision Diagrams

• Summary
 – If you can compile problem into single formula then compilation is likely preferable to DDs
 • provided you only need ops that compilation supports
 – Not all compilations efficient for all binary operations
 • e.g., all ops needed for progression / regression approaches
 • fixed ordering of DDs help support these operations

• Note: other compilations (e.g., arithmetic circuits)
 – Great software: http://reasoning.cs.ucla.edu/
Part I Summary: Symbolic Methods for Discrete Inference

• Graphical Models and Influence Diagrams
 – **Representation**: products of discrete factors
 – **Inference**: operations on discrete factors
 • Order of operations matters

• Symbolic Inference with Decision Diagrams (DDs)
 – DDs **more compact than tables or trees**
 • Logical (AND, OR, XOR)
 • Context-specific independence (CSI) & shared substructure
 • Additive and multiplicative structure (Affine ADD)
 – DD **operations exploit structure**
 – DDs support **efficient bounded approximations**

Gogate and Domingos (UAI-13) have recent approx. prob. inference contributions and a good reference list.