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1 Introduction

Preference elicitation (PE) is an important component of interactive decision support systems that
aim to make optimal recommendations to users by actively querying their preferences. The PE
task consists of (a) querying the user about their preferences and (b) recommending an item that
maximizes the user’s latent utility. Of course, a PE system is limited by real-world performance
constraints that require phase (a) to be efficient while ensuring phase (b) can make an optimal rec-
ommendation with high certainty. Bayesian approaches to PE [2] have received interest in recent
years due to their robust handling of noise in the elicitation process, however, previous work has
either relied on expensive sampling methods [2] or on expensive EM refitting of mixture models [1]
to deal with the lack of a closed-form for the utility belief update. In this work, we propose to avoid
both of these problems by adapting the Bayesian ranking approach of TrueSkill [3] to multiattribute
Bayesian PE, which allows us to efficiently maintain and update the belief representation in real-time
and naturally facilitates the efficient evaluation of value of information (VOI) heuristics for use in
query selection strategies. Our best VOI query strategy is both space- and time-efficient (in contrast
to related work) and performs on par with the most accurate (and often computationally intensive)
algorithms on experiments with a real-world dataset.

2 Bayesian Preference Elicitation

In multiattribute utility theory (MAUT), utilities are modeled over a D-dimensional attribute set
X = {X1, . . . , XD} with attribute choices Xd = {xd1, . . . , xd|Xd|} (where |Xd| denotes the car-
dinality of Xd). An item is described by its attribute choice assignments x = (x1, . . . , xD) where
xd ∈ Xd. In our model, an attribute weight vector w = (w11, . . . , w1|X1|, . . . , wD1, . . . , wD|XD|)
describes the utility of each attribute choice in each attribute dimension. Furthermore, we assume
that the utility u(x|w) of item x w.r.t. attribute weight vector w decomposes additively over the
attribute choices of x, i.e.,

u(x|w) =
D∑

d=1

wd,#(x,d), u∗(x) =
D∑

d=1

w∗
d,#(x,d) (1)

where #(x, d) returns index in {1, . . . , |Xd|} for attribute choice xd of x and u∗ represents the
user’s true utility w.r.t. their true (but hidden) w∗. We take a Bayesian perspective on learning w
and thus maintain a probability distribution P (w) representing our beliefs over w∗.

Because P (w) is a distribution over a multidimensional continuous random variable w, we repre-
sent this distribution as a Gaussian with diagonal covariance, represented compactly in a factorized
format as follows:

P (w) =
D∏

d=1

|Xd|∏
i=1

p(wdi) =
D∏

d=1

|Xd|∏
i=1

N (wdi;µdi, σ
2
di). (2)
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Figure 1: PE factor graph variant of TrueSkill for qij = i � j. Items i and j have two attribute choices
each with respective weights (w1, w2) and (w2, w3) (note that i and j share the common attribute choice with
weight w2). The posterior over (w1, w2, w3) can be inferred with the following message passing schedule: (1)
messages pass along gray arrows from left to right, (2) the marginal over d is updated via message 1 followed
by message 2 (which required moment matching), (3) messages pass from right to left along black arrows.
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Figure 2: Expected loss vs. number of queries for various PE strategies on the PC dataset. Error bars indicate
standard error. Results with uniform utility (left) and diagonal Gaussian utility (right).

We take a Bayesian approach to PE. Thus, given a prior utility belief P (w|Rn) w.r.t. a (possibly
empty) set of n ≥ 0 query responses Rn = {qkl} and a new query response qij , we perform the
following Bayesian update to obtain a posterior belief P (w|Rn+1) where Rn+1 = Rn ∪ {qij}:

P (w|Rn+1) ∝ P (qij |w, Rn)P (w|Rn)
∝ P (qij |w)P (w|Rn) (3)

We adapt the TrueSkill inference framework [3], and present an approximate message-passing ap-
proach to estimate the posterior utility belief given the query result as illustrated in Figure 1.

In Figure 2, we show a plot of the normalized average loss (of recommending the current best item in
expectation) of all algorithms vs. the number of query responses elicited on a PC dataset consisting
120 items each with 8 attributes. The key observations are that (1) the value of information (VOI)
heuristics always perform the best, and (2) in particular, the Restricted Informed VOI has excellent
real-time performance (times not shown here due to space limitations).
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