
Preference-based Reinforcement Learning

Riad Akrour Marc Schoenauer Michèle Sebag

TAO
CNRS − INRIA − Université Paris-Sud

FirstName.Name@inria.fr

Abstract

This paper investigates the problem of policy search based on the only expert’s
preferences. Whereas reinforcement learning classically relies on a reward func-
tion, or exploits the expert’s demonstrations, preference-based policy learning
(PPL) iteratively builds and optimizes a policy return estimate as follows: The
learning agent demonstrates a few policies, is informed of the expert’s preferences
about the demonstrated policies, constructs a utility function compatible with all
expert preferences, uses it in a self-training phase, and demonstrates in the next
iteration the policy maximizing the current utility function.
PPL actually tackles an expensive optimization problem, as each policy assess-
ment relies on the expert’s feedback. The expert’s preference model is used as a
surrogate model of the true objective function. Compared to earlier work devoted
to active preference learning (see e.g. Brochu et al., 2008), a main lesson is that
the surrogate model must preferably be learned on the state × action space, as
opposed to, on the policy parametric space. Empirical evidence from the cancer
treatment policy domain is provided to support and discuss this claim.

1 Introduction

Since the early 2000s, significant advances in reinforcement learning have been obtained through
using direct expert’s input (inverse reinforcement learning [18], learning by imitation [8], learning
by demonstration [16]), assuming the expert’s ability to demonstrate quasi-optimal behaviors, and
to provide an informed representation.

In 2011, two approaches based on preference learning have been proposed to learn directly a
ranking-based policy [9] or a policy return estimate [2]. In the latter case, referred to as preference-
based policy learning (PPL), the agent demonstrates a few policies, receives the expert’s preferences
about the demonstrated policies, constructs a utility function compatible with all expert preferences,
uses it in a self-training phase, and demonstrates in the next iteration the policy maximizing the
current utility function. The main merit of the PPL approach is twofold. Firstly, it sidesteps the
design of the reward function at the state-action level [20]; as noted by [9], this design is critical
when qualitative outcomes are considered, e.g. in the cancer treatment domain. Secondly, as op-
posed to inverse reinforcement learning [1, 15] PPL does not require the expert to demonstrate a
quasi-optimal behavior; it does not even assume that the expert knows how to solve the task (see
also [21]); the expert is only required to know whether some behavior is more able to reach the goal
than some other one.

PPL relies on preference learning to build the policy return estimate, an intermediate utility function
used to keep the expert’s burden within reasonable limits. This utility function can be thought of
as a surrogate model, supporting expensive function optimization [6]. As shown by e.g. [7], active
preference learning can indeed be used for interactive optimization.

1

The first contribution of the paper concerns the space used to learn this preference-based surrogate
model. The default option is to use the input space a.k.a. direct representation, here the policy
parametric space. Another option, exploiting the RL specificities and referred to as feature space
or indirect representation, has also been considered. Within the latter option, the surrogate model
is a weighted sum of the overall time spent in a state-action pair (i.e. the average time the policy
executes a given action in a given state). The rationale for this is the following. On the one hand,
this indirect representation complies with the standard RL setting under a finite time horizon, where
the policy return is defined as the cumulative reward expectation in a Markov Decision Process.
On the other hand, this representation is not restricted to the MDP setting, as will be shown on the
cancer treatment problem [9]. Lastly, it will be shown experimentally that the indirect representation
is significantly more effective than the direct one, again on the example of the cancer treatment
problem.

A second contribution regards the trade-off between exploration and exploitation, visiting new state-
action pairs and exploiting the current utility function. Related approaches concerned with active
optimization [14, 7, 17] proceed by generating points in the input space which maximize the ex-
pected global improvement. These approaches however do not apply when considering an indirect
representation; an adaptive trade-off between the current utility function and an exploration term
linked to the empirical success rate is used.

The paper is organized as follows. Section 2 gives an overview of PPL. Section 3 reports on the
empirical validation of the approach on a cancer treatment problem. Section 4 discusses Preference-
based Policy Learning strengths and weaknesses and presents perspectives for further research.

2 Preference-based policy learning: Overview

Let S andA respectively denote the state and the action space. A policy π is a mapping from S onto
A.

For the sake of simplicity only the finite time horizon H will be considered, where H is the number
of time steps during which each candidate policy is demonstrated, although the extension to the
infinite discounted case is straightforward. A parameterized policy representation, characterizing
policy π from its parameter θ ∈ Θ ⊆ IRD and referred to as direct representation will be considered.
An indirect representation will also be considered, mapping policy π onto some feature space, where
µ(π) describes the state-action frequency under π; in the discrete case,

µ(π) ∈ (S ×A 7→ [0, 1]) µ(π)(s, a) = IEat∼π(st),st+1∼Pst,at

[
1

H

H−1∑
t=0

1s,a(st, at)

]
where the expectation is taken under the probability distribution Pst,at over S when taking action
at in state st after π(st). The utility function Jt learned at iteration t is sought as a linear function
in the feature space (see below).

After initialization of the policy and constraint archives, respectively denoted Π and C, PPL proceeds
by iterating a 3-step process1 ; at step t,

1. A new policy πt is demonstrated by the agent; it is added to the archive and ranked by the
expert w.r.t. the other policies in the archive, enriching the set of ordering constraints C;

2. The utility function Jt is built from all constraints in C (section 2.1);
3. New policies are generated; candidate policy πt+1 is selected using an adaptive trade-off

between Jt and an empirical exploration term (section 2.2), and the process is iterated.

2.1 Learning the intermediate utility function

Let {µ1, . . . µt} denote the indirect representation of all policies in the archive Π up to step t; at this
point C contains up to t(t−1)

2 constraints.
1The policy archive Π is initialized to a first randomly generated policy π1, and J1 is set to the identically

null function. The selection of candidate policy π2 is conducted as in section 2.2. Policies π1 and π2 are
demonstrated to the expert; the expert ranks them (say π2 � π1) and the constraint archive C is initialized
accordingly (C = {π2 � π1}).

2

Using a standard constrained convex optimization formulation [4, 13], the policy return estimate Jt
is sought as a linear mapping Jt(µ) = 〈wt, µ〉 with wt ∈ IRnt solution of (P):

(P)

{
Minimize 1

2 ||w||
2 + C

∑t
i,j=1,i>j ξi,j

subject to (〈w, µi〉 − 〈w, µj〉 ≥ 1− ξi,j) and (ξi,j ≥ 0) for all µi � µj

The utility function Jt features some good properties. Firstly, it is consistent as the weight associ-
ated to state-action pairs which have not yet been visited is set to 0. Secondly, by construction Jt
is independent on the policy parameterization and can be transferred among different policy spaces.
Finally, Jt can be interpreted; wt provides some assessment of the state-action pairs, akin the inter-
pretation of a feature weight as a relevance score at the root of SVM-RFE [12]; specifically, if some
(s, a)i is associated a high positive weight wt[i], this state-action pair is considered to significantly
and positively contribute to the quality of a policy, comparatively to the policies considered so far.
In particular wt[i] might increase or decrease with t.

2.2 New policy generation and selection

The generation of new policies, which can be thought of in terms of self-training, relies on black-
box optimization. As already mentioned the use of expected-global improvement methods [14, 7]
or even gradient methods (e.g. [19]) is forbidden as Jt is not defined on the policy parameter space
Θ ⊂ IRD. New policies are thus generated using a Cross-Entropy Maximization-like method [10, 3]
on Θ; a Gaussian distribution on Θ is maintained, updating at each step t the center of the distribution
and the covariance matrix after the current best policy πt.

The new policy to be demonstrated to the expert, referred to as candidate policy, is chosen in the set
of new policies noted Pt. While the simplest option is to select the one optimizing Jt, such a greedy
selection harms the PPL process as it lacks any incentive to explore the state-action space (e.g. the
discovery of new state-action pairs is worthless according to Jt). For this reason, candidate policy
πt+1 is selected in Pt by maximizing the sum of Jt and a weighted exploration term Et, measuring
the diversity ∆ of the policy w.r.t the policy archive Π:

πt+1 = arg max {Jt(µ(π)) + αtEt(µ(π)), π ∈ Pt} αt > 0

With Exploration term
Et(µ) = min {∆(µ, µ(πu)), πu ∈ Π}

∆(µ, µ′) = ||µ−µ′||2
||µ||2||µ′||2

Dynamic Exploration Exploitation trade-off

αt =

{
c.αt−1 if πt improves on Πt−1 c > 1
1

c1/p
αt−1 otherwise

Parameter αt dynamically controls the exploration vs exploitation trade-off, accounting for the
fact that both the policy distribution and the objective function Jt are non stationary. Therefore, αt
is adjusted by comparing the empirical success rate2 with the expected success rate of a reference
function (usually the sphere function [3]). When the empirical success rate is above (respectively
below) the reference one, the amplitude of the perturbations is increased (resp. decreased). Param-
eter p, empirically adjusted, is used to guarantee that p failures cancel out one success and bring αt
back to its original value.

3 Experimental Validation

This section presents the experimental validation of the PPL approach on a cancer treatment prob-
lem. Given an initial state of a patient, defined by its tumor size and toxicity, the goal is to adjust the
medicine dosage for reducing tumor size without reaching a too high toxicity level. The experimen-
tal setting is same as the one used in [9] where the transition model is provided. The only differences
are the time horizon H = 12 (the treatment duration is 12 months as opposed to 6 months), and the
use of continuous actions (the dosage level is a real value in (0, 1), as opposed to 4 discrete values

2That is, the number of times πt improves on all policies in the archive in a given time window.

3

Figure 1: Performance, displayed as the max of tumor size and toxicity over the time horizon, versus
the number of calls to the expert; the performance is averaged over 41 independent runs.

in [9]). The policy is implemented as 1-hidden-layer feed-forward neural network with 3 inputs (the
current tumor size and toxicity and a bias), 10 neurons in the hidden layer and 1 output being the
dosage. Jt is learned using SVMrank [13] with linear kernel and default parameters. Two policy
representations are considered, the direct or parametric one (Θ ⊂ IR41) and the indirect one based
on state-action features (these features correspond to partitioning the state and action spaces, with
interval width 1 on the state space and .1 on the action space, amounting to circa 500 features).

We set the initial state at 1.3 tumor size and 0 toxicity. During each self-training phase, eleven
new policies are generated for 20 rounds, perturbing the current best policy πt using Gaussian noise
N (0, σ), where σ is initialized to 1, with a multiplicative increase (respectively decrease) factor
c = 1.5 (resp c1/4) when the candidate policy does (resp. does not) improve on the former ones.
The exploration factor αt (section 2.2) is initialized to 1, with a multiplicative increase factor c = 1.5
and a decrease factor of 1√

c
.

For the sake of reproducibility the expert preferences are emulated, favoring policies that reach the
lowest maximum between tumor size and toxicity amongst all months of the treatment. The pre-
sented results are averaged over 41 independent runs. The PPL performance is assessed compara-
tively to two baselines. The first one, referred to as (1+11)-ES, uses the same optimization algorithm
as in PPL but does not involve any self-training phase (it does not learn Jt). The second one, PPL-
Parametric, only differs from PPL as Jt is learned on the Θ space (neural network weights) using a
Gaussian Kernel; the reported results correspond to the best kernel parameter σ = 10−3.

As can be seen from Fig. 1, PPL significantly outperforms both baselines, although the performance
gap is smaller than in former experiments [2]. This smaller performance gap is explained from
the small scale of the problem, resulting in a fast convergence of all methods. The experiments
however confirm that the proposed feature-space representation of policies is more effective than
the parametric one. Not only PPL-Parametric is more computationally demanding as Jt is learned
using a Gaussian Kernel (as opposed to a linear kernel in PPL); more importantly, PPL-Parametric
does not improve on (1+11)-ES. This latter fact suggests that the parametric Jt does not provide any
information about the most promising policies; the learned utility function is classifying policies at
random.

The main limitation of the approach is that PPL happens to converge toward a local optimum. Two
such sub-optimal policies are depicted in Fig. 2. This limitation is intrinsically related to the fact
that Jt is not learned on the policy space, and the underlying optimization problem is non-convex3.

3In practice, this drawback is alleviated by using random restarts of the stochastic optimization algorithm.

4

Figure 2: PPL might get stuck to sub-optimal policies. In the left one, the tumor is cured fast causing
a peak in toxicity; in the right one the tumor size is contained and the toxicity remains low in the
initial stages.

4 Discussion and Perspectives

Preference-based policy learning addresses some limitations of reinforcement learning and inverse
reinforcement learning, as it does not require the expert to provide an appropriate reward function,
and it does not require the expert to demonstrate a quasi-optimal policy; instead, the expert provides
feedback as to whether the current policy improves on the previous ones. In this setting, likened
to expensive function optimization, preference learning is used to learn a surrogate model of the
objective function.

A main originality of the presented approach compared to related work [14, 7] is to consider an
indirect representation of the search space, in order to better capture the expert’s preferences; these
preferences are more easily related to the actual policy behavior than to its parametric description.
The use of such an indirect representation implies the use of derivative-free optimization methods; it
further requires new heuristics to address the exploration vs exploitation dilemma. Such a heuristics
has been proposed and empirically investigated. Further work will investigate its consistency.

Another perspective is to reconsider preference-based policy learning in a multiple-instance perspec-
tive [5]. Typically in a robotic learning context, the expert might assess the robot policy depending
on whether some sub-behaviors are appropriate/risky.

A question for further research is then whether one can take advantage simultaneously of both the
direct and indirect representation, to propose hybrid policies, using the preference-based model to
combine policy fragments in a modular way.

References
[1] P. Abbeel and A.Y. Ng. Apprenticeship learning via inverse reinforcement learning. In ICML, 2004.

[2] Riad Akrour, Marc Schoenauer, and Michèle Sebag. Preference-based policy learning. In Gunopulos
et al. [11], pages 12–27.

[3] Anne Auger. Convergence results for the (1, lambda)-sa-es using the theory of phi-irreducible markov
chains. Theor. Comput. Sci., 334(1-3):35–69, 2005.

[4] G. Bakir, T. Hofmann, B. Scholkopf, A.J. Smola, B. Taskar, and S.V.N. Vishwanathan. Machine Learning
with Structured Outputs. MIT Press, 2006.

[5] Charles Bergeron, Jed Zaretzki, Curt M. Breneman, and Kristin P. Bennett. Multiple instance ranking. In
Proc. ICML, pages 48–55, 2008.

[6] Andrew Booker, J. E. Dennis, Paul D. Frank, David B. Serafini, Virginia Torczon, and Michael W. Trosset.
A rigorous framework for optimization of expensive functions by surrogates, 1998.

[7] E. Brochu, N. de Freitas, and A. Ghosh. Active preference learning with discrete choice data. In Advances
in Neural Information Processing Systems 20, pages 409–416, 2008.

[8] S. Calinon, F. Guenter, and A. Billard. On Learning, Representing and Generalizing a Task in a Humanoid
Robot. IEEE transactions on systems, man and cybernetics, Part B. Special issue on robot learning by
observation, demonstration and imitation, 37(2):286–298, 2007.

5

[9] Weiwei Cheng, Johannes Fürnkranz, Eyke Hüllermeier, and Sang-Hyeun Park. Preference-based policy
iteration: Leveraging preference learning for reinforcement learning. In Gunopulos et al. [11], pages
312–327.

[10] Pieter-Tjerk de Boer, Dirk P. Kroese, Shie Mannor, and Reuven Y. Rubinstein. A tutorial on the cross-
entropy method. Annals OR, 134(1):19–67, 2005.

[11] Dimitrios Gunopulos, Thomas Hofmann, Donato Malerba, and Michalis Vazirgiannis, editors. Machine
Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2011, Athens,
Greece, September 5-9, 2011. Proceedings, Part I, volume 6911 of Lecture Notes in Computer Science.
Springer, 2011.

[12] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support
vector machines. Machine Learning, 46:389–422, 2002.

[13] Thorsten Joachims. Training linear svms in linear time. In Tina Eliassi-Rad, Lyle H. Ungar, Mark Craven,
and Dimitrios Gunopulos, editors, KDD, pages 217–226. ACM, 2006.

[14] D.R. Jones, M. Schonlau, and W.J. Welch. Efficient global optimization of expensive black-box functions.
Journal of Global Optimization, 13(4):455–492, 1998.

[15] J. Zico Kolter, Pieter Abbeel, and Andrew Y. Ng. Hierarchical apprenticeship learning with application
to quadruped locomotion. In NIPS. MIT Press, 2007.

[16] G. Konidaris, S. Kuindersma, A. Barto, and R. Grupen. Constructing skill trees for reinforcement learning
agents from demonstration trajectories. In NIPS, pages 1162–1170. 2010.

[17] Rémi Munos and Andrew W. Moore. Rates of convergence for variable resolution schemes in optimal
control. In Pat Langley, editor, ICML, pages 647–654. Morgan Kaufmann, 2000.

[18] A.Y. Ng and S. Russell. Algorithms for inverse reinforcement learning. In P. Langley, editor, Proc.
of the Seventeenth International Conference on Machine Learning (ICML-00), pages 663–670. Morgan
Kaufmann, 2000.

[19] Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients. Neural
Networks, 21(4):682–697, 2008.

[20] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge, 1998.

[21] U. Syed and R. Schapire. A game-theoretic approach to apprenticeship learning. In NIPS, pages 1449–
1456, 2008.

6

