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Abstract

Bayesian approaches to preference elicitation (PE) are particularly attractive due
to their ability to explicitly model uncertainty in users’ latent utility functions.
However, previous approaches to Bayesian PE have ignored the important prob-
lem of generalizing from previous users to an unseen user in order to reduce the
elicitation burden on new users. In this paper, we address this deficiency by in-
troducing a Gaussian Process (GP) prior over users’ latent utility functions on the
joint space of user and item features. We learn the hyper-parameters of this GP on
a set of preferences of previous users and use it to aid in the elicitation process for
a new user. This approach provides a flexible model of a multi-user utility func-
tion, facilitates an efficient value of information (VOI) heuristic query selection
strategy, and provides a principled way to incorporate the elicitations of multiple
users back into the model. We show the effectiveness of our method in comparison
to previous work on a real dataset of user preferences over sushi types.

1 Introduction

Preference elicitation (PE) is an important component of interactive decision support systems that
aim to make optimal recommendations to users by actively querying their preferences. A crucial
requirement for PE systems is that they should be able to make optimal or near optimal recommen-
dations based only on a small number of queries. In order to achieve this, a PE system should (a)
maintain a flexible representation of the user’s utility function; (b) handle uncertainty in a principled
manner; (c) select queries that allow the system to discriminate amongst the highest utility items;
and (d) allow for the incorporation of prior knowledge from different sources.

While previous Bayesian PE approaches have addressed (a), (b) and (c), they appear to ignore an
important aspect of (d) concerning generalization from previous users to a new unseen user in order
to reduce the elicitation burden on new users. In this paper we propose a Bayesian PE approach
to address (a)–(d), including generalization to new users, in an elegant and principled way. Our
approach places a (correlated) Gaussian process (GP) prior over the latent utility functions on the
joint space of user features (T , mnemonic for tasks) and item features (X ). User preferences over
items are then seen as drawn from the comparison of these utility function values.

The main advantages of our GP-based Bayesian PE approach are as follows. First, due to the non-
parametric Bayesian nature of GPs, we have a flexible model of the user’s utility function that can
handle uncertainty and incorporate evidence straightforwardly. Second, by having a GP over the
joint T ×X space, we can integrate prior knowledge on user similarity or item similarity, or simply
have more general-purpose covariances whose parameterization can be learned from observed pref-
erences of previous users (i.e. achieving integration of multi-user information). Finally, our approach
draws from concepts in the Gaussian process optimization and decision-making literature [1, 2] to
propose a Bayesian decision-theoretic PE approach. Here the required expected value of informa-
tion computations can be derived in closed-form to facilitate the selection of informative queries and
determine the highest utility item from the available item set as quickly as possible.
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In this paper we focus on pairwise comparison queries for PE, which are known to have low cognitive
load [3, 4]. In particular, we assume a likelihood model of pairwise preferences that factorizes over
users and preferences and a GP prior over the latent utility functions correlates users and items.

2 Problem Formulation

Let x denote a specific item (or product) that is described by a set of features x and t denote a user
(mnemonic for task) that can be characterized with features t. For a set of items X = {x1, . . . , xN}
and users T = {t1, . . . , tM} we are given a set of training preference pairs:

D =
{

(t(j), x
(j)
k1
� x(j)k2 )|k = 1, . . . ,Kj ; k1, k2 ∈ {1, . . . , N}; j = 1 . . . ,M

}
, (1)

where x(j)k1 � x
(j)
k2

denotes that we have observed that user j prefers item k1 over item k2 and Kj is
the number of preference relations observed for user j.

The preference elicitation problem is that given a new user, described by a set of features t∗, we aim
to determine (or elicit) what his/her preferences (or favourite items) are by asking a small number
of queries of the form qij

def
= xi � xj , meaning that he/she will prefer item i over item j. Ideally, we

would like to obtain the best user preferences with the smallest number of possible queries.

The key idea of this paper is that of learning a Gaussian process (GP) model over users’ latent utility
functions and use this model in order to drive the elicitation process of a new user. Due to the
non-parametric Bayesian nature of the GPs, this allows us to have a powerful model of the user’s
utility function and to incorporate the evidence (i.e. the responses the user gives to our queries) in a
principled manner. Our approach directly exploits: (a) user-relatedness, i.e. that users with similar
characteristics may have similar preferences; (b) items’ similarities and (c) the value of information
of obtaining a response to a query in order to elicit the preferences of the user.

3 Likelihood Model

Our likelihood model considers that the users’ preference relationships are conditionally indepen-
dent given the latent utility functions. In other words, the probability of a user t preferring item x
over item x′ given their utility functions is:

p(xt � x′t|f(t,x), f(t,x′), ξ) = I[f(t,x)− f(t,x′) ≥ ξ] with p(ξ) = N (ξ|0, σ2), (2)

where I[·] is an indicator function that is 1 if the condition [·] is true and 0 otherwise; and σ2 is the
variance of the normally distributed variable ξ that dictates how different the latent functions should
be for the corresponding relation to hold. Hence:

p(xt � x′t|f(t,x), f(t,x′)) =

∫ ∞
−∞

I[f(t,x)− f(t,x′) ≥ ξ]N (ξ|0, σ2)dξ (3)

= Φ

(
f(t,x)− f(t,x′)

σ

)
, (4)

where Φ(·) is the Normal cumulative distribution function (cdf). The conditional data-likelihood is
then given by:

p(D|f) =

M∏
j=1

Kj∏
k=1

Φ(zjk) with zjk =
1

σ

(
f(t(j),x

(j)
k1

)− f(t(j),x
(j)
k2

)
)

. (5)

4 Modeling User Dependencies with a GP Prior

As mentioned above, we model user (and item) dependencies via the user latent utility functions,
which are assumed to be drawn from a GP prior that accounts for user similarity and item similarity
directly:

f(t,x) ∼ GP
(
0, κt(t, t′)κx(x,x′)

)
, (6)
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where κt(·, ·) is a covariance function on user-descriptors t and κx(·, ·) is a covariance function
on item features x. We will denote the parameters of these covariance functions (so-called hyper-
parameters) by θt and θx. (These types of priors have been considered previously in the regression
setting, see e.g. [5].)

Additionally, let f be the utility function values for all training users at all training input locations
(i.e. items) so that f = [f(t(1),x(1)), . . . f(t(1),x(N)), . . . , f(t(M),x(1)), . . . , f(t(M),x(N))]T and
F be the N ×M matrix for which the jth column corresponds to the latent values for the jth user
at all input points such that f = vec F. Hence:

f ∼ N (0,Σ) with Σ = Kt ⊗Kx, (7)

where Kt is the covariance between all the training users, Kx is the covariance between all the
training input locations, and ⊗ denotes the Kronecker product. Note that dependencies between
users are not arbitrarily imposed but rather they will be learned from the available data by optimizing
the marginal likelihood. (We will describe the details of hyper-parameter learning in section 7.)

5 Posterior and Predictive Distributions

Given the data in (1) and the prior over the latent utility functions in equation (6), we can obtain the
posterior distribution:

P (f |D,θ) =
p(D|f ,θ)p(f |θ)

p(D|θ)
, (8)

where we have emphasized the dependency on the hyper-parameters θ that include θt, θx and σ2

and where p(D|θ) is the marginal likelihood (or evidence) with p(D|θ) =
∫
p(D|f ,θ)p(f |θ)df .

The non-Gaussian nature of the conditional likelihood term (given in equation (5)) makes the above
integral analytically intractable and hence we will require approximations. In this paper we will fo-
cus on analytical approximations and more specifically, we will approximate the posterior p(f |D,θ),
and the evidence, using the Laplace approximation.

The Laplace method approximates the true posterior with a Gaussian: p(f |D,θ) ≈ N (f |f̂ ,A−1),
where f̂ = argmaxf p(f |D,θ) = argmaxf p(D|f ,θ)p(f |θ) and A is the Hessian of the negative
log-posterior evaluated at f̂ . Hence we consider the unnormalized expression p(D|f ,θ)p(f |θ) and,
omitting the terms that are independent of f , we focus on the maximization of the following expres-
sion:

ψ(f) =

M∑
j=1

Kj∑
k=1

log Φ(zjk)− 1

2
fTΣ−1f . (9)

Using Newton’s method we obtain the following iterative update:

f new = (W + Σ−1)−1
(
∂log p(D|f ,θ)

∂f
+ Wf

)
with Wpq = −

M∑
j=1

Kj∑
k=1

∂2log Φ(zjk)

∂fp∂fq
. (10)

Once we have found the maximum posterior f̂ by using the above iteration we can show that:

p(f |D) ≈ N (f |f̂ , (W + Σ−1)−1). (11)

5.1 Predictive Distribution

In order to set-up our elicitation framework we will also need the predictive distribution for a fixed
test user t∗ at an unseen pair x1

∗, x2
∗. This is given by:

p(f∗|D) =

∫
p(f∗|f)p(f |D)df (12)

= N (f∗|µ∗,C∗), (13)

with:

µ∗ = kT∗Σ−1f̂ and C∗ = Σ∗ − kT∗ (Σ + W−1)−1k∗, (14)
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where Σ is defined as in equation (7) and:
k∗ = kt∗ ⊗ kx∗ (15)

kt∗ =
[
κt(t∗, t

(1)), . . . κt(t∗, t
(M))

]T
(16)

kx∗ =

[
κx(x1

∗,x
(1)), . . . κx(x1

∗,x
(N))

κx(x2
∗,x

(1)), . . . κx(x2
∗,x

(N))

]T
(17)

Σ∗ =

[
κt(t∗, t∗)κ

x(x1
∗,x

1
∗) κt(t∗, t∗)κ

x(x1
∗,x

2
∗)

κt(t∗, t∗)κ
x(x2
∗,x

1
∗) κt(t∗, t∗)κ

x(x2
∗,x

2
∗)

]
. (18)

6 Gaussian Process Preference Elicitation Framework

Now we have the main components to set up our preference elicitation framework for a test user
characterized by features t∗. Our main objective is to use the previously seen data (and the corre-
sponding learned hyper-parameters) in order to drive the elicitation process and to incorporate the
information obtained from the user’s responses back into our model in a principled manner. Our
main requirement is a function that dictates the value of making a query qij . In other words, we aim
at trading-off the expected actual utility of the items involved in the query and the information these
items will provide regarding the user’s preferences. This is the exploration-exploitation dilemma,
usually seen in optimization and reinforcement learning problems. We can address this issue by
computing the expected value of information (EVOI, [2]) of making a query involving items i and
j. Before defining the EVOI, we will make use of the concept of expected improvement, a measure
that is commonly used in optimization methods based on response surfaces (see e.g. [1]).

6.1 Expected Improvement

We have seen in equation (13) that the predictive distribution for the utility function on a test user
t∗ on item x follows a Gaussian distribution:

f(t∗,x|D,θ) ∼ N (µ∗(t∗,x), s2∗(t∗,x)), (19)
where µ∗(t∗,x) and s2∗(t∗,x) can be obtained by using (the marginalized version of) equation
(14). Let us assume that, at any point during the elicitation process we have an estimate of the
utility of the best item and let us denote it by f best. If we define the predicted improvement at x as
I = f(t∗,x|D,θ)− f best then the expected improvement (EI) of recommending item x (for a fixed
user t∗) instead of recommending the best item xbest is given by:

EI(x|D) =

∫ ∞
0

Ip(I)dI = s∗(t∗,x)[z′Φ(z′) + φ(z′)], (20)

where z′ = (µ∗(t∗,x)− f best)/s∗(t∗,x), Φ(·) is the Normal cumulative distribution function (cdf)
and φ(·) is the Normal probability density function (pdf). Note that, for simplicity in the notation,
we have omitted the dependency of EI(x|D) on the user’s features t∗. Hence the maximum expected
improvement (ME) under the current observed data D is:

MEI(D) = max
x

EI(x|D). (21)

6.2 Expected Value of Information

Now we can define the expected value of information (EVOI) as the expected gain in improvement
that is obtained by adding a query involving a particular pairwise relation. Thus, the expected value
of information of obtaining the response for the queries involving items x∗i, x∗j with corresponding
utility values f∗ = (f∗(t∗,x

i
∗), f

∗(t∗,x
j
∗))

T is given by:

EVOI(D, i, j) = −MEI(D) +

〈∑
qij

p(qij |f∗,D)MEI(D ∪ qij)

〉
p(f∗|D)

(22)

= −MEI(D) +
〈
p(x∗i � x∗j |f∗,D)

〉
p(f∗|D)

MEI(D ∪ {x∗i � x∗j})

+
〈
p(x∗j � x∗i|f∗,D)

〉
p(f∗|D)

MEI(D ∪ {x∗j � x∗i}), (23)
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Algorithm 1 Gaussian Process Preference Elicitation

Require: hyper-parameters θx,θt,θσ {learned from M previous users} and corresponding D
repeat

for all candidate pairs (i, j) do
Compute EVOI(i, j,D, f̂ ,W) {equation (23)}

end for
(i∗, j∗)← argmaxi,j EVOI(i, j) {best pair}
Remove (i∗, j∗) from candidate list
if qi∗,j∗ is true then {ask user and set true preference}

(itrue, jtrue)← (i∗, j∗)
else

(itrue, jtrue)← (j∗, i∗)
end if
D ← D ∪ (tM+1, xitrue � xjtrue) {Expand D and get D+}
Update f̂ ,W {i.e. P (f |D) as in equation (10)}

until Satisfied

where〈
p(x∗i � x∗j |f∗,D)

〉
p(f∗|D)

= p(x∗i � x∗j |D) (24)

=

∫
f∗
p(x∗i � x∗j |f∗,D)p(f∗|D)df∗ (25)

=

∫
f∗

∫
ξ

I[f∗i − f∗j ≥ ξ]N (ξ|0, σ2)N (f∗|µ∗,C∗)dξdf∗ (26)

= Φ

(
µ∗i − µ∗j

Ci,i − Cj,j − 2Ci,j − σ2

)
, (27)

and µ∗ and C∗ as defined in (14). Note that in our model p(x∗j � x∗i|D) = 1− p(x∗i � x∗j |D).

As mentioned above, f best can be thought of as an estimate of the utility of the best item as its true
utility is unknown. In practice we maintain our beliefs over the utilities of the items p(f |D+) for the
training users and the test user, where D+ denotes the data extended by the set of seen relationships
on the test user (which is initially empty). Hence, we can set-up f best = maxi F̂+

i,M+1, where F̂+

is the matrix containing the mean estimates of the latent utility function distribution given by the
Laplace approximation in equation (9). Alternatively, we can draw samples from such a distribution
and apply the max operator.

In order to elicit preferences on a new user we simply select a query so that it maximizes the expected
value of information EVOI as defined in equation (23). A summary of our approach is presented
in algorithm 1. We note that although, in principle, one could also update the hyper-parameters
based on the data provided by the new user, we avoid this in order to keep computations manageable
at query time. The reasoning being that, implicitly, we have learned the utility functions over all
users and we represent the utility of the test user (explicitly) on demand, updating our beliefs to
incorporate the information provided by the user’s responses.

7 Hyper-parameter Learning

Throughout this paper we have assumed that we have learned a Gaussian process model for the
utility functions over users and items based upon previously seen preference relations. We refer to
the hyper-parameters of our model as the hyper-parameters θt and θx of the covariance functions
(κt and κx respectively) and θσ = log σ, where σ2 is the “noise” variance.

Although it is entirely possible to use prior knowledge on what these covariance functions are (or
their corresponding parameter settings) for the specific problem under consideration, in many prac-
tical applications such prior knowledge is not available and one requires to tune such parameteriza-
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tion based upon the available data. Fortunately, as in the standard GP regression framework, we can
achieve this in a principled way through maximization of the marginal likelihood (or evidence).

As in the case of the posterior distribution, the marginal likelihood is analytically intractable and
approximations are needed. The Laplace approximation to the marginal log-likelihood is given by:

log p(D|θ) ≈ −1

2
log|ΣW + I| − 1

2
f̂TΣ−1f̂ +

M∑
j=1

Kj∑
k=1

log Φ(ẑjk) (28)

where ẑjk = zjk|f̂ , f̂ and W are defined as in (10) and Σ is defined as in equation (7). Note that
computations are not carried out at all the M × N data-points but only at those locations that
“support” the seen relations and hence we should write e.g. f̂o, Σo where the subindex {}o indicates
this fact. However, for simplicity, we have omitted this notation.

Given the equation above, gradient-based optimization can be used for learning the hyper-parameters
in our model. As we shall see in the following section, for our experiments we do not have much
prior information on suitable hyper-parameter settings and therefore we have carried out hyper-
parameter learning by maximization of the marginal log-likelihood.

8 Experiments & Results

In this section we describe the dataset used in our experiments, the evaluation setting and the results
obtained with our model and other baseline methods.

8.1 The Sushi Dataset

We evaluate our approach on the Sushi dataset [6]. Here we present a brief description of this dataset
and the pre-processing we have carried out in order to apply our method. The reader is referred to [6]
for more details. The Sushi dataset contains full rankings given by 5000 Japanese users overN = 10
different types of sushi. Each sushi is associated with a set of features which include style, major
group, minor group, heaviness, consumption frequency, normalized price and sell frequency. The
first three features are categorical and therefore we have created the corresponding dummy variables
to be used by our method. The resulting features are then represented by a 15-dimensional vector
(x). Each user is also represented by a set of features wich include gender, age and other features
that compile geographical/regional information. As with the item features, we have created dummy
variables for those categorical features, which resulted into a 85-dimensional feature vector (t) for
each user. As pointed out in the documentation of the dataset, Japanese food preferences are strongly
correlated with geographical and regional information. Therefore, modeling user similarities may
provide useful information during the elicitation process.

8.2 Evaluation Methodology and Experimental Details

We evaluate our method via 10-fold cross-validation, where we have sub-sampled the training folds
in order to (a) keep the computational burden as low as possible and (b) show that we can learn
sensible parameterizations based upon relatively low requirements in terms of the preferences seen
on previous users. In particular, we have subsampled 50 training users and selected about 5 training
pairwise preferences drawn from each of the N = 10 available items.

For the GPs we have used the squared exponential (SE) covariance functions with automatic rele-
vance determination (ARD) for both κt and κx and have carried out hyperparameter learning via
gradient-based optimization of the marginal likelihood in equation (28). We have initialized the
hyper-parameters of the models deterministically, setting the signal variance and the length-scales
of the covariance function to the initial values of 1 and the σ2 parameter to 0.01.

In order to measure the quality of our preference elicitation approach we use the normalized
loss as a function of the number of queries, where at each iteration the method provides a rec-
ommendation based on the available information. The normalized loss function is defined as:
(ubest − upred)/ubest, where ubest is the best utility for a specific item/user and upred is the utility
achieved by the recommendation provided by the system.
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Figure 1: The Normalized average loss as a function of the number of queries with 2 standard
(errors of the mean) error bars. (a) The performance of our model compared to the RVOI method
described in [7] and the B&L heuristic over the full set of 5000 test users. (b) The performance of our
model when the hyper-parameters have been optimized via maximization of the marginal likelihood
(GPPE-OPT) compared to the same GP elicitation framework when these hyper-parameters have
been set to their default values (GPPE-PRIOR).

We compare our approach to two baseline methods. One is the restricted value of information al-
gorithm [7] and the other one is the best and largest heuristic, which we wil refer to as the RVOI
method and the B&L heuristic respectively. The RVOI approach is also a VOI-based method but it
does not leverage information from other users and it considers diagonal Gaussians as prior models
of the latent utility functions. The B&L heuristic selects the current best item and the one with the
largest uncertainty. Both baselines have been shown to be competitive methods for preference elic-
itation (see [7] for more details). Additionally, we compare our method when the hyper-parameters
have been learned on the set of previously seen users with the same GP elicitation approach when
the hyper-parameters have been set to the initial values described above. This allows us to show that,
indeed, when prior information on user and item similarity is not available, our model does learn
sensible settings of the hyper-parameters, which lead to better quality elicitation outcomes.

8.3 Results

Figure 1(a) shows the normalized average loss across all 5000 users as a function of the number
of queries. As can be seen, on average, all competing methods reduce the expected loss as the
number of queries increases. More importantly, our method (GPPE) clearly outperforms the other
algorithms even for a small number of queries. This demonstrates that our approach exploits the
inter-relations between users and items effectively in order to enhance the elicitation process on a
new user. Although it may be surprising that the B&L heuristic outperforms the RVOI method, we
point out that the evaluation of these methods presented in [7] did not consider real datasets as we
do in our experiments.

Figure 1(b) shows the normalized average loss across all 5000 users for our method when the hyper-
parameters have been set to the initial values described in section 8 (labeled in the figure as GPPE-
PRIOR) and when the hyper-parameters have been optimized by maximization of the marginal like-
lihood on a set of previously seen users (labeled in the figure as GPPE-OPT). We can see that,
indeed, the GPPE model that learns the hyper-parameters from previous users’ data significantly
outperforms the same method when these (hyper-)parameters are not optimized.

9 Related Work

Preference elicitation (PE) is an important component of recommender systems and market research.
Traditional PE frameworks focus on modeling and eliciting a single user’s preferences. We can
categorize different PE frameworks in terms of query types. In [8], the authors propose to model
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utilities as random variables, and refines utility uncertainty by using standard gamble queries. The
same query type is also used in [9], which differs from [8] in treating PE as a Partially Observable
Markov Decision Process (POMDP). However, standard gamble queries are difficult for users to
respond to, and naturally lead to noisy responses. Simpler query types have also been used for PE.
For example, [7] uses pairwise comparison queries, which are believed to have low cognitive load.
Our work also adopts simple pairwise comparison queries, but it differs from [7] in that it makes use
of users’ preferences that have been seen before and does not assume additive independent utilities.

In the machine learning community preference learning has received substantial interest over the past
few years. For example, one the most recent approaches to preference learning is presented in [10],
where a multi-task learning approach to the problem of modeling human preferences is adopted
by extending the model in [11] to deal with preference data. Their model follows a hierarchical
approach based on finite Gaussian processes (GPs), where inter-user similarities are exploited by
assuming that the subjects share a set of hyper-parameters. Their model is different to ours in
that they consider the dual representation of the GPs as they do not generalize over user features.
Furthermore, they do not address the elicitation problem, which is the main concern of this paper.

Extensions of the Gaussian process formalism to model ordinal data and user preferences are given
in [12] and [13]. Both their prior and their likelihood models can be seen as single-user (task)
specifications of our model. In other words, unlike the work of [10], their model (as ours) considers
the function space view of the GPs but, unlike [10] and our approach, they do not address the
multi-task case or generalize across users. More importantly, an elicitation framework for actively
querying the user is not presented in such works.

[14] proposes an active preference learning method for discrete choice data. Their approach is based
on the model in [13]. Unlike our approach they do not leverage information from seen preferences on
previous users and hence their active preference learning process on a new user starts from scratch.
This leads to the problem of either relying on good prior information on the covariance function
or on hyper-parameter updating during the active learning process, which is computationally too
expensive to be used in practice. Additionally, as their concern is on a possibly infinite set of
discrete choices, their approach completely relies upon the expected improvement (EI) measure.

10 Conclusions & Future Work

In this paper we have presented a Gaussian process approach to the problem of preference elicitation.
One of the crucial characteristics of our method is that it exploits user-similarity via a (correlated)
Gaussian process prior over the users’ latent utility functions. These similarities are “learned” from
preferences on previous users. Our method maintains a flexible representation of the user’s latent
utility function, handles uncertainty in a principled manner and allows the incorporation of prior
knowledge from different sources. The required expected value of information computations can be
derived in closed-form to facilitate the selection of informative queries and determine the highest
utility item from the available item set as quickly as possible.

We have shown the benefits of our method on a real dataset of 5000 users with preferences over
10 sushi types. In future work we aim at investigating other elicitation problems such as those
involving a Likert scale [15] where our approach may be effective. The main practical constraint
is that in order to carry out the evaluation (but not the application) of our method on real data we
require the full set of preferences of the users over a set of items.

Our main motivation for the Laplace method is its computational efficiency. However, [10] has
shown that this method is a good approximation to the posterior in the context of the prefer-
ence learning problem. We intend to investigate other approximation methods to the posterior and
marginal likelihood and their joint application with sparse approximation methods within our frame-
work (see e.g. [16]), which will be required if the number of training users is large.
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