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Abstract
The accuracy of a collaborative-filtering system
largely depends on two factors: the quality of the
recommendation algorithm and the number and
quality of the available product ratings. In gen-
eral, the more ratings are elicited from the users, the
more effective the recommendations are. However,
not all the ratings are equally useful and specific
techniques, which are defined as rating elicitation
strategies, can be used to selectively choosing the
items to be presented to the user for rating. In this
paper we consider several rating elicitation strate-
gies and we evaluate their system utility, i.e., how
the overall behavior of the system changes when
new ratings are added. We discuss the pros and
cons of different strategies with respect to several
metrics (MAE, precision, NDCG and coverage). It
is shown that different strategies can improve dif-
ferent aspects of the recommendation quality.

1 Introduction
Choosing the right product to consume or purchase is nowa-
days a challenging problem due to the growing variety of
eCommerce services and the informational globalization.
Recommender Systems (RSs) aim at addressing this problem
providing personalized suggestions for digital content, prod-
ucts or services, that better match the user’s needs and con-
straints than the mainstream products [Resnick and Varian,
1997] [Ricci et al., 2011b].

In this paper we are concerned with collaborative filtering
(CF) RSs [Koren, 2008] [Li et al., 2008]. A CF system uses
ratings for items provided by a population of users to predict,
for a target user, what are the items with the highest ratings
that he has not considered yet and recommend them to the
user. The CF rating prediction accuracy does depend on the
characteristics of the prediction algorithm, but also on the rat-
ings known by the system. The more (informative) ratings are
available the higher the recommendation accuracy is. There-
fore, it is important to keep acquiring from the users new and
useful ratings in order to maintain or improve the quality of
the recommendations. In this work we concentrate on this
aspect: understanding the behavior of several ratings acquisi-
tion strategies, such as “provide your ratings for these top ten

movies”. We aim at enlarging the set of available data in the
optimal way for the whole system performance by asking the
most useful ratings to the right users.

We created a software which simulates the real process
of rating elicitation in a community of users (Movielens and
Netflix), the consequent rating database growth starting from
a relatively small one (cold-start), and the system adaptation
(retraining) to the new set of data.

In this paper we define and test some “pure” strategies, i.e.,
implementing a single heuristic, but also strategies that we
call “partially randomized”, which, in addition to asking to
the (simulated) users to rate the items selected by a “pure”
strategy, they ask to rate some randomly selected items as
well. Randomized strategies can introduce diversity in the
item list presented to the user But, more importantly, they
have been introduced to cope with the non monotonic behav-
ior of the system effectiveness that we observed during the
simulation of certain “pure” strategies. In fact, we have dis-
covered (as hypothesized by [Rashid et al., 2002]) that certain
strategies, for instance, requesting to rate the items with the
largest predicted ratings, may generate a system-wide bias,
and ultimately the addition of the ratings proposed by these
strategies can increase, rather than decrease, the system error.

In these simulations we used a state of the art Matrix Fac-
torization rating prediction algorithm [Koren and Bell, 2011]
[Timely Development, 2008]. Hence the results here pre-
sented can provide useful guidelines for managing real RSs
that nowadays largely rely on that technique.

Rating elicitation has been also tackled in a few previous
works [Sean M. McNee and Riedl, 2003; Rashid et al., 2002;
Carenini et al., 2003; Jin and Si, 2004; Harpale and Yang,
2008] but these papers focused on a different problem,
namely the benefit of the rating elicitation process for a sin-
gle user, e.g., in the sign up stage [Rashid et al., 2002]. Con-
versely, we consider the impact of an elicitation strategy on
the system-wide behavior, e.g., the overall prediction accu-
racy (more details are provided in section 6). In general, rat-
ing elicitation has been ignored by the mainstream RSs re-
search. A possible explanation is because of the erroneous
assumption that a RS cannot control what items the users
will rate. Actually this is not true, surely RSs user interfaces
can be designed so that users navigating through the existing
items can rate them if they wish. But new ratings can also
be acquired by explicitly asking users. In fact, it is common



practice for RSs to ask the users to rate the recommended
items: mixing recommendation with users’ preferences elici-
tation. We will show that this approach has a potentially dan-
gerous impact on the system effectiveness, hence a careful
selection of the elicitation strategy is in order.

The main contribution of our research is the introduction
and empirical evaluation of a set of rating elicitation strategies
for collaborative filtering with respect to their system-wide
utility. Some of these strategies are new and some come from
the literature and the common practice. Another important
contribution of this paper is due to the fact that we measured
the effect of each strategy on several RSs evaluation measures
showing that the best strategy depends on the evaluation mea-
sure. Previous works focussed only on the rating prediction
accuracy (Mean Absolute Error), and on the number of ac-
quired ratings. We analyze those aspects, but in addition we
consider the recommendation precision, the coverage and the
goodness of the recommendations’ ranking, measured with
normalized discounted cumulative gain (NDCG). These mea-
sures are more interesting and useful for determining the true
value of the recommendations for the user.

Moreover, in our work we explore another new aspect, i.e.,
the performance of the elicitation strategies taking into ac-
count the size of the rating database and we show that dif-
ferent strategies can improve different aspects of the recom-
mendation quality at different stages of the rating database
development. In fact, we show that in some stages an elicita-
tion strategy may induce a bias on the system and ultimately
a decrease of the recommendation effectiveness. In addition,
previously conducted evaluations assume rather artificial con-
ditions, i.e., that all the users and the items have some ratings
since the beginning of the evaluation process. In other words,
they did not faced the new-item and the new-user problem).
We instead generate initial conditions for the rating data set
in a pure random way, hence, in our experiments, new users
and new items are present as it happens in real conditions.

In conclusion in this paper we provide a realistic, com-
prehensive evaluation of several applicable rating elicitation
strategies, providing guidelines and conclusions that would
help their exploitations in real RSs. The rest of the paper is
structured as follow. In section 2 we introduce the rating elic-
itation strategies that we have analyzed, and in section 3 we
present the simulation procedure that we designed to evaluate
their effects. The results of our experiments are shown in sec-
tion 4. In section 6 we review some related researches, and
finally in section 7 we summarize the results of this research
and we outline some future work.

2 Elicitation Strategies
A rating dataset R is a n ×m matrix of real values (ratings)
with possible null entries. The variable rui, denotes the en-
try of the matrix in position (u, i), and contains the rating
assigned by user u to item i. rui could store a null value rep-
resenting the fact that the system does not know the opinion
of the user on that item. In the Movielens and Netflix datasets
the rating values are integers between 1 and 5 included. A rat-
ing elicitation strategy S is a function S(u,N,K,Uu) = L
which returns a list of items L = {i1, . . . , iM} whose rat-

ings should be asked to the user u, where N is the maximum
number of ratings to be elicited, K is the dataset of known rat-
ings, i.e., the ratings (of all the users) that have been already
acquired by the RS. K is also a n×m matrix containing en-
tries with real or null values. The not null entries represent
the knowledge of the system at a certain point of the RS evo-
lution. Finally, Uu is the set of items whose ratings have not
yet requested to u, hence potentially interesting. Hence one
must enforce that L ⊂ Uu and an elicitation strategy will not
ask to a user to rate two times the same item; hence the items
in L, which are returned by S, must be removed from Uu.

Every strategy analyzes the dataset of known ratings K and
assigns a score to the items in Uu. Then the N items with the
highest score are returned, if the strategy can score N differ-
ent items, otherwise a smaller number of items is returned. It
is important to note that the user may have not experienced
the items whose ratings are requested; in this case the system
will not increase the number of known ratings. Some strate-
gies may collect more ratings, some strategies may be better
in collecting useful ratings. These two properties play a fun-
damental role in a rating elicitation strategy.

2.1 Individual Strategies
We considered two types of strategies: pure and partially
randomized. The first ones implement a unique heuristic,
whereas in the second type of strategies a pure one is hy-
bridized by adding some random rating requests that are still
unclear to the system. As we mentioned in the introduction
these strategies add some diversity to the system requests and,
as we will show later, can cope with an observed problem of
pure strategies: they may in some cases increase the system
error.

The pure strategies that we considered are:
• Popularity: for all the users the score for item i is the

number of not null ratings for i contained in K. These
are the known ratings for the item i. More popular items
are more likely to be known by the user, and hence it
is more likely that a request for such a rating will really
increase the size of the rating database.
• Binary Prediction: the matrix K is transformed in a ma-

trix B with the same number of rows and columns, by
mapping null entries in K to 0, and not null entries to
1. A factor model is built using the matrix B as train-
ing data, and then a prediction for each entry in B is
computed. Finally, the score for the item i in Uu is the
predicted value for the entry in position (u, i) in B. This
strategy tries to predict what items the user has expe-
rienced, in order to maximize the probability that the
user know the requested rating (similarly to the popu-
larity strategy).
• Highest Predicted: a prediction is computed for all the

items in Uu and the scores are set equal to these pre-
dicted values. The idea is that the best recommenda-
tions could also be more likely to have been experienced
by the user and their ratings could also reveal more in-
formation on what the user likes. Moreover, this is the
default strategy for RSs, i.e., enabling the user to rate the
recommendations.



• Lowest Predicted: for all the items in Uu a prediction r̂ui
is computed. Then the score for i is Maxr− r̂ui, where
Maxr is the maximum rating value (e.g., 5). Lowest
predicted items are likely to reveal what the user does
not like, but are likely to collect a few ratings, since the
user is unlikely to have experienced all the items that he
does not like.
• Highest and Lowest Predicted: for all the items in Uu

a prediction r̂ui is computed. The score for an item is
|Maxr−Minr

2 + Minr − r̂ui|, where Minr is the min-
imum rating value (e.g., 1). This strategy tries to ask
ratings for items that the user may like and not like as
well.
• Random: the score for an item is a random integer num-

ber from 1 to 10. This is just a baseline strategy, used
for comparison.
• Variance: the score for the item i is equal to the variance

of its ratings in the dataset K. This is a representative of
the strategies that try to collect more useful ratings, as-
suming that the opinion of the user on items with more
diverse ratings are more useful to the generation of cor-
rect recommendations.

2.2 Partially Randomized Strategies
In a partially randomized strategy we modify the list of items
returned by a pure strategy introducing some random items.
As we mentioned in the introduction, these strategies have
been introduced to cope with some problems of the pure
ones (see section 4). Precisely, the randomized version Ran
of the strategy S with randomness p ∈ [0, 1] is a func-
tion Ran(S(u,N,K,Uu), p) returning a new list of items L′
computed as follow:

1. L = S(u,N,K,Uu) is obtained
2. if L is an empty list, i.e., the strategy S for some reason

could not generate the elicitation list, then L′ is com-
puted by taking N random items from Uu.

3. if |L| < N , L′ = L ∪ {i1, . . . , iN−|L|}, where ij is a
random item in Uu.

4. if |L| = N , L′ = {l1, . . . , lM , iM+1, . . . , iN}, where lj
is a random item in L, M = dN ∗ (1 − p)e, and ij is a
random item in Uu.

We note that if S is the highest predicted strategy, there
are cases where no rating predictions can be computed by the
RS for the user u, and hence S is not able to sort the items
to request. This happens for instance when u is a new user
and none of his ratings is known. In this case the randomized
version of this strategy generates purely random items for the
user to rate.

3 Evaluation Approach
In order to study the effect of the considered elicitation strate-
gies we set up a simulation procedure. The goal was to sim-
ulate the evolution of a RS’s performance exploiting these
strategies. In order to run such simulations we partition all
the available (not null) ratings in R into three different matri-
ces with the same number of rows and columns as R:

• K: contains the ratings that are considered to be known
by the system at a certain point in time.
• X: contains the ratings that are considered to be known

by the users but not by the system. These ratings are
incrementally elicited, i.e., they are transferred into K if
the system asks them to the (simulated) users.
• T : contains the ratings that are never elicited and are

used only to test the strategy, i.e., to estimate the evalua-
tion measures (defined later).

We also note that Uu is the set of items whose ratings, at a
certain point in time, are worth acquiring because “unclear”
to the system. That means that kui has a null value and the
system has not yet asked it to u. That request may end up
with a new (not null) rating kui inserted in K, if the user has
experienced the item i, i.e., if xui is not null, or in a no action,
if xui has a null value in the matrix X . The system, in any
case will remove the item i from Uu, to not ask twice the same
rating.

We will discuss later how the simulation is initialized, i.e.,
how the matrices K, X and T are built from the full rating
dataset R. In any case, these three matrices partition the full
dataset R; if rui has a not null value then either kui or xui

or tui has that value, and only one of them is not null. The
testing of a strategy S proceeds in the following way:

1. The not null ratings in R are partitioned into the three
matrices K,X, T .

2. MAE, Precision and NDCG are measured on T , training
the rating prediction model on K.

3. For each user u:
(a) Only the first time that this step is executed, Uu, the

unclear set of user u is initialized to all the items i
with a null value kui in K.

(b) Using strategy S (pure or randomized) a set of
items L = S(u,N,K,Uu) is computed.

(c) The set Le, containing only the items in L that have
a not null rating in X , is created.

(d) Assign to the corresponding entries in K the ratings
for the items in Le as found in X .

(e) Remove the items in L from Uu: Uu = Uu \ L.
4. MAE, Precision and NDCG are measured on T , and the

prediction model is re-trained on the new set of ratings
contained in K.

5. Repeat steps 3-4 (Iteration) for I times.

The MovieLens [Miller et al., 2003] and Netflix rating
databases were used for our experiments. Movielens consists
of 100,000 ratings from 943 users on 1682 movies. From the
full Netflix data set, which contains 1,000,000 ratings, we ex-
tracted the first 100,000 ratings entered into the system. They
come from 1491 users on 2380 items, so this sample of Net-
flix data is 2.24 times sparser than Movielens data.

We also performed some experiments with the larger ver-
sions of of both Movielens and Netflix datasets (1,000,000
ratings) and obtained very similar results. However, using the
full set of Netflix data required much longer times to perform
our experiments since we train and test a rating prediction



model at each iteration: every time we add to K new rat-
ings elicited from the simulated users. After having observed
a very similar performance on some initial experiments we
focussed on the smaller data sets to be able to run more ex-
periments.

When deciding how to split the available data into the three
matrices K, X and T an obvious choice is to respect the time
evolution of the dataset, i.e., to insert in K the first ratings
acquired by the system, then to use a second temporal seg-
ment to populate X and finally use the remaining ratings for
T . Actually, it is not significant to test the performance of
the proposed strategies for a particular evolution of the rat-
ing dataset. Since we want to study the evolution of a rat-
ing data set under the application of a new strategy we can-
not test it only against the temporal distribution of the data
that was generated by a particular (unknown) previously used
elicitation strategy. Hence we followed the approach used in
[Harpale and Yang, 2008] to random split the rating data, but
we generated several random splits of the ratings into K, X
and T . Besides, in this way we could generate ratings con-
figurations where there are users and items that have no (not
null) ratings initially in the known dataset K. We believe this
approach provided us with a very realistic and hard experi-
mental setup, letting us to address the new user and new item
problems [Ricci et al., 2011a].

Finally, we observe that for both data sets the experiments
were conducted partitioning (randomly) the 100,000 not null
ratings of R in the following way: 2000 in K (i.e., very lim-
ited knowledge at the beginning), 68,000 in X , and 30,000 in
T . Moreover, |L| = 10, which means that the system at each
iteration asks to a user his opinion on 10 items. The num-
ber of iterations was I = 170, and the number of factors in
the SVD prediction model was set to 16. All the experiments
were performed 5 times and results presented in the following
section are obtained as averages of these five repetitions.

We considered four evaluation measures: mean absolute
error (MAE), precision, coverage and normalized discounted
cumulative gain (NDCG) [Herlocker et al., 2004; Manning,
2008]. For computing precision we extracted, for each user,
the top 10 recommended items (whose ratings appear in T )
and considered as relevant the items with true ratings equal to
4 or 5. The coverage of a recommender system is measured as
the proportion of the full set of items over which the system
can form predictions [Herlocker et al., 2004].

Discounted cumulative gain (DCG) is a measure originally
used to evaluate effectiveness of information retrieval systems
[Järvelin and Kekäläinen, 2002], but also collaborative filter-
ing RSs [Weimer et al., 2008] [Liu and Yang, 2008]. In RSs
the relevance is measured by the rating value of the item in
the predicted recommendation list. Assume that the recom-
mendations for u are sorted according to the predicted rating
values, then DCGu is defined as:

DCGu =

N∑
i=1

riu
log2(i+ 1)

(1)

where riu is the true rating (as found in T ) for the item
ranked in position i for user u, and N is the length of the rec-
ommendation list. Normalized discounted cumulative gain

for user u is then calculated in the following way:

NDCGu =
DCGu

IDCGu
(2)

where IDCGu stands for the maximum possible value of
DCGu, that could be obtained if the recommended items are
ordered by decreasing value of their true ratings. We mea-
sured also the overall average discounted cumulative gain
NDCG by averaging NDCGu over the full population of
users.

4 Evaluation of Pure Strategies
4.1 MAE
The MAE computed on the test matrix T at successive itera-
tions of the application of the elicitation strategies is depicted
in Figure 1. First of all we must observe that the behavior of
the considered strategies in the two data sets are very similar.
Moreover, there are two clearly distinct groups:

1. Monotone error decreasing strategies: lowest-highest
predicted, lowest predicted and random.

2. Non-monotone error decreasing strategies: binary pre-
dicted, highest predicted, popularity, variance.

Strategies of the first group show an overall better perfor-
mance (MAE) for all the duration of the test except at the
beginning and the end. During the iterations 1-5 the best per-
forming strategy is binary-predicted, the second best being
highest predicted, both being non-monotone. During itera-
tions 6-45 random strategy has the lowest MAE value in the
Movielens data set, and it is overtaken by the lowest-highest-
predicted strategy at iteration 46. This is not observed in the
Netflix data set. At the iteration 80 the MAE obtained using
the variance, popularity and all the prediction-based strate-
gies stop changing: as K reaches the largest possible size for
those strategies. The MAE obtained using the random strat-
egy keeps decreasing until all the ratings in X are moved to
K. It is important to note that the prediction based strate-
gies (e.g., highest predicted) cannot elicit ratings for which
the prediction can not be made, i.e., for all those movies and
users that don’t have (not null) ratings in K. This is reflected
by the behavior of the coverage The coverage graph is not
shown here for lack of space, but we can summarize these re-
sults noting that the coverage of the prediction-based strate-
gies is stable, with value 0.74 (Movielens) throughout the ex-
periment, because the set of users or items with not null rat-
ings in K is not increasing. The system coverage produced
by the random strategy is slowly increasing and reaches the
full coverage, because ratings for new users and new items
are randomly added to K. The coverage obtained by the vari-
ance and popularity strategies increases and stabilizes to 0.84
on iteration 10, but it does not reach the full coverage. This
is because those strategies are able to elicit ratings from new
users, but are not able to elicit ratings for new items. Very
similar results are observed in the Netflix data.

The non-monotone strategies’ behaviors can be divided
into three stages: they decrease MAE at the beginning (ap-
proximately iterations 1-5), then they slowly increase it, when
MAE reaches a peek (approximately iterations 6-35), and



(a) Movielens (b) Netflix

Figure 1: MAE of the pure strategies

Table 1: The percentage of the ratings elicited by the Highest
Predicted strategy at different iterations

Percentage of elicited ratings (r)
Iterations r=1 r=2 r=3 r=4 r=5
1 to 5 2.06% 4.48% 16.98% 36.56% 39.90%
35 to 40 6.01% 13.04% 29.33% 34.06% 17.53%

then they slowly decrease MAE till the end of the experi-
ment (approximately iterations 36-80). The explanation of
such a behavior is that the strategies belonging to this sec-
ond group have a selection bias which can negatively affects
MAE. For instance, the highest predicted strategy at the first
iterations elicits many more high ratings compared to those
elicited later on (Table 1). As a result it ends up with adding
more high (than low) ratings to the known matrix (K), which
biases the rating prediction.

In fact, low rated movies are selected for elicitation by the
highest predicted strategy in two cases: 1) when a low rated
item is predicted to have a high rating 2) when all the high-
est predicted ratings have been already elicited or marked as
“not available” (they are not present in X and removed from
Uu). Looking into the data we discovered that at iteration 36
the highest-predicted strategy has already elicited most of the
highest ratings. Then the next ratings that are elicited are ac-
tually average or low ratings, which reduces the bias in K and
also the prediction error. The random and lowest-highest pre-
dicted strategies do not introduce such a bias, and this results
in a constant decrease of MAE.

4.2 Number of Acquired Ratings
It is important to measure how many ratings are added by the
considered strategies. In fact, certain strategies can acquire

more ratings by better guessing what items the user actually
experienced. This occurs in our simulation if a strategy asks
to the simulated user more ratings that are present in the ma-
trix X . Conversely, a strategy may not be able to acquire
many ratings but those actually acquired are very useful to
generate better recommendations.

Figure 2 shows the size of the system known ratings in
K, as the strategies elicit new ratings from the simulated
users. It is worth noting, even in this case, the strong simi-
larity of the behavior of the considered strategies in the two
data sets. The only strategy that differs substantially in the
two data sets is random. This is clearly dependent on the
larger number of users and items that are present in our sam-
ple of the Netflix data. In fact, here there are 100,000 ratings
as in the Movielens data set but the sparsity is higher: there
are only 2.8% of the possible ratings (1491*2380) vs. 6.3%
of the possible ratings (943*1682) contained in the Movie-
lens data set. This larger sparsity makes more difficult for
a pure random selection to pick up items that are known to
the user. In general this is a major limitation of any random
strategy, i.e., the very slow rate of addition of new ratings.
Hence for relatively small problems (items and users) the ran-
dom strategy may be applicable, but for larger ones this is
impractical. In fact, observing Figure 2, one can see that in
the Movielens simulations after 70 iterations, which means
70*10*943=660.100 ratings’ requests (iterations * number-
of-rating-requests * users) the system has acquired on aver-
age only 28.000 new ratings (30.000 is the new size but 2000
were already present at the beginning of the process). This
means that only one out of 23 random rating requests could be
provided by a user. In the Netflix data set this is even worse.
It is interesting to note that even the popularity strategy has a



(a) Movielens (b) Netflix

Figure 2: Number of elicited ratings

poor performance in term of number of elicited ratings; it can
elicit the first 28.000 ratings at a speed equal to one rating for
each 6.7 rating requests. We also observe that according to
our results, quite surprisingly the larger sparsity of the Net-
flix sample has produced a substantially different impact only
on the random strategy.

Figure 3 illustrates a related aspect, i.e., how much the
acquired ratings are useful for the effectiveness of the sys-
tem, i.e., how the same number of ratings, acquired by dif-
ferent strategies can reduce MAE. It is clear that in the first
stage of the process, i.e., when a small number of ratings
are present in the known set K, the random and lowest-
predicted strategies collect the more useful ratings for reduc-
ing MAE. Successively, the lowest-highest-predicted strategy
bring more useful ratings. This is an interesting result, show-
ing that the items with the lowest predicted ratings and ran-
dom items are bringing more useful information even if it
is difficult to acquire these ratings. It is also clear that cer-
tain strategies are not able to acquire all the ratings in X .
For instance lowest-highest-predicted, lowest-predicted and
highest-predicted stop acquiring new ratings when they have
collected 50.000 ratings (Movielens). This is due to the fact
that these strategies need rating predictions that in some cases
(e.g., for new users) cannot be made by the system.

4.3 NDCG
We measured NDCG on the first top 10 recommendations
with not null values in T (for each user) (Figure 4). Note that
sometime we computed NDCG on a smaller set, i.e., only on
the ratings in the user test set whose value can be actually
predicted.

Popularity is the best strategy at the beginning of the exper-
iment. But at iteration 4 (Movielens) and 15 (Netflix) the ran-

dom strategy passes the popularity strategy and then remains
the best one. Excluding the random strategy, popularity and
variance are the best in both data sets. Lowest predicted is
by far the worst, and this is quite surprising considering how
effective it is in reducing MAE. Moreover, another striking
difference from the MAE results, is that all the strategies im-
prove NDCG monotonically. Analyzing the experiment data
we discovered that lowest predicted is not effective for NDCG
because it is eliciting more ratings for the lowest ranked items
and this is useless to predict the ranking of the top items. It is
also important to note that here the random strategy is by far
the best. This is again different from the MAE behavior.

4.4 Precision
In the rest of this paper we focus on the Movielens data.
In fact, as we have already observed apropos of MAE and
NDCG, very similar results were observed for the system pre-
cision using the Netflix data, so for lack of space we omit
them.

Precision, as it was described in section 3, measures the
proportion of items rated 4 and 5 that are found in the rec-
ommendation list. Figure 5 depicts the evolution of the
system precision when the proposed strategies are applied.
Here, highest predicted is the best performing strategy for the
largest part of the test. Starting from iteration 50 it is equally
good as the binary predicted and the lowest-highest-predicted
strategies. It is also interesting to note that all the strategies
monotonically increase the precision. Moreover, the random
strategy, differently from NDCG, does not perform so well,
if compared with the highest predicted strategy. This is again
related to the fact that the random strategy increases substan-
tially the coverage and this produces a lower overall precision
because precision is significantly smaller for new users.



(a) Movielens (b) Netflix

Figure 3: MAE vs number of ratings elicited

(a) Movielens (b) Netflix

Figure 4: NDCG of the pure strategies



Figure 5: Precision of pure strategies (Movielens)

In conclusion from these experiments one can conclude
that there is no single best strategy, among those that we eval-
uated, that dominates the others for all the evaluation mea-
sures. The random strategy is the best for NDCG, whereas
for MAE and precision we would suggest using lo-high pre-
dicted, performing quite well for both measures.

5 Evaluation of the Partially Randomized
Strategies

Among the pure strategies only the random one is able to
elicit ratings for items that have not been evaluated by any
user already represented in K. Partially randomized strate-
gies address this problem by asking new users to rate random
items (see Section 2). In this section we have used partially
randomized strategies where p = 0.2, i.e., at least 2 of the 10
rating values elicited from the simulated users are chosen at
random.

Figure 6 depicts the system MAE evolution during the ex-
perimental process. Now all the curves are monotone, i.e., it
is sufficient to add some randomly selected ratings to the elic-
itation lists to reduce the bias of the pure, prediction-based,
strategies. The best performing partially randomized strate-
gies, with respect to MAE, are, at the beginning of the pro-
cess, the partially randomized binary-predicted, and subse-
quently the low-high-predicted (similarly to the pure strate-
gies case).

For lack of space, the behaviors of the system precision and
NDCG are not shown here, we just describe them. These two
measures behave similarly. The partially randomized high-
est predicted strategy has the best results for the largest part
of the test (for both measures). Interestingly, the worst strat-
egy is the lowest-predicted, i.e., it seems that for improving
the recommender precision it does not pay off to ask the user
his opinion on items that the system believes are irrelevant

(which is not the case if the goal is to improve MAE). It is im-
portant to note that the strategies that show good performance
at the beginning (partially randomized highest and binary pre-
dicted strategies) are those tuned for finding items that a user
may know and be able to provide a rating for. Therefore, they
are very effective in the beginning when there are many users
with very little items in the known dataset K.

6 Related Work
The rating elicitation problem can be considered as an active
learning problem. Active learning aims at actively acquir-
ing training data to improve the output of the recommender
system [Rubens et al., 2011]. [Rashid et al., 2002] proposes
six techniques that collaborative filtering recommender sys-
tems can use to learn about new users in the sign up process.
They considered: pure entropy, i.e., items with the largest
entropy are preferred; random selection; popularity, i.e., the
items that have the largest number of ratings; items with the
largest log(popularity) ∗ entropy, i.e., items that are both
popular and have diverse rating values; and finally in “item-
item personalized” the items are proposed randomly until one
rating is acquired, then a recommender is used to predict the
items that the user is likely to have seen.

They studied the behavior of an item-based CF only with
respect to MAE, and designed an offline experimental study
that simulates the sign up process. Each strategy was used
to select a certain number of items (30, 45, 60 and 90) for
a user without knowing if they were experienced by that
user, i.e., their ratings were present in the dataset or not.
Then MAE was measured for the user on the remaining
ratings while using the elicited ratings, and the ratings of
other training users, as training data. The process was re-
peated and averaged for all the test users. In this scenario
the log(popularity) ∗ entropy strategy is the best. How-
ever, popularity and item-item personalized strategies outper-
formed log(popularity)∗entropy with respect to the user ef-
fort. User effort was computed as a fraction of items elicited
over total number of items presented. It is worth noting that
these results are not comparable with ours as they measured
how a varying set of ratings elicited from one user are useful
in predicting the ratings of the same user. In our experiments
we simulate the simultaneous acquisition of ratings from all
the users, by asking in turn to each user 10 ratings, and repeat-
ing this process several times. This simulates the long term
usage of a recommender system where users come again and
again to get new recommendations and the rating provided
by a user is exploited to generate better recommendations to
others (system performance).

[Harpale and Yang, 2008] remarks that the Bayesian active
learning approach introduced in [Jin and Si, 2004] makes an
implicit and unrealistic assumption that a user can provide
rating for any queried item. Hence, they propose a revised
Bayesian selection approach, which does not make such an
assumption, and introduces an estimation of the probability
that a user has consumed an item in the past and is able to
provide a rating.

Their results show that the personalized Bayesian selec-
tion outperforms Bayesian selection and the random strategy



Figure 6: MAE of partially randomized strategies (Movie-
lens)

with respect to MAE. Their simulation setting is similar to
that used in [Rashid et al., 2002], hence for the same rea-
son their results are not directly comparable with ours. There
are other important differences between their experiment and
ours: their strategies elicit only one rating per request; they
compare the proposed approach only with the random strat-
egy; they do not consider the new user problem, since in their
simulations all the users have 3 ratings at the beginning of
the experiment, whereas in our experiments, there might be
users that have no ratings at all in the initial stage of the ex-
periment; they use a completely different rating prediction
algorithm (Bayesian vs. Matrix Factorization). All these dif-
ferences make the two set of experiments hard to compare.
Moreover, their simulations starts from a known ratings data
set that is larger than ours. In fact, the MAE they measured
initially on Movielens is around 0.83, whereas in our experi-
ments the MAE is almost 1.

In [Carenini et al., 2003] again a user-focussed approach is
considered. They propose a set of techniques to intelligently
select ratings when the user is particularly motivated to pro-
vide such information. They present a conversational and col-
laborative interaction model which elicits ratings so that the
benefit of doing that is clear to the user, thus increasing the
motivation to provide a rating. Item-focused techniques that
elicit ratings to improve the rating prediction for a specific
item are proposed. Popularity, entropy and their combina-
tion are tested, as well as their item focused modifications.
The item focused techniques are different from the classical
ones in that popularity and entropy are not computed on the
whole rating matrix, but only on the matrix of user’s neigh-
bors that have rated an item for which the prediction accuracy
is aimed at being improved. Results have shown that item
focused strategies are constantly better than unfocused ones.

Also in this case, their results are complementary to our find-
ings, since the elicitation process and the evaluation metrics
are different.

7 Conclusions and Future Work
In this work we have addressed the problem of selecting
items to present to the users for acquiring their ratings; that
is also defined as the ratings elicitation problem. We have
proposed and evaluated a set of ratings elicitation strate-
gies. Some of them have been proposed in a previous work
[Rashid et al., 2002] (popularity, random, variance), and
some, which we define as prediction-based strategies, are
new: binary-prediction, highest-predicted, lowest-predicted,
highest-lowest-predicted. Moreover, we have studied the be-
havior of other novel strategies, partially randomized, which
insert some random ratings in the elicitation lists computed
by the aforementioned strategies. We have evaluated these
strategies for their system-wide effectiveness implementing
a simulation loop that models the day-by-day process of rat-
ing elicitation and rating database growth. We have taken
into account the limited knowledge of the users, i.e., the fact
that the users will not know all the possible ratings. During
the simulation we have measured several metrics at different
phases of the rating database growth. The metrics include:
MAE to measure the improvements in prediction accuracy,
precision to measure the relevance of recommendations, nor-
malized discounted cumulative gain (NDCG) to measure the
quality of produced ranking and coverage to measure the pro-
portion of items over which the system can form predictions.

The evaluation has shown that different strategies can im-
prove different aspects of the recommendation quality and in
different stages of the rating database development. More-
over, we have discovered that some pure strategies may incur
in the risk of increasing the system MAE if they keep adding
only ratings with a certain value, e.g., the largest ones, as
for the highest-predicted strategy that is an approach often
adopted in real RSs. In addition, prediction-based strategies
neither address the problem of new users, nor of new items.
Popularity and variance strategies are able to select items for
new users, but can not select items that have no ratings.

Partially randomized strategies, have less problems be-
cause they add random items to rate that have no ratings at
all. In this case the lowest-highest (highest) predicted is a
good alternative if MAE (precision) is the target effectiveness
measure. These strategies simulate that some items to rate are
deliberately selected by the user, but one can also implement
this in a pure elicitation strategy because of the benefits it
produces.

This research opened a number of new problems that
would definitely deserve some more study. First of all, it
would be useful to repeat the same experiments using even
more diverse datasets to study how the data distribution influ-
ences the strategies’ behavior. In fact, we have already ob-
served that the performance of some strategies (random) de-
pends on the sparsity of the rating data. The MovieLens data
and the Netflix sample that we used, still have a considerably
low sparsity compared to other larger datasets. For example,
if the data sparsity was higher, there would be only a very low



probability for random strategy to select an item that a user
has consumed in the past and can provide a rating for. So the
partially randomized strategies may perform worse in reality
or it could be needed a different degree of randomness.

Furthermore, there remain many unexplored possibilities
for combining strategies that use different approaches de-
pending on the state of the target user. For instance, asking
users to rate popular items when a user does not have any
ratings yet and using another strategy at a latter stage. More-
over, it is important to consider the noise and inconsistency of
the data when designing strategies that search for items that
optimally combine the probability that a user has experienced
them, and thus can really provide a rating value for them, with
the usefulness of obtaining that information.
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