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8 Abstract—Digitally unwrapping images of paper sheets is crucial for accurate

9 document scanning and text recognition. This paper presents a method for

10 automatically rectifying curved or folded paper sheets from a few images captured

11 from multiple viewpoints. Prior methods either need expensive 3D scanners or

12 model deformable surfaces using over-simplified parametric representations. In

13 contrast, our method uses regular images and is based on general developable

14 surface models that can represent a wide variety of paper deformations. Our main

15 contribution is a new robust rectification method based on ridge-aware 3D

16 reconstruction of a paper sheet and unwrapping the reconstructed surface using

17 properties of developable surfaces via ‘1 conformal mapping. We present results

18 on several examples including book pages, folded letters and shopping receipts.

19 Index Terms—Robust digitally unwarpping, ridge-aware surface reconstruction,

20 mobile phone friendly algorithms

Ç

21 1 INTRODUCTION

22 DIGITALLY scanning paper documents for sharing and editing is
23 becoming a common daily task. Such paper sheets are often curved
24 or folded, and proper rectification is important for high-fidelity
25 digitization and text recognition. Flatbed scanners allow physical
26 rectification of such documents but are not suitable for hardcover
27 books. For a wider applicability of document scanning, it is wanted
28 a flexible technique for digitally rectifying folded documents.
29 There are two major challenges in document image rectification.
30 First, for a proper rectification, the 3D shape of curved and folded
31 paper sheets must be estimated. Second, the estimated surface must
32 be flattened without introducing distortions. Prior methods for 3D
33 reconstruction of curved paper sheets either use specialized hard-
34 ware [1], [2], [3] or assume simplified parametric shapes [2], [4], [5],
35 [6], [7], [8], [9], such as generalized cylinders (Fig. 2a). However,
36 these methods are difficult to use due to bulky hardware or make
37 restrictive assumptions about the deformations of the paper sheet.
38 In this paper, we present a convenient method for digitally
39 rectifying heavily curved and folded paper sheets from a few
40 uncalibrated images captured with a hand-held camera from mul-
41 tiple viewpoint. Our method uses structure from motion (SfM) to
42 recover an initial sparse 3D point cloud from the uncalibrated
43 images. To accurately recover the dense 3D shape of paper sheet
44 without losing high-frequency structures such as folds and creases,
45 we develop a ridge-aware surface reconstruction method.

46Furthermore, to achieve robustness to outliers present in the sparse
47SfM 3D point cloud caused by repetitive document textures, we
48pose the surface reconstruction task as a robust Poisson surface
49reconstruction based on ‘1 optimization. Next, to unwrap the
50reconstructed surface, we propose a robust conformal mapping
51method by incorporating ridge-awareness priors and ‘1 optimiza-
52tion technique. See Fig. 1 for an overview.
53The contributions of our work are threefold. First, we show how
54ridge-aware regularization can be used for both 3D surface recon-
55struction and flattening (conformal mapping) to improve accuracy.
56Our ridge-aware reconstruction method preserves the sharp struc-
57ture of folds and creases. Ridge-awareness priors act as non-local
58regularizers that reduce global distortions during the surface flat-
59tening step. Second, we extend the Poisson surface reconstruc-
60tion [10] and least-squares conformal mapping (LSCM) [11]
61algorithms by explicitly dealing with outliers using ‘1 optimization.
62Finally, we describe a practical system for rectifying curved and
63folded documents that can be usedwith ordinary digital cameras.

642 RELATED WORK

65The topic of digital rectification of curved and folded documents has
66been actively studied in both the computer vision and document
67processing communities. It is common to model paper sheets as
68developable surfaces which have underlying rulers corresponding
69to lines with zero Gaussian curvature. Many existing methods
70assume generalized cylindrical surfaces where the paper is curved
71only in one direction and thus can be parameterized using a 1D
72smooth function. Such surfaces do not require an explicit parame-
73terization of the rulers. See Fig. 2a for an example. A variety of exist-
74ing techniques recover surface geometry using this assumption.
75Shape from shading methods were first used by Wada et al. [4],
76Tan et al. [12], [13], Courteille et al. [14] and Zhang et al. [5] whereas
77shape from boundary methods were explored by Tsoi et al. [6], [15].
78Binocular stereo matching with calibrated cameras was used by
79Yamashita et al. [16], Koo et al. [7] and Tsoi et al. [6]. Shape from text
80lines is another popular method for reconstructing the document
81surface geometry [8], [9], [12], [17], [18], [19], [20], [21], [22], [23],
82[24], [25]. However, these methods assume that the document con-
83tains well-formatted printed characters.
84Some recent methods relax the parallel ruler assumption
85(see Fig. 2b). However, the numerous parameters in these models
86makes the optimization quite challenging. Liang et al. [26] and
87Tian et al. [27] use text lines. Although these methods can handle
88a single input image, the strong assumptions on surface geometry,
89contents and illumination limit the applicability. Meng et al.
90designed a special calibrated active structural light device to
91retrieve the two parallel 1D curvatures [2], the surface can be
92parameterized by assuming appropriate boundary conditions and
93constraints on ruler orientations. Perriollat et al.[28] use sparse SfM
94points but assume they are reasonably dense and well distributed.
95Their parameterization is sensitive to noise and can be unreliable
96when the 3d point cloud is sparse or has varying density.
97For rectification of documents with arbitrary distortion and con-
98tent (Fig. 2c), other methods require specialized devices and use
99non-parametric approaches. Brown et al. [3] use a calibrated mirror
100system to obtain 3D geometry using multi-view stereo. They
101unwrap the reconstructed surface using constraints on elastic
102energy, gravity and collision. The model is not ideal for paper docu-
103ments because developable surfaces are not elastic. Later, they pro-
104pose using dense 3D range data [29] after which they flatten the
105surface using least square conformal mapping [11]. Zhang et al. [30]
106also use dense range scans and use rigid constraints instead of elas-
107tic constraints with the method proposed in [3]. Pilu [1] assumes
108that a dense 3Dmesh is available and minimizes the global bending
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of109 potential energy to flatten the surface. None of these existing meth-

110 ods are as practical and convenient as ourmethod that only requires
111 a hand-held camera and a few images.

112 3 PROPOSED METHOD

113 Our method has two main steps-3D document surface reconstruc-
114 tion and unwrapping of the reconstructed surface. For now, we
115 assume that a set of sparse 3D points on the surface are available.
116 Next, we describe our new algorithms for ridge-aware surface
117 reconstruction and robust surface unwrapping.

118 3.1 Ridge-Aware Surface Reconstruction

119 Dense methods are favored for 3D scanning of folded and curved
120 documents [31], [32]. This is because existing methods for surface
121 reconstruction from sparse 3D points tend to produce excessive
122 smoothing and fail to preserve sharp creases and folds, i.e., ridges
123 on the surface. Such methods are typically also inadequate for deal-
124 ing with noisy 3D points caused by repetitive textures present in
125 documents. We address these issues by developing a robust ridge-
126 aware surface reconstruction method for sparse 3D points. Specifi-
127 cally, we extend the Poisson surface reconstruction method [10]
128 by incorporating ridge constraints and by adding robustness to
129 outliers.
130 Robust Poisson Surface Reconstruction.We denote a set ofN sparse
131 3D points obtained from SfM as fx̂n; ŷn; ẑng; n ¼ 1; 2; . . . ; N , where
132 only 3D points triangulated from at least three images are retained.
133 For our input images, N typically lies between 700 to 2,000. For a
134 selected reference image (and viewpoint), we use a depth map
135 parameterization zðx; yÞ for the document surface. We aim to esti-
136 mate depth at the mesh grid vertices ziðxi; yiÞ, where i is the mesh
137 grid index, 1 � i � I. Our method computes the optimal depth val-
138 ues z� ¼ z1; . . . ; zI½ �> by solving the following optimization problem

z� ¼ argmin
z

EdðzÞ þ �EsðzÞ: (1)
140140

141 Here, Ed and Es are the data and smoothness terms respectively
142 and � is a parameter to balance the two terms. The original Poisson

143surface reconstruction method uses the squared ‘2-norm for both
144terms. Instead, we propose using the ‘1-norm for the data term Ed

145to deal with outliers

EdðzÞ ¼
X
n

kẑn � zik1: (2)

147147

148This encourages the estimated depth zi to be consistent with ẑn, the
149observed depth of the nearest 3D point.
150We rewrite Eq. (2) in vector form

EdðzÞ ¼ kẑ� PVzk1; (3)
152152

153where PV is a permutation matrix that selects and aligns observed
154entries V by ensuring correspondence between ẑn and zi. The smo-
155othness term Es is defined using the squared Frobenius norm of
156the gradient of depth vector z along x and y in camera coordinates

EsðzÞ ¼ kr2zk2F ¼ @2z

@x2
;
@2z

@y2

� �����
����
2

F

: (4) 158158

159

160By preparing a sparse derivative matrixD that replaces the Lap-
161lace operatorr2 in a linear form,

D ¼

di;j ¼
2 if i ¼ j
�1 if zj is left=right to zi
0 otherwise

8<
:

diþI;j ¼
2 if i ¼ j
�1 zj is above=below zi
0 otherwise

8<
:

2
6666664

3
7777775
2I � I

; (5)

163163

164we have a special form of the Lasso problem [33]

z� ¼ argmin
z

kẑ� PVzk1 þ �kDzk22: (6)
166166

167While this problem (Eq. (6)) does not have a closed form solution,
168we use a variant of iteratively reweighted least squares (IRLS) [34]
169for deriving the solution. By rewriting the data terms in Eq. (6) as a
170weighted ‘2 norm using a diagonal matrix W with positive values
171on the diagonal, we have

z� ¼ argmin
z

ẑ� PVzð Þ>W>W ẑ� PVzð Þ þ �z>D>Dz: (7)
173173

174In contrast to Eq. (6), the data term now uses ‘2 norm instead of ‘1
175norm. We solve this problem (Eq. (7)) using alternation as
176described next.
177Step 1: Update z
178Eq. (7) can be rewritten as z� ¼ argminz k Az� b k22, where A ¼

179
WPVffiffiffi
�

p
D

� �
and b ¼ Wẑ

02I�1

� �
and 02I�1 is a zero vector of length 2I.

180This is a squared ‘2 sparse linear system. It has the closed form
181solution

z� ¼ ½A>Aþ aI��1A>b; (8)
183183

184where I is the identity matrix, a is a regularization parameter (we
185use a ¼ 1:0e-8).
186Step 2: UpdateW
187We initialize W to the identity matrix. During each iteration,
188each diagonal element wi of W is updated given the residual
189r ¼ WPVz

� �Wb, as follows:

Fig. 2. Developable surfaces with underlying rulers (lines with zero Gaussian cur-
vature) and fold lines (ridges) shown as dotted and solids lines respectively. Exam-
ples of (a) smooth parallel rulers, (b) smooth rulers not parallel to each other and
(c) rulers and ridges in arbitrary directions.

Fig. 1. Our technique recovers a ridge-aware 3D reconstruction of the document surface from a sparse 3D point cloud. The final rectified image is then obtained via robust
conformal mapping.
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wi ¼
1

jrij þ �
; (9)

191191

192 Here, ri is the ith element of r and � is a small positive value (we use
193 � ¼ 1:0e-8). These steps are repeated until convergence; namely,
194 until the estimate at tth iteration z�ðtÞ becomes similar to the pre-
195 vious estimate z�ðt�1Þ, i.e., kz�ðtÞ � z�ðt�1Þk2 < 1:0e-8. Fig. 3b shows
196 an example of the reconstructedmesh.
197 Ridge-Aware Reconstruction. Developable surfaces are ruled [35],
198 i.e., contain straight lines on the surface as shown in Fig. 2. Our
199 method exploits this geometric property as described in this sec-
200 tion. Unlike existing parameterization-based methods which only
201 handle smooth rulers, [2], [26], [27], [28], extracting arbitrary
202 creases and ridges is more difficult when only sparse 3D points are
203 available. In particular, the sparse SfM points can be quite noisy.
204 We propose a sequential approach by first detecting ridges on the
205 mesh z� that was obtained using our robust Poisson reconstruction
206 method. After selecting the ridge candidates, we instantiate addi-
207 tional linear ridge constraints and incorporate them into the linear
208 system that was solved earlier. This sequential approach is quite
209 general and avoids overfitting. It also avoids spurious ridge candi-
210 dates arising due to noise.
211 For each point zðx; yÞ on the mesh z�, we compute the HessianK
212 as follows:

KðzÞ ¼
@2z
@x2

@2z
@x@y

@2z
@x@y

@2z
@y2

" #
: (10)

214214

215 Based on the following Eigen decomposition of KðzÞ,

KðzÞ ¼ p1;p2

� � k1 0
0 k2

� �
p1;p2

� �>
; (11)

217217

218 we obtain principal curvatures k1 and k2 (jk1j � jk2j) and the corre-
219 sponding eigenvectors p1 and p2.
220 The value of k1 is equal to zero at all points on a developable
221 surface. Thus, at any point zi, a straight line along direction p1

222 must lie on the surface. As discussed earlier and shown in Fig. 2,
223 the curvature along the ridge is zero while the curvature orthogo-
224 nal to the ridge reaches a local extremum. We use this observation
225 to select ridge candidates using the value of jk2j. Mesh points
226 ziðxi; yiÞ with jk2ðiÞj greater than the threshold kth are selected as

227ridge candidates. (see Fig. 3c for an example). The associated
228smoothness constraints in Eq. (4) are adjusted as follows:

~di;j ¼ ’ðhp1; e1iÞdi;j
~diþI;j ¼ ’ðhp1; e2iÞdiþ1;j;

(12)

230230

231where h ; i is the inner product and e1 ¼ ½1; 0�>; e2 ¼ ½0; 1�> are
232orthonormal bases. ’ð�Þ is a convex monotonic function defined

233as ’ðxÞ ¼ bx
2�1

b�1 , which places a greater weight b 	 1 along the ridge

and smallerweight orthogonal to it.We also consider twomore direc-

tional smoothness constraints similar to those stated in Eq. (12), for

234the two diagonal directions e3 ¼ ½
ffiffi
2

p

2 ;
ffiffi
2

p

2 �
> and e4 ¼ ½

ffiffi
2

p

2 ;�
ffiffi
2

p

2 �
>.

235Finally, we modify EsðzÞ defined in Eq. (4) by adding these
236ridge constraints and solve a new sparse linear system (similar to
237the earlier one) to obtain the final reconstruction. Fig. 3d shows
238that this method can preserve accurate folds and creases.

2393.2 Surface Unwrapping

240Given the 3D surface reconstruction, our next step is to unwrap the
241surface. We take a conformal mapping approach to this problem,
242amongst which, Least Squares Conformal Mapping [11], [29] is a
243suitable choice. However, it is not resilient to the presence of

Fig. 3. Example of ridge-aware 3D surface reconstruction.

Fig. 4. Vertices of a triangle in a local coordinate basis.

Fig. 5. Rectification results from combination of methods. Acronyms RA and Po
denote our ridge-aware method and Poisson reconstruction respectively. L1
denotes our ‘1 conformal mapping method with non-local constraints; L2 indicates
LSCM [29] and Geo indicates geodesic unwrapping [30].
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244 outliers and susceptible to global distortion which can occur due to
245 the absence of long-range constraints. We address both these issues
246 and extend LSCM by incorporating an appropriate robustifier as
247 well as ridge constraints to reduce global drift.
248 Conformal Mapping. For our mesh topology, each 3D point
249 ziðxi; yiÞ; i ¼ 1; . . . ; I, on the grid on z forms two triangles, one with
250 its upper and left neighbor, the other with its lower and right
251 neighbor on the grid. The triangulated 3D mesh is denoted as
252 fT ; zg. A conformal map will produce an associated 2D mesh with
253 the same connectivity but with 2D vertex positions such that the
254 angle of all the triangles are best preserved. We denote the 2D
255 mesh as fT ;ug, where u ¼ ðui; viÞ.
256 For a particular 3D triangle t with vertices at ðx1; y1; z1Þ,
257 ðx2; y2; z2Þ, and ðx3; y3; z3Þ, we seek its associated 2D vertex posi-
258 tions (ðu1; v1Þ, ðu2; v2Þ and ðu3; v3Þ) under the conformal map. Using
259 a local 2D coordinate basis for triangle t, the conformality con-
260 straint is captured by the following linear equations

1

S

DX1 DX2 DX3 �DY1 �DY2 �DY3

DY1 DY2 DY3 DX1 DX2 DX3

� �
ut ¼ 0; (13)

262262

263Here, ut ¼ ½u1; u2; u3; v1; v2; v3�>, S is the area of t, DX1 ¼ ðX3 �X2Þ,
264DX2 ¼ ðX1 �X3Þ and DX3 ¼ ðX2 �X1Þ (DY is similarly defined).
265Note that variables ðX1; Y1Þ, ðX2; Y2Þ, and ðX3; Y3Þ were obtained
266from t’s vertex coordinates (see Fig. 4). Putting together the
267constraints for all the triangles, we have the following sparse linear
268system

Cu ¼ 0: (14)
270270

271Using indices i and j to index the I vertices and J triangles respec-
272tively, the 2J � 2I matrix C in Eq. (14) has the following non-zero
273entries

cj;i ¼ DX
Sj

; cj;iþI ¼ � DY
Sj

cjþJ;i ¼ DY
Sj

; cjþJ;iþI ¼ DX
Sj

: (15)

275275

276Ridge Constraints. Notice that the original conformal mapping has
277only local constraints, which will result in global distortion, Fig. 5f.
278To reduce global distortions during unwrapping, we add ridge
279and boundary constraints to constrain the solution further.
280We take into consideration two facts. First, the ridge lines
281remain straight after flattening but should essentially become
282invisible on the flattened surface. Second, the conformal mapping
283constraint Eq. (13) applies to beyond triangles. In particular, it is

Fig. 6. [OUR RESULTS] Original images are shown in rows 1 and 3 and our rectification results are shown in rows 2 and 4.
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284 true for three collinear points. Therefore, we propose using the col-
285 linearity property to derive non-local constraints during flattening.
286 and add it to our conformal map estimation problem. Referring to
287 Fig. 4, and imagine the collinear case, that is when point ðx2; y2; z2Þ
288 is also lying on the X axis; in such case, Y2 ¼ Y1 ¼ Y3 ¼ 0. In addi-
289 tion, the area of the triangle T is zero. Hence, the ridge constraints
290 can be written in a form similar to Eq. (13)

DX1 DX2 DX3 0 0 0
0 0 0 DX1 DX2 DX3

� �
uR ¼ 0: (16)

292292

293 where uR ¼ ½u1; u2; u3; v1; v2; v3�> are the targeted 2D coordinates
294 similarly defined as uut. We select ridge candidates in the sameway as
295 we did earlier during reconstruction. However, this step is nowmore
296 accurate because the surface iswell reconstructed. For each ridge can-
297 didate (vertex), we find two farthest ridge candidates along the ridge
298 line in opposite directions and instantiate the above mentioned con-
299 straint for the three points. We assume that the boundary of the flat-
300 tened 2D document image has straight line segments (they need not
301 be straight lines on the 3D surface). These boundary constraints can
302 be expressed in a form similar to Eq. (16). We incorporate all ridge
303 and boundary constraints into a systemof linear equations

Ru ¼ 0: (17)
305305

306

307 Robust Conformal Mapping. We propose using an ‘1 norm instead
308 of the standard squared ‘2 norm to make conformal mapping robust
309 to outliers. Putting together Eqs. (14) and (17) in the ‘1 sense, we have

u� ¼ argmin
u

k Cu k1 þg k Ru k1; (18)
311311

312 where g balances the ridge and boundary constraints. To avoid the
313 trivial solution u ¼ 0, we fix two points of u to ðui; viÞ ¼ ð0; 0Þ and
314 ðuj; vjÞ ¼ ð0; 1Þ. Eq. (18) is then rewritten as

u� ¼ argmin
u

k Cu k1 þg k Ru k1 þu k Efix k22; (19)
316316

317 where Efix is the energy function for the two fixed points. We solve
318 the objective function using the iterative reweighted least squares
319 method [34]. Fig. 5 shows a result from the conventional LSCM
320 (‘2 method) and our proposed ‘1 method.

3213.3 Implementation Details

322Sparse 3D Reconstruction. We recover the initial sparse 3D point
323cloud using SfM. While any existing SfM method is applicable,
324we use the popular incremental SfM technique et al. [36] in our sys-
325tem. We typically capture five to ten still images for each document
326from different viewpoints. Capturing these images or equivalently
327a set of burst photos or a short video clip only takes a few seconds.
328After running SfM, we segment the document from the back-
329ground surface in the reference image using a simple method
330based on color difference and edge detection. In our experiments,
331we assumed that the document has a sufficiently different color
332from the background and therefore the document boundary is visi-
333ble with sufficient contrast. Fig. 1a shows an input example and
334the corresponding reconstruction.
335Image Warping. After recovering the flattened mesh grid u ¼
336fui; vig, we unwrap the input image with the maximum document
337area in pixels. To obtain correspondence between the input image
338and fui; vig, we project the 3Dmesh points fziðxi; yiÞg into the image
339to obtain image coordinates f ~xi; ~yig using the camera pose estimated
340using SfM. We then warp the image according to the correspon-
341dence between f ~xi; ~yig and fui; vigwith bilinear interpolation.

3424 EXPERIMENTS

343We perform qualitative and quantitative evaluation on a wide vari-
344ety of input documents. The first set of experiments show that our
345method can handle different paper types, document content and
346various types of folds and creases. Next, we report a quantitative
347evaluation based on known ground truth using local and global
348metrics where we demonstrate the superior performance and
349advantages of our method over existing methods [28], [29], [30]. In
350all the experiments, we set parameters as follows: � ¼ 1e-5; b ¼ 40;
351g ¼ 1e3, u ¼ 1e2 and kth ¼ 0:006. Our method is insensitive to these
352parameters. Varying �; g; u by factors of 0.1-1.0 or varying b or kth
353by 50 percent from these settings did not change the result
354significantly.

3554.1 Test Data

356The first six out of the 12 test sequences (I-VI) contain documents
357with no fold lines, one fold line, two to three parallel fold lines, and
358two to three crossing fold lines respectively. The other six sequences
359(VII-XII) contain documentswith an increasing number of fold lines.
360Irregular fold lines were intentionally added to make the rectifica-
361tion more challenging. All documents were either placed on a pla-
362nar or curved background surface. Sequence VII contains a
363shopping receipt on a paper roll whereas II and VIII contain pages

Fig. 7. Distortion metrics for datasets shown in Fig. 6. Abbreviations are consistent
with Fig. 5 and the text.

Fig. 8. Comparison with Periollat et al.’s method [28].
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364 from a book. Sequences III, IV, IX and X contain letters foldedwithin
365 envelopes. Sequence V, VI, XI and XII contain examples of docu-
366 ments folded inside a purse or notebook. The input images as well
367 as the results from our method are shown in Fig. 6. Our method
368 does not rely on the content, formatting, layout or color of the docu-
369 ment. Thus, it is generally applicable as long as a sufficient number
370 of sparse keypoints in the input images are available for SfM.

371 4.2 Quantitative Evaluation Metrics

372 We quantitatively evaluate the global and local distortion between
373 the ground truth digital image and our rectified result using local
374 and global metrics. The digital version of six out of the 12 test
375 documents were available. We treat those images as ground truth
376 and resize them by setting their height to 1,000 pixels.
377 Global Distortion Metric. We first register the rectified image to
378 the ground truth by estimating a global affine transform T esti-
379 mated using SIFT keypoint correspondences in these images [37]

T ¼
a1 a2 t1
a3 a4 t2
0 0 s

2
4

3
5; (20)

381381

382 This is achieved by minimizing the squared error

T� ¼ argmin
T

k Tp� p̂ k22 : (21)

384384

385 where, p and p̂ denote corresponding 2D keypoint positions using
386 homogenous coordinates. We compute the global distortion metric
387 G as follows:

G ¼ ða1a4 � a2a3Þ=s2
G ¼ maxðG; 1=GÞ: (22)

389389

390 A perfect result has G ¼ 1; and larger values indicate more distor-
391 tion (see comparative results in Fig. 7).
392 Local Distortion Metric. After warping the rectified image with
393 the affine transform T, we have removed the global distortion as
394 well as the scaling, rotation, and translation of the rectified image.
395 After that, we further evaluate the remaining local distortion. We
396 register the resulting image with the ground truth using SIFT-flow
397 [38] for dense registration. This flow map is used to compute the
398 local distortion metric which cannot be removed by global affine
399 warping. The frequency distribution of local displacements are
400 shown in lower figure in Fig. 7 and compared with existing meth-
401 ods. We found dense registration to be more useful for an unbiased
402 evaluation than sparse SIFT keypoint-based registration because
403 sparse methods are more likely to ignore many matches if the
404 result contains large deformations.

4054.3 Comparison with Existing Methods

406We first compare with three methods [28], [29], [30] on various real
407images and then use synthetically generated data to further com-
408pare with the methods designed for dense 3D point data [29], [30].
409Perriollat et al. [28]. Their method explicitly parameterizes
410smooth rulers but cannot handle our document images with creases
411and folds. Our method works fine on their dataset and produces a
412more accurate result than the one obtained by running their code1

413(see Fig. 8). Although our result hasminor artifacts due to self-occlu-
414sion and fore-shortening, the flattening result is quite accurate.
415Brown et al. [29], Zhang et al. [30]. We compare to both methods
416using our sequences where ground truth is available (Fig. 6). Since
417they require 3D range data, we use our reconstructed surface as
418their input and compare the surface flattening quality. We also
419compare our ridge-aware reconstruction to the standard Poisson
420reconstruction method. As shown in Fig. 7, the global and local dis-
421tortion metrics introduced earlier are used in the evaluation. Our
422method has higher accuracy in terms of both metrics. Results from
423various methods have been compared in Fig. 5.
424Evaluation on Synthetic Data.We compared ourmethodwith [29],
425[30] on synthetically generated dense 3D points because these meth-
426ods require dense 3D points. We vary the point cloud size from 2K
427to 300 K (common in 3D range data) and inject varying levels of
428Gaussian noise. The results from the threemethods are compared in
429Fig. 9. These experiments show that with low noise and high point
430density, all three methods are comparable in accuracy. However,
431when the points are sparser or when the noise level is higher, our
432method is more accurate than prior methods [29], [30].

4335 CONCLUSION AND FUTURE WORK

434In this paper, we propose a method for automatically rectifying

435curved or folded paper sheets from a small number of images cap-

436tured from different viewpoints. We use SfM to obtain sparse 3D

437points from images and propose ridge-aware surface reconstruc-

438tion method which utilizes the geometric property of developable

439surface for accurate and dense 3D reconstruction of paper sheets.

440We also robustify the algorithms using ‘1 optimization techniques.

441After recovering surface geometry, we unwrap the surface by

442adopting conformal mapping with both local and non-local con-

443straints in a robust estimation framework. In the future we will

Fig. 9. (a) Comparison of the global distortion metric between our method (top) and Zhang et al. [30] and Brown et al.[29] with varying point density and noise. Here lower
values indicate higher accuracy. (b) Frequency distribution of local distortion metrics for the associated experiments. Our method is more accurate when input point are
sparser or have more noise.

1. Their result shown here was generated by the original code provided by
the authors. These result do not agree with the results in their paper. This is prob-
ably due to a difference in initialization.
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444 address the correction of photometric inconsistencies in the docu-

445 ment image caused by shading under scene illumination.
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