
A GP classification approach to preference learning

Ferenc Huszár
Computational and Biological Learning Lab

Department of Engineering, University of Cambridge
Cambridge, CB2 1PZ

1 Introduction

In this abstract I present the problem of learning from pairwise preference judgements as a special
case of binary classification. I discuss why kernel classifiers using traditional kernels based on the
distance between items cannot be used to address the problem effectively: the preference prediction
problem has inherent symmetry properties that these kernels cannot model. I will review a hierarchi-
cal Bayesian model for preference learning that by construction respects these symmetry properties
and show its equivalence to probit Gaussian process (GP) classification. Motivated by this model
I define the preference judgement kernel and show that it is capable of modelling the symmetry of
preference judgement.

The resulting reproducing kernel can be used in conjunction with any standard kernel-based method
for classification, notably state-of-the-art large-scale classifiers, or active learning methods. Thus,
the main contribution of this work is that a wide range of advanced methods developed for kernel-
based classification can now be applied to preference learning practically without changing anything
but the kernel. The present work also highlights how hierarchical generative models involving Gaus-
sian process priors can be used to construct meaningful combinations of kernels for non-standard
learning problems. Using the same principles it is possible to construct similarly meaningful kernels
for more convoluted problems such as multi-user preference learning or multi-task classification.

2 Pairwise preference learning as binary classification

In this paper we consider the problem pairwise preference learning, whereby the dataset consists
of pairs of items (uk, vk) ∈ X 2 with associated binary labels yk ∈ {0, 1}; yk = 1 means uk is
preferred to vk, yk = 0 means vk is preferred to uk. I will use the notation u � v to denote that u
is preferred to v. Our task is to learn, from this set of examples, to predict the order of preference
between any pair of items (u, v) ∈ X 2. There are several approaches to preference learning, but at
the end of the day, pairwise preference learning is just an instance of binary classification: for each
pair of items (u, v) one the algorithm has to provide a binary label, i. e. our aim is to train a classifier
h : X 2 7→ {0, 1}, or in probabilistic terms to estimate the conditional probability P[y = 1|(u, v)].

Thus, if we are facing a classification problem, why not try applying a state-of-the art kernel-
based classification method, such as a support vector machine (SVM) or Gaussian process classifier
(GPC)? Although this is possible, we should be extremely careful for the following reason: tradi-
tional kernels, that are based on a distance metric between inputs fail to model a crucial and central
symmetry of the preference problem: saying that u is preferred to v is really the same thing as saying
that v is not preferred to u. Therefore if (u, v) is labelled as 1 in the dataset, we know that (v, u)
should be labelled as 0. Therefore any sensible kernel for this problem would say that (u, v) and
(v, u) are maximally dissimilar, no matter what u and v. However, kernels like the popular squared
exponential cannot do this, since (u, v) and (v, u) can be arbitrarily far from each other in terms of
Euclidean (or other) distance. Therefore, while these kernels of this kind can be used in the context
of preference learning, they would be highly ineffective in capturing relevant information from data
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and might produce inconsistent preference judgements. The main focus of this paper is then to find
meaningful kernels for classification that respect the symmetry properties of preference learning.

To tackle the same problem, the Bayesian learning community has defined hierarchical generative
models for preference judgements that by construction respect the degeneracies and symmetries
of the problem. In this paper we will focus on the GP-based model presented by [1]. We show
that this hierarchical graphical model in equivalent to ordinary GPC with a particularly choice of
kernel. This kernel and the corresponding RKHS respects the symmetries of the preference learning
problem, thereby providing better generalisation performance than arbitrarily chosen kernels.

The resulting RKHS can be used in conjunction with Gaussian process classifiers as well as other
state of the art kernel methods. Most importantly, using the kernel with already existing efficient
large-scale classifiers allows us to solve very large scale preference learning problems, that was
impossible with state of the art methods.

3 A Gaussian processes-based model of preference learning

I start by briefly reviewing the Gaussian process-based preference learning framework proposed in
[1]. The framework assumes the existence of a preference function f over possible items. In a first
order approximation we require that, whenever a preference judgement between items u and v is
made, u should be preferred if f(u) > f(v). This, however, assumes that the dataset constitutes
a proper partially ordered set, which is indeed in conflict with most real-world datasets. Hence the
need for a more flexible, probabilistic model, that requires that u is more likely to be preferred,
if f(u) > f(v). This is achieved in the generative model by assuming that the evaluation of the
evaluated preference values f(u) and f(v) is corrupted by random noise every time a judgement is
made. The probability of preference can then be written as

P[y = 1|(uk, vk), f ] = P[uk � vk|f ] = P(f(uk) + δuk
> f(vk) + δvk) = φ

(
f(uk)− f(vk)√

2σδ

)
(1)

In the above expression, δuk
and δvk denotes the evaluation noise, that are assumed to be independent

Gaussian distributed variables with mean 0 and standard deviation σδ . For later convenience and
without loss of generality, we will assume that

√
2σδ = 1. The model is complete with a Gaussian

process prior over the latent preference function f :
f ∼ GP (µ, k) (2)

In the original papers this likelihood model is used in an approximate inference scheme to infer a
posterior over the latent preference function f . Note that the likelihood only depends between the
difference between f(u) and f(v), g (u, v) := f(u) − f(v). From now on, this function of item-
pairs g : X 2 7→ R will be the main focus of our interest, and we will re-parametrise the inference
problem in terms of g. Observe that the likelihood in terms of g is very simple, and in fact equivalent
to the probit classification likelihood:

P[y = 1|(uk, vk), f ] = φ (f(uk)− f(vk)) = φ (g(uk, vk)) = P[y = 1|(uk, vk), g] (3)

Note also that, because g is obtained from f via a linear operation, the Gaussian process prior over
f induces a Gaussian process prior over g. The mean µpref , and covariance function kpref of this
GP g can be computed from the mean and covariance of f as follows:

kpref ((ui, vi), (uj , vj)) = Cov[g(ui, vi), g(uj , vj)]

= Cov [(f(ui)− f(vi)) , (f(ui)− f(vi))]

= E [(f(ui)− f(vi)) · (f(ui)− f(vi))]− (µ(ui)− µ(vi)) (µ(vj)− µ(ui))

= k(ui, uj) + k(vi, vj)− k(ui, vj)− k(vi, uj)

and
µpref (u, v) = E [g([u, v])] = E [f(u)− f(v)]

= µ(u)− µ(v) (4)
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We will call kpref the preference judgement covariance, or preference judgement kernel. We can
conclude that this model of predicting preferences between items in X is equivalent to binary GP
classification of items in X 2 with the preference judgement covariance function as follows:

g ∼ GP (µpref , kpref ) (5)
p(y = 1|(uk, vk), g) = Φ(g(uk, vk)) (6)

Figure 1 illustrates the difference between the original approach where the quantity of central interest
was f and our approach where the quantity of interest is g.

4 The preference judgement kernel

It can be shown that the preference judgement kernel, kpref is positive semi-definite. We can also
see how kpref respects the symmetry properties of preference learning, by computing the prior
correlation between g(u, v) and g(v, u) as follows:

Corr(g(u, v), g(v, u)) =
kpref ((u, v), (v, u))√

kpref ((u, v), (u, v))
√
kpref ((v, u), (v, u))

=
k(u, v) + k(v, u)− k(u, u)− k(v, v)√

k(u, u) + k(v, v)− k(u, v)− k(v, u)
√
k(v, v) + k(u, u)− k(v, u)− k(u, v)

= −1

That is, the value at (u, v) is perfectly anti-correlated with the value at (v, u) under the prior. From
this fact it can be shown that all element f of the RKHS corresponding to kpref has the property that
f Figure 2 shows samples drawn from a GP prior with the preference learning covariance function.
The anti-correlation properties are clearly visible in all of these examples.

5 Extensions

Casting preference learning as a special case of GP classification allows us to adopt several ex-
tensions developed for standard GP classification. These include multi-task learning for learning
preferences of multiple users, active learning, and sparse approximations to speed up inference on
large-scale problems.

6 Experiments

Experiments involving simulated and real-world datasets with various kernel classifiers will be pre-
sented at the workshop and in the final paper. Preliminary experiments on the datasets presented in
[1] show that expectation propagation for GP classification with the preference kernel outperforms
the original inference procedure suggested in [1]. These and other extensions will be discussed in
the final paper.

7 Implementation

Reference implementations of the preference judgement kernel/covariance function will be provided
for the GPML and LIBSVM toolboxes.
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Figure 1: Generative model underlying the preference learning framework. Left: the original ap-
proach considers the latent preference function f as latent parameter, and the rest of the graphical
model as a complex, structured likelihood. Right: Our approach re-parametrises the problem in
terms of g, and thus works with a simpler likelihood but with a more structured prior. The prior
takes the form of a Gaussian process prior with the preference judgement covariance function.

Figure 2: First row: Samples drawn from a GP prior with the preference judgement covariance
function. The x axis is u, the y axis is v. Brighter colour corresponds to stronger preference for v
(note this is the other way round than in the text, I’ll change this figure to be in par with the text). The
original covariance parameter was a squared exponential with lengthscale decreasing from left to
right. Second row: f can be reconstructed up to an additive constant from the sampled g as follows:
choose an arbitrary v and let f̃(u) = g(u, v). Third row: predictive probabilities P[y = 1|(u, v), g]
corresponding to the sampled functions in the first row (the function is g squashed through the error
function Φ). Observe the symmetry properties of the functions: the value at (u, v) is always exactly
anti-correlated with the value at (v, u).
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