Random Linear Network Codes for Secrecy over Wireless Broadcast Channels

Shahriar Etemadi Tajbakhsh
Research School of Engineering
The Australian National University
Canberra, Australia
Email: shahriar.etemadi-tajbakhsh@anu.edu.au

Parastoo Sadeghi
Research School of Engineering
The Australian National University
Canberra, Australia
Email: parastoo.sadeghi@anu.edu.au

Abstract—THIS PAPER IS ELIGIBLE FOR THE STUDENT PAPER AWARD. We consider a set of n messages and a group of k clients. Each client is privileged for receiving an arbitrary subset of the messages over a broadcast erasure channel, which generalizes scenario of a previous work. We propose a method for secretly delivering each message to its privileged recipients in a way that each receiver can decode its own messages but not the others'. Our method is based on combining the messages using linear network coding and hiding the decoding coefficients from the unprivileged clients. We provide an information theoretic proof for the secrecy of the proposed method. In particular we show that an unprivileged client cannot obtain any meaningful information even if it holds the entire set of coded data packets transmitted over the channel. Moreover, in our method, the decoding complexity is desirably low at the receiver side.

I. INTRODUCTION

Wireless medium is potentially vulnerable to different types of security attacks as the information is broadcast in the air and might be easily accessed or manipulated by an unprivileged party. Specifically, secrecy of transmission sessions is a major concern which implies the necessity of cryptographic methods against eavesdroppers. On the other hand, recent advances in cooperative networking schemes unveils the advantage of cooperation among wireless devices as a consequence of diversity in wireless channels. Despite the benefits of cooperation, it might increase the security risks in presence of dishonest participants. As a major class of such cooperative settings, network coding techniques require that the wireless devices to be enabled to listen to transmission sessions which are not necessarily intended for them and buffer what they hear on the channel as side information. Because of diversity in packet reception at different users, the sender might benefit from network coding techniques to merge multiple transmission sessions into one [1]–[5], etc. As the users are supposed to buffer and process some messages for which they are not their target recipients, some mechanisms should be designed to protect the secrecy of those messages during the cooperation.

In this paper, we consider k wireless users which are connected to a base station and share a broadcast erasure channel. Each client is interested in receiving an arbitrary subset of n messages. The clients are enabled to listen to all the transmissions over the channel and save what they receive in their buffers. As each client might have missed some parts of information which it needs to decode its own messages, either the base station should retransmit the missing parts or the clients should cooperate with each other to obtain the missing parts. We propose a method to maintain the secrecy of individual messages against any unprivileged party (either those clients who are not the target recipient of that message or any external eavesdropper). The essence of the proposed method is to combine all the messages together at the base station regardless of their target recipients using a special form of random linear network coding and broadcast the resulting packets to all the clients; Each client privately receives a set of decoding coefficients which enables it to decode its own messages but not the others'. In other words, the main idea is to protect the decoding coefficients against unprivileged parties.

A brief summary of the contribution of this paper is as follows. We propose a method to maintain the secrecy of transmissions over a wireless broadcast channel by coding the messages using a special form of random linear network coding. This paper extends the scenario discussed in [6] to a general scenario that each client is interested in an arbitrary subset of messages. Also we prove that using our proposed method, the eavesdropper or any unprivileged client cannot obtain any meaningful information about the messages. Moreover, our proof implies that the field size of operations can be kept small which substantially reduces the computational complexity especially at the receiver side which is a crucial improvement over [6].

The rest of this paper is organized as follows. In section II, the position of this paper within the literature is highlighted. In section III the proposed system is introduced and some specifications and advantages of our proposed method is discussed. Section IV provides a clarifying example of the entire system. Finally, in section V, secrecy of the proposed method is proven.

II. RELATED WORK

This paper is an extension of the work in [6], where only eavesdroppers with bounded computational power were considered to wiretap a shared broadcast channel. In the current paper, we provide an information theoretic proof for security of the proposed method and we show that an eavesdropper
would not be able to obtain any meaningful information about the protected messages. Moreover, in [6] each client is only interested in a distinct message while the current paper generalizes the proposed method to the scenario that each of the \(k \) clients is interested in receiving an arbitrary subset of \(n \) messages over a shared broadcast erasure channel. Also, unlike [6], in this paper we operate over a field size of \(2^n \) the packets they have received over a small size finite field.

III. System and Model

We consider a set of \(n \) messages \(X = \{x_1, \ldots, x_n\} \) and a set of \(k \) clients \(C = \{c_1, \ldots, c_k\} \). Each client \(c_i \) is interested in receiving an arbitrary subset of messages \(X_i \subseteq X \) from a common base station. Each message \(x_i \) is composed of \(T \) elements each drawn from a finite field \(\mathbb{F}_q \) of size \(q \) and is denoted by \(x_i^{(t)} \). For the ease of our analysis and also to reduce the decoding complexity at the receiver side, we assume that all the operations are done over a finite field size of 2, i.e., \(\mathbb{F}_2 \).

We consider \(T \) rounds of transmission, where at each round \(1 \leq t \leq T \), the set of elements \(X^{(t)} = \{x_1^{(t)}, \ldots, x_n^{(t)}\} \) should be delivered to the clients at the end of round. The set of clients who are the privileged recipients of message \(x_j \) are denoted by \(R_j = \{c_u : x_j \in X_u\} \).

Each round of transmission incorporates three phases (1) The set of elements \(X^{(t)} \) are encoded as it will be described later and the set of encoded elements (denoted by \(P^{(t)} = \{P_1^{(t)}, \ldots, P_n^{(t)}\} \) are transmitted over a shared broadcast channel to all the clients. Each client \(c_i \) might receive each element \(P_i^{(t)} \) with a probability \(1 - p_i \). (2) The missing packets by the clients at each round should be retransmitted by either the base station or by the clients if the clients have received the set of encoded elements collectively. (3) The base station provides a set of decoding coefficients privately to each client where each client is enabled to decode its own set of elements but not the other ones’, therefore the secrecy of individual messages are maintained. In the following, the three mentioned phases are described. In section IV, a comprehensive example is provided to illustrate the entire process.

- **Broadcast Phase:** At each round \(t \), the base station generates the set of encoded elements by solving the system of equations \(X^{(t)} = A^{(t)}P^{(t)} \), where \(A^{(t)} = [\alpha_{ij}]_{n \times n} \) is a matrix of randomly chosen elements \(\alpha_{ij} \) from the finite field \(\mathbb{F}_q \), \(P^{(t)} = [P_i^{(t)}]_{n \times 1} \) is the vector of encoded elements and \(X^{(t)} = [x_i^{(t)}]_{n \times 1} \) is the vector of message elements at round \(t \). The set of encoded elements \(P^{(t)} \) is broadcast to all the clients by the base station. To recover a message \(x_i^{(t)} \), a corresponding client \(c_j \) for whom \(x_j \in X_j \), needs the \(i \)th row of matrix \(A^{(t)} \) denoted by \(A_{ij}^{(t)} \), as \(x_i^{(t)} = A_{ij}^{(t)}P^{(t)} \). To prevent unprivileged clients i.e., \(R_i \) or any other external eavesdropper to obtain message \(x_i \), the vector \(A_{ij}^{(t)} \) should be delivered privately and securely to each client \(c_i \in R_i \) as a secret key. The process of delivering these vectors of decoding coefficients \(A_{ij}^{(t)} \) to the corresponding set of privileged clients \(R_i \) is central to this paper and will be discussed extensively immediately in this section.

- **Packet Recovery Phase:** As mentioned earlier, we model the channel between the base station and each client \(c_i \) as an erasure channel, i.e., we assume each encoded element is received by the client \(c_i \) with a probability \(1 - p_i \). Hence, the missing packets should be either retransmitted by the base station or provided via cooperation among the
clients by exchanging the missing chunks of information with each other. Detail of the network coded based retransmission schemes is not at the scope of this paper (We refer the reader to [6] for more information).

- **Key Sharing** As mentioned earlier, we need to provide the sets of decoding coefficients privately to privileged clients. Our method is based on a hybrid private-public key scheme, where an *initial key* is associated to each message x_i. Each initial key is composed of two components and can be represented as a pair of functions $\mathcal{K}_i = (\pi_i^N, \kappa_i)$. As the first component of the function \mathcal{K}_i, permutation function is formally defined as follows:

Definition 1. A permutation function of the set $\hat{N} = \{1, \ldots, n\}$ is a one-to-one and covering function denoted by $\nu = \pi^N_N(u)$ which randomly maps each element u in \hat{N} to an element v in \hat{N}, i is an arbitrary index which is used later to identify the index of the corresponding message.

Definition 2. A vector permutation function maps a vector $u = [u_1, \ldots, u_n]$ to a vector $v = [v_1, \ldots, v_n]$ such that $v_j = \pi^N_N(u_j)$, $\forall j \in \hat{N}$. Also, we denote the vector $[1, \ldots, n]$ by \hat{n}.

The second component of the initial key is $\kappa_i : \hat{N} \to \mathbb{F}_2$ which maps each element $j \in \hat{N}$ to $\kappa_i(j)$, $\forall i,j \in \hat{N}$ where $\kappa_i(j)$ has been chosen randomly from a uniform distribution over the finite field \mathbb{F}_2 (i.e. $\text{prob}(\kappa_i(j) = 1) = \frac{1}{2}$ and $\text{prob}(\kappa_i(j) = 0) = \frac{1}{2}$, $\forall i,j \in \hat{N}$). The initial key \mathcal{K}_i is fixed during all the T rounds of transmission and is privately provided to a client c_j if $c_j \in R_i$. The set of initial keys can be either physically delivered to the clients (e.g. as a part of their hardware), or can be distributed using a method similar to [10] where it is expected that after sufficient number of transmissions each set of privileged clients can pick a key which has not been heard by the others.

The base station generates a vector of n randomly chosen elements from \mathbb{F}_2 at each round of transmission (or possibly at the beginning of a period of multiple of transmission rounds) denoted by $\varrho(t)$ called as *regenerating vector* and broadcast it publicly to all the clients. The decoding coefficients are determined by this vector for all the messages from the base station according to the following equation:

$$A^{(t)}_i = \kappa_i(\pi^N_N(\hat{n})) + \varrho(t) \quad (1)$$

In other words, the initial key \mathcal{K}_i acts as a function which operates on a publicly announced input, i.e. the regenerating vector (possibly at each round t or at the beginning of a period of multiple of transmission rounds) to generate the vector of decoding coefficients $A^{(t)}_i$. Therefore the vectors $A^{(t)}_i$ can be renewed at each round of transmission with an overhead of n bits. However, it should be noted that the same vector $\varrho(t)$ is applied to initial keys of all users $\{\mathcal{K}_1, \ldots, \mathcal{K}_n\}$ at round t (otherwise a huge amount of overhead is imposed).

The outcome of the encoding process over the messages is broadcast to all the clients and each client c_i would be able to decode its own message by computing $A^{(t)}_iP^{(t)}$. In the following, some features of the proposed system is briefly discussed:

1) We used the linear network codes in a reverse direction, i.e. instead of generating linear combinations of the messages ($P = AX$) and broadcasting them over the channel, a system of linear equations ($X = AP$) is solved at the base station to generate packets P. Therefore, each message is related to the set of packets with a distinct set of decoding coefficients which enables us to generalize the proposed method to the scenario that each client is interested in an arbitrary subset of messages without violating the secrecy of other clients (As each client is provided with only the decoding coefficients necessary for decoding the messages that it is privileged for).

2) Reversing the direction of coding scheme mentioned in the last item, also has the advantage that reduces the complexity at the receiver side which might potentially have limited power resource and computational capacity. In our proposed scheme, the receiver only needs to compute a linear combination of packets for each message instead of inverting a matrix.

3) The role of regenerating vector is to update the decoding coefficients to maintain the uniformity of the decoding coefficients distribution which is necessary for our proof as it will be discussed in section V. The role of permutation functions in the initial keys is to produce a huge space of possibilities that makes it computationally hard to guess the decoding coefficients or obtain any information about them. The amount of leakage of information specially in the case of non-uniform messages is an interesting topic for further investigation (for uniform messages some bounds and theorems have been established in [11]). The regenerative vector updates is expected to play a role in minimizing the leakage of information in this case. The regenerative vector can be updated periodically after multiple rounds of transmissions (rather than updating at each round) but possibly at the price of some information leakage.

IV. An Example

In this section, different parts of the proposed system is discussed through an example. Suppose we have four clients $C = \{c_1, \ldots, c_4\}$ and a set of seven messages $X = \{x_1, \ldots, x_7\}$. Each message is composed of 64 bits, therefore we have 64 rounds of transmission $t = 1, \ldots, 64$ where at each round one bit from each message is transmitted to the target recipients. We assume the sets $\chi_1 = \{x_2, x_4, x_7\}, \chi_2 = \{x_1, x_3, x_6\}, \chi_3 = \{x_1, x_2, x_3, x_5, x_6\}$ and $\chi_4 = \{x_2, x_5, x_6, x_7\}$ are demanded by clients c_1, c_2, c_3 and c_4, respectively.

Table I shows the set of initial key pairs for each message.

<table>
<thead>
<tr>
<th>Message</th>
<th>Initial Key Pair</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>(k_1, \hat{n})</td>
</tr>
<tr>
<td>x_2</td>
<td>(k_2, \hat{n})</td>
</tr>
<tr>
<td>x_3</td>
<td>(k_3, \hat{n})</td>
</tr>
<tr>
<td>x_4</td>
<td>(k_4, \hat{n})</td>
</tr>
<tr>
<td>x_5</td>
<td>(k_5, \hat{n})</td>
</tr>
<tr>
<td>x_6</td>
<td>(k_6, \hat{n})</td>
</tr>
<tr>
<td>x_7</td>
<td>(k_7, \hat{n})</td>
</tr>
</tbody>
</table>

Table I shows the set of initial key pairs for each message. Now consider one round of transmission say $t = 24$. Suppose the random regenerating vector produced by the base station for this round is $\varrho(24) = [1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0]$. The base station builds the matrix $A^{(24)}$ by computing the equation 1 for each
pair of initial keys $\mathcal{K}_1, \ldots, \mathcal{K}_7$ and $\hat{\nu}^{(24)}$ which results in:

$$A^{(24)} = \begin{pmatrix}
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 0
\end{pmatrix}$$

It is easy to check that $\det(A^{(24)}) \neq 0$. If the base station comes up with a singular matrix, it is deleted and a new matrix is generated. It should be mentioned that the order of transmission of the regenerating vector and the coded data elements ($P^{(t)}_i$-s) is not important as long as it is based on a common protocol between the sender and receivers. Therefore, a batch of coded elements with their corresponding regenerating vectors might be packed in a packet (and the result can be encoded using any error correction codes) and transmitted to all the clients. For instance, $P^{(t)}_i, \forall t \in \{1, \ldots, 64\}$ and the i'th element of all regenerating vectors $\hat{\nu}^{(t)}, \forall t = 1, \ldots, 64$ plus the error correction code bits can be packed as a unit packet P_i by the protocol. Each receiver can acknowledge the reception of each packet (here by a packet we mean the packed version of the mentioned components) as it would be extremely costly to send feedback for each bit and is not practical. However, separate operations are performed over each bit according to the corresponding decoding coefficients.

Initial keys can be distributed via any secure private channel or by using a similar method to [10]. The basis of key sharing method in [10] is to take the diversity of packet erasure patterns over the downlink wireless channels between the base station and the wireless clients as an opportunity to provide secret keys to the corresponding clients. In [10], the base station starts to generate random messages and broadcast it to all the clients. If a message is received only by a client c but not by the other ones it can be used as a key shared between c and the base station. If a key \mathcal{K} is shared with client c, a message ω is encoded as $x = \omega \oplus K$ similar to the so-called one-time pad of Shannon [14]. If x is only received by c but not by the other clients, then \mathcal{K} can be reused, otherwise \mathcal{K} is burnt and a new key should be used for sending the next message to c. We can use the same approach to distribute the initial keys, but the initial keys are not required to be renewed which substantially reduces the amount of transmission (and consequently increases the throughput) at the price of relaxing the secrecy condition to weaker one but practical yet. To apply the method of [10] to our problem which is more general in a sense that each client might demand an arbitrary subset of the messages, the base station should keep transmitting random messages (of the format $R_c = (\pi^{x_c}_i, \kappa_i)$ until a case is observed that all clients belonging to R_c have heard it but not any of the other clients. This might be considered very costly in terms of throughput efficiency specially if the number of users is large, however it should be noted that this only happens once at the beginning and only the regenerating vector $\hat{\nu}^{(t)}$ is transmitted publicly at each round afterwards. Therefore if $T \to \infty$ the overhead of initial key sharing will tend to zero. However, as mentioned earlier, the initial keys can be shared using any type of secret key management method.

As mentioned earlier, the packet recovery can be accomplished either by the base station or via cooperation. In [6], we assumed that the operations are done over a large field size and some elements of each row A_i might have been set to be zero. Therefore each needs to send a negative acknowledgement (NACK) for those packets which have not received and need them according to A_i. As the operations are done over field size 2 in this paper, if a client sends a NACK only for those packets in its wants set which are not received, some entries in A_i would be disclosed which violates the secrecy. Therefore, each client should send a NACK for all its missing packets. Then the packets can be recovered using the methods developed in [2], [4], [15], [16] for retransmission via the base station or via cooperative data exchange [17]–[19].

V. PROOF OF SECRECY

In this section we prove that the aforementioned scheme in section III is weakly secure in an information theoretic sense. The concept of weakly security introduced in [9] implies that an unprivileged party can not obtain any meaningful information about a message intended for a group of privileged users. Weakly security relaxes the perfect secrecy condition (which does not allow any information to be leaked to an unauthorized party) to a weaker but more practical condition of security [9].

Consider the set of transmitted packets $P^{(t)}$ and also let $G \subseteq X^{(t)}$. We assume each client has only received the set of keys which is privileged for, i.e. c_i or any other external eavesdropper E does not hold \mathcal{K}_j if $c_i \notin R_j$. The following theorem states the main result of this paper (assuming the regenerating vector is updated at each round):

Theorem 1. An unprivileged client for packet x_i or any external eavesdropper E can not obtain any information about any individual message $x^{(t)}_i$, i.e. $I(x^{(t)}_i; P^{(t)}_i|G) = 0$, assuming that E initially holds G and $x^{(t)}_i \notin G$.

Before proving the theorem a few lemmas are proven or stated. The first lemma proved by Gallager is borrowed from [20]–[22] where the probability distribution of a linear combination of random variables over a finite field is studied.
Lemma 1. Let $\beta_1, \ldots, \beta_n \in GF(2)$ be random variables over the field with $\text{prob}(\beta_i = 1) = \delta_i$, and let $m_1, \ldots, m_n \in GF(2)$. Then the probability distribution of the linear combination $s = \bigoplus_{i=1}^{n} m_i \beta_i$ is computed as follows:

$$\text{Prob}(s = 1) = \frac{1 - \prod_{i=1}^{n} (1 - 2\delta_i)}{2}, \quad \text{Prob}(s = 0) = 1 - \text{Prob}(s = 1) \quad (2)$$

Lemma 2. Suppose that $A' = [\alpha_{ij}]_{i,n \times n}$ is a matrix of random elements $\alpha_{ij} \in \mathbb{F}_2$, where $\text{prob}(\alpha_{ij} = 1) = \text{prob}(\alpha_{ij} = 0) = 1/2$, $\forall i, j \in \hat{n}$. Let $X = A' P^*$ be a system of linear equations for known vector $X^* = [x_1^* \ldots x_n^*]$ and the vector of unknowns $P^* = [p_1^* \ldots p_n^*]$. Then if the system is rewritten in the form $X = AP^*$ using Gaussian elimination method, where $A = [\hat{\alpha}_{ij}]_{i,n \times n}$ is an upper triangular matrix, assuming the last entry p_n^* written in the form $\gamma_n x_1^* + \cdots + \gamma_m x_m^*$, then $\text{prob}(\gamma_n = 1) = \text{prob}(\gamma_n = 0) = 1/2$.

Proof. To transform the matrix A^* to an upper triangular matrix \hat{A}, row and column operations are applied to A^* in a way that at the end of the elimination process, all entries $\alpha_{ij} = 0$, $\forall j < i$. Depending on the value of the element (ℓ, i), row $j \geq i$ is added to row ℓ with probability $1/2$ (if the element (ℓ, i) is 1, otherwise no action is required for this element which happens with probability $1/2$). It should be noted that all the rows ℓ that $i < \ell < i$ might have been affected by the row i with probability $1/2$ (by affected we mean that row i has been added to row ℓ). Therefore, in the last round of elimination process to remove each element $(n, j < n)$, one of the previous rows might be added to the row n which the row j might be affected even or odd number of times by the row $i < j$ with equal probabilities (the proof is of equal probabilities is based on considering all possibilities of being affected by a previous row and is removed due to space limitations). Even number of being affected by the ith row updates the coefficient γ_n to be zero and odd number of being affected by the ith row ends up with $\gamma_n = 1$. Therefore $\text{prob}(\gamma_n = 1) = \text{prob}(\gamma_n = 0) = 1/2$.

Now the proof of Theorem 1 is established using Lemma 1 and Lemma 2.

Proof. It is easy to show that $p|x_i(\pi^t(n_0)) = 1| + \bar{v}(t) = \frac{1}{2}$, as the regenerating vector is assumed to be drawn from a uniform distribution. Therefore the elements of $A^{(t)}$ would have a uniform distribution over \mathbb{F}_2. Using lemma 2, it is showed that each packet $P^{(t)}$ (which can be considered as the last element of A^* by swapping the rows) can be written in the form $\gamma_1 x_1^* + \cdots + \gamma_n x_n^*$ (if the matrix $A^{(t)}$ is not singular), where $\text{prob}(\gamma_{nj} = 1) = \text{prob}(\gamma_{nj} = 0) = 1/2$. Consequently, using lemma 1, it is proven that $\text{prob}(P^{(t)} = 1) = \text{prob}(P^{(t)} = 0) = 1/2$. Therefore, each packet is independent of any individual message $x_j^{(t)}$. Hence, it can be concluded that $I(x_j^{(t)}; P^{(t)}|G) = 0$.

ACKNOWLEDGMENT

This work was supported under Australian Research Council Discovery Projects funding scheme (project no. DP0984950).

REFERENCES