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Abstract

One of the practical obstacles of learning to rank from pairwise preference la-
bels is in its (apparent) quadric sample complexity. Some heuristics have been
tested for overriding this obstacle. In this workshop we will present new provable
method for reducing this sample-complexity, almost reaching the informational
lower bound, while suffering only negligible sacrifice of optimality. Our main
results: (1) We define a novel structural property of function spaces endowed
with a metric loss function that allows searching at an exponential rate. (2) We
demonstrate that this structural property applies to the search space arising in the
problem of learning to rank from pairwise preferences. As a result, we show that
O(npoly(log n, ε−1)) adaptively sampled preferences suffice in order to obtain
a ranking of ε · OPT regret, where OPT is loss of the optimal ranking. This is
near-optimal in terms of information theory. (3) We show how our algorithm can
be used to construct a query-efficient version of the famous SVM-rank relaxation,
when the set of points are endowed with feature vectors and we are searching in
the restricted space of linear permutations. (4) For feature spaces with a fixed di-
mension, we show an additional slight improvement in the query complexity using
advanced tools from computational geometry.

1 Introduction

Ranking items according to their comparison in pairs dates back to the classical work of Thurstone
[12]. We focus on the combinatorial aspect of this problem, studying learning to rank with pairwise
preferences, a close relative of Minimum Feedback Arc-Set in Tournaments (MFAST) from the world
of combinatorial optimization.

In MFAST, the goal is to find a full linear order of V given all quadratically many pairwise compar-
isons of elements. It turns that MFAST is NP-hard [4], though Kenyon-Mathieu and Schudy [10]
show a PTAS for this problem.

From a learning theoretical point of view, the need to acquire quadratically many pairwise prefer-
ences is unacceptable even for moderately large sets V which arise in applications. On the other
hand, very simple examples demonstrate that uniform subsampling of pairs works poorly. In this
work we investigate an active sampling method instead.

Very recently Ailon [1] has shown a query efficient version of Kenyon-Mathieu and Schudy’s work,
with comparable (though slightly worse) bounds compared to our work, which will be presented
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in the workshop. His algorithm is limited in the following significant way: It cannot be used for
searching in restricted hypothesis spaces. This is a significant drawback, because practitioners of-
ten wish to rank data using a restricted set of permutations, e.g., those induced by the space of
linear score functions applied to an embedding of the set V in some real vector (feature) space.

Our proposed method is not only amenable to this practical setting, but it also lends itself to yet
an additional improvement in query complexity using powerful techniques known as ε-relative ap-
proximations [11, 7]. Other important recent work on approximating the minimum feedback arc-set
problem, much of which inspired this work (yet none comparable with it) can be found., e.g., in
[2, 5, 6].

Our results are implied by a general active learning algorithm, which is interesting in its own right
and may find other applications. A working version of this work can be found in [3].

2 A Powerful Structural Property: Query Efficient ε-Smooth
Approximations of Relative Regret Functions

Consider the following general setting. We are given a finite space X endowed with a measure
µ.1 Let F denote some class of functions from X to R, and h : X → R some function not
necessarily in F . Let d(f, g) be a pseudo-metric over pairs of functions f, g ∈ F ∪ {h}, defined as
d(f, g) =

∫
X L(f(x), g(x))dµ, where L is a pseodometric on reals. For each f ∈ F we say that

d(f, h) is the cost of f . We seek a function f∗ = argminf∈F d(f, h).

We are interested in the particular case where h is unknown, but we have access to an h-oracle
returning a value h(x) of a chosen x ∈ X per unit cost. The ε-query complexity of the problem is
defined as the number of queries (h-oracle calls) required in order to find a function f ∈ F satisfying
d(f, h) ≤ (1 + ε)d(f∗, h).

Definition 2.1. Let f be an arbitrary function in F . Define the f -relative regret function ∆f : F 7→
R as:

∆f (g) = d(g, h)− d(f, h) .

For a nonnegative parameter ε < 1 we say that a function ∆̂f : F 7→ R is an ε-smooth approxima-
tion of ∆f if for all g ∈ F ,

|∆̂f (g)−∆f (g)| ≤ εd(f, g). (2.1)

This definition suggests the iterative search over F , depicted in Algorithm 2.1. It finds a function
f̂ ∈ F satisfying d(f̂ , h) ≤

(
1 +O(ε)

)
d(f∗, h), as long as we can optimize over ε-smooth approx-

imations of f -relative regret functions ∆f . The choice of the number of iterations k can be derived
from Theorem 2.2 below, showing that the excess cost above a (1 + O(ε))d(f∗, h) target decays
exponentially.

Algorithm 2.1 Finding an
(
1 +O(ε)

)
-competitive estimation

Input: an initial solution f̂0 ∈ F , an estimation parameter ε ∈ (0, 1/5), and number of iterations k
i← 0
repeat
f̂i+1 ← argming∈F , ∆̂f̂i

(g), where ∆̂f̂i
(g) is an ε-smooth approximation of ∆f̂i

i← i+ 1
until i equals k
return f̂k

Theorem 2.2. Let ε ∈ (0, 1/2). Let OPT denote minf∈F d(f, h), and f̂0 be an arbitrary function.
Then the following holds for f̂i obtained in Algorithm 2.1 for any 1 ≤ i ≤ k:

d(f̂i, h) ≤ (1 +O(ε))OPT +O(εi)d(f̂0, h). (2.2)

1We will either consider a probability measure or a counting measure in what follows.
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The goal is now to construct an ε-smooth approximation ∆̂f̂ of a relative regret function ∆f̂ for a

given f̂ using few queries into h. In the next section, we show how this can be done for the problem
of ranking from preferences.

3 ε-Smooth Approximations for Ranking

We consider the following problem of ranking from preference labels. We are given a ground set V
of size n. The spaceX consists of all pairs (u, v) ∈ V ×V . The spaceF consists of permutations on
V , viewed as functions from X to {0, 1} satisfying pairwise consistency π((u, v)) = 1− π((v, u))
and transitivity: π((u,w)) ≤ π((u, v)) + π((v, w)). The unknown input function h is assumed to
be pairwise consistent, but not necessarily transitive.2 The pseudometric d is defined as d(π, σ) =
1
2

∑
u,v∈V 1π((u,v)) 6=σ((u,v)). If π, σ ∈ F then this is known as the Kendall-τ metric. Minimizing

d(·, h) overF given h in its entirety is known as the NP-Hard problem of minimum feedback arc-set
in tournaments in combinatorial optimization.

Consider the following idea for creating an ε-smooth approximation of the relative regret function
∆π , for a fixed π ∈ F . Start by creating a random sample S ⊆ X of O(npoly(log n, ε−1)) pairs
of elements in V . The sample should not be selected uniformly. Instead, we use π to create a bias.
For each pair of distinct elements u, v, we will independently include (u, v) in S with probability
pπ(u, v) := min{1,poly(log n, ε−1)/δπ(u, v)}, where δπ(u, v) is the distance between the location
of u and v in the ordering induced by π. For example, if u is adjacent to v then δπ(u, v) = 1, and if
u and v are first and last (respectively), then δπ(u, v) = n− 1.3

For distinct u, v ∈ V and a permutation σ, let Cu,v(σ) denote the contribution of the pair u, v to
d(σ, h), namely: Cu,v(σ) := 1σ(u,v)6=h(u,v). (Note that clearlyCu,v ≡ Cv,u.) Our estimator ∆̂π(σ)
can be finally defined as follows:

∆̂π(σ) =
1

2

∑
u,v∈V

pπ(u, v)
−1(

Cu,v(σ)− Cu,v(π)
)
. (3.1)

Theorem 3.1. For any permutation π ∈ Π the function ∆̂π : F → R defined in (3.1) is, with
high probability (at least 1 − nα for some α > 0) an ε-smooth approximation of the relative
regret function ∆π . Additionally, the number of h-queries required in order to construct ∆̂π is
O(n poly(log n, ε−1)) with high probability.

Using our construction (3.1) and Algorithm 2.1 and the fact that d(·, ·) is both integer and bounded
by n2, we conclude from Theorem 2.2:
Corollary 3.2. There exists an active learning algorithm for the problem of minimizing d(·, h) over
the set F of permutations to within an (1 + O(ε)) approximation with a total query complexity of
O(n poly(log n, ε−1)), achieved by executing O(log n) iterations of Algorithm 2.1.

4 Convex relaxations

Instead of optimizing d(f, h) over f ∈ X , assume we are interested in optimizing d̃(f, h), where

d̃(f, h) =

∫
X
L̃(f(x), h(x))dµ

and L̃ is such that for all a, b:
L(a, b) ≤ L̃(a, b) . (4.1)

Slightly abusing notation, we redefine for all f ∈ F the relative regret function ∆f : F → R to be

∆f (g) = d̃(g, h)− d̃(f, h) .

Consider again Algorithm 2.1 with respect to this definition of ∆f . Theorem 2.2 is now replaced
with the following:

2Note that now, greek letters eg π, σ denote functions in F , and not f, g... as before.
3We omit the exact polynomial poly(logn, ε−1) from this workshop abstract for simplicity.
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Theorem 4.1. Assume Equation (2.1) holds for some ε ∈ (0, 1/2). Let OPT denote the minimal
possible cost d̃(f, h) over f ∈ F . Then the following holds for the estimation f̂i computed in the
i’th iteration of Algorithm 2.1, for 1 ≤ i ≤ k:

d̃(f̂i, h) ≤ (1 +O(ε))OPT +O(εi)L̃(f̂0, h) . (4.2)

4.1 The SVM hinge-loss convex relaxation

The following is a typical setting in learning to rank applciations [see, e.g., 8, 9], which serves as
an example for the usefulness of the construction in the previous discussion. Consider the ranking
problem in Section 3 where now each point u ∈ V is endowed with a (feature) vector u ∈ Rd.

The set of feasible solutions will now be the subset of permutations induced by linear functionals.
Each possible vector w ∈ Rd defines a corresponding permutation πw over V by

u ≺πw v ⇐⇒ fw(u,v) , 〈w,v − u〉 ≤ 0 .

Intuitively, u “beats” v if its utility 〈w,u〉 is higher than the utility 〈w,u〉 of v. The goal is to fit a
utility function to the (noisy) information h.

Our search space F will now be {fw ∈ Rd : ‖w‖2 ≤ Creg} for some constant Creg > 0.4 The
function L(x, y) is taken to be

L(x, y) =
1

2
1sgn(x)6=sgn(y) .

The metric d over F becomes exactly the Kendall-τ distance applied to the corresponding two
permutations induced by its arguments.

The relaxed function L̃ is taken to be L̃(x, y) = max{0, 1− xy}, known as the hinge loss function.
It is not hard to see that with these definitions, (4.1) holds. Theorem 4.1 is now applicable.

Finally, it can be easily shown that a sampling scheme similar to the one presented in Sec-
tion 3 ensures that we can compute an ε-smooth approximation of ∆fw for any fw ∈ F using
O(n poly(log n, ε−1)) h-queries. The net result is as follows: The problem of minimizing d(·, h)
over F is a certain regularized SVM, and in fact, the well known rank-SVM. Minimizing the ε-
smooth approximation ∆̂fw(·) that we construct is, equivalently, a subsampled SVM, and as such,
can be solved in polynomial time. Algorithm 2.1 converges to a (1 + O(ε))-approximate solu-
tion to rank-SVM, where in each iteration we solve a subsampled SVM. The convergence rate is
exponentially fast.

5 ε-Smooth Approximations for Ranking: The Fixed Dimensional
Geometric Version

If time permits, we will show how to slightly strengthen the main result Theorem 3.1 of Section 3 in
the case of permutations induced by linear functions (as considered in Section 4.1), when the feature
space dimension d is considered to be constant. This requires an interesting application of a notion
of ε-relative approximations in bounded VC dimension spaces [7, 11].
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