
Max-margin Learning for Lower Linear Envelope
Potentials in Binary Markov Random Fields

Stephen Gould
stephen.gould@anu.edu.au

Australian National University

ICML, 29 June 2011

Stephen Gould 1/24



Motivation: Image Labeling

Image labeling: Label every pixel in an image with a class label
from some pre-de�ned set, i.e.,yp 2 L .
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Motivation: Image Labeling

Image labeling: Label every pixel in an image with a class label
from some pre-de�ned set, i.e.,yp 2 L .

Interactive segmentation
(Boykov and Jolly, 2001;
Boykov and Funka-Lea,
2006)

Surface context (Hoiem
et al., 2005)

Semantic labeling (He et
al., 2004; Shotton et al.,
2006; Gould et al., 2009)

Stereo matching (Schar-
stein and Szeliski, 2002)

Photo montage (Agarwala et al., 2004) Denoising
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Motivation: Image Labeling

These problems are typically solved using a pairwise conditional
Markov random �eld.

However, pairwise terms are often not expressive enough.
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Consistency Potentials

Suppose an oracle told us which pixels belong together, e.g., for
the �gure-ground segmentation problem we might have
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Consistency Potentials

Suppose an oracle told us which pixels belong together, e.g., for
the �gure-ground segmentation problem we might have

Then we would only need to label the so-calledsuperpixelsrather
than individual pixels.
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Consistency Potentials

Unfortunately we don't have a perfect oracle. So what can we do?

[Kohli et al., 2007]

Stephen Gould 5/24



Consistency Potentials

Unfortunately we don't have a perfect oracle. So what can we do?

[Kohli et al., 2007] [Kohli et al., 2008]

Stephen Gould 5/24



Consistency Potentials

Unfortunately we don't have a perfect oracle. So what can we do?

[Kohli et al., 2007] [Kohli et al., 2008] [Kohli and Kumar, 2010]
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Higher-order Markov Random Fields

The energy functionfor a higher-order MRF over discrete random
variablesy = f y1; : : : ; yng can be written as:

E(y; x; � ) =

clique potentials
z }| {X

c

 c(yc)
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variablesy = f y1; : : : ; yng can be written as:

E(y; x; � ) =

clique potentials
z }| {X

c

 c(yc)
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i (yi )
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unary
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ij
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c
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higher-order

where thepotential functions  U
i ,  P

ij and  H
c encode preferences

for unary, pairwise andk-ary variable assignments, respectively.

The goal of inference is to �ndy? = argminy E(y; x; � ).
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Binary Lower Linear Envelope MRFs
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Energy Minimization ([Kohli and Kumar, CVPR 2010])
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Energy Minimization ([Kohli and Kumar, CVPR 2010])

 H
c (yc) , min

k

(

ak

X

i 2C

yi + bk

)

= min
k

f fk (yc)g

Introduce multi-valued auxiliary random variablez 2 f 1; : : : ; K g
and write

e H
c (yc ; z) =

unary and pairwise
z }| {X

k

[[z = k]]fk (yc) :

Now minimize jointly overy and z.
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Energy Minimization (Attempt 2)

 H
c (yc) , min

k

(

ak

X

i 2C

yi + bk

)

= min
k

f fk (yc)g

Introduce auxiliary binary random variablesz = ( z1; : : : ; zK ) with
mutual exclusion constraint and write

e H
c (yc ; z) =

unary and pairwise
z }| {X

k

zk fk (yc) s.t.

global
z }| {X

k

zk = 1 :

Now minimize jointly overy and z.
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Energy Minimization (Attempt 3)

 H
c (yc) , min

k

(

ak

X

i 2C

yi + bk

)

= min
k

f fk (yc)g

Assume sorted onak . Introduce auxiliary binary random variables
z = ( z1; : : : ; zK � 1) with inclusionconstraints and write

e H
c (yc ; z) =

unary
z }| {
f1(yc) +

unary and pairwise
z }| {X

k

zk (fk+1 (yc) � fk (yc)) s.t.

pairwise
z }| {
zk � zk+1 :

Now minimize jointly overy and z.

Stephen Gould 10/24



Relationship to Binary Pairwise MRFs

Each transformation results in a di�erent latent variable Markov
random �eld:

Attempt 1 Attempt 2 Attempt 3
(multi-valued; (binary; (binary;

pairwise) non-pairwise) pairwise)
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Exact Inference

Claim 1: The binary pairwise MRF induced by \Energy
Minimization Attempt 3" is submodular (see paper for proof)
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Exact Inference

Claim 1: The binary pairwise MRF induced by \Energy
Minimization Attempt 3" is submodular (see paper for proof)
Claim 2: Submodular binary MRFs can be minimized in time
polynomial in the number of variables ([Hammer, 1965])

Empirically, very fast algorithms exist for quadratic submodular
problems ([Boykov and Kolmogorov, 2004])

We can performexact inference in lower linear envelope binary
Markov random �elds
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Max-margin Learning for Structured Prediction
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Max-margin Learning for Structured Prediction

Energy function. Parameterized by� 2 Rd ,

E(y; x; � ) =
X

c

 c(yc ; x; � c)

| {z }
easy inference

=

easy learning
z }| {
� T� (y; x)
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E(y; x; � ) =
X

c

 c(yc ; x; � c)

| {z }
easy inference

=

easy learning
z }| {
� T� (y; x)

Structured loss function. e.g., �( ŷ; y) = 1
n

P n
i =1 [[ŷi 6= yi ]]
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Max-margin Learning for Structured Prediction

Energy function. Parameterized by� 2 Rd ,

E(y; x; � ) =
X

c

 c(yc ; x; � c)

| {z }
easy inference

=

easy learning
z }| {
� T� (y; x)

Structured loss function. e.g., �( ŷ; y) = 1
n

P n
i =1 [[ŷi 6= yi ]]

Learning algorithm. Given a training setf (xt ; yt )g
T
t =1 , solve

the margin-rescalingoptimization problem ([Taskar et al., 2005;
Tsochantaridis et al., 2004]).
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Max-margin Learning for Structured Prediction

QP for max-margin learning

minimize 1
2k� k2

2 + C
T

P
t � t

subject to � T � t (y) � � T � t (yt )| {z }
energy di�erence

� � ( y; yt ) � � t| {z }
rescaled margin

; 8t ;

very large
z }| {
y 2 Y t

� t � 0; 8t
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Max-margin Learning for Structured Prediction

QP for max-margin learning

minimize 1
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subject to � T � t (y) � � T � t (yt )| {z }
energy di�erence

� � ( y; yt ) � � t| {z }
rescaled margin
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very large
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Re-writing constraints
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2k� k2

2 + C
T

P
t � t

subject to � t � max
y2Y t

n
� ( y; yt ) � � T � t (y)

o

| {z }
loss-augmented inference (for given � )

+ � T � t (yt ); 8t

� t � 0; 8t

Stephen Gould 14/24



Lower Linear Envelope Representation

It remains to represent the lower linear envelope in a form that is
amenable to learning.

 H
c (yc) , min

k

(

ak

X

i 2C

yi + bk

)

= � T � (yc)
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Lower Linear Envelope Representation for Learning

Sample-based representation with concavity constraints:
2� k � � k� 1 � � k+1 � 0
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Lower Linear Envelope Representation for Learning

Sample-based representation with concavity constraints:
2� k � � k� 1 � � k+1 � 0

Features� (yc) are 1-of-n indicator vectors

Can extend to be invariant of clique size

Stephen Gould 16/24



Max-margin Learning for Lower Linear Envelope MRFs

QP for lower linear envelope MRF learning

minimize� ;�
1
2k� k2

2 + C
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subject to � T � t (y) � � T � t (yt ) � � ( y; yt ) � � t ; 8t ; y 2 Y t
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Max-margin Learning for Lower Linear Envelope MRFs

QP for lower linear envelope MRF learning

minimize� ;�
1
2k� k2

2 + C
T

P
t � t

subject to � T � t (y) � � T � t (yt ) � � ( y; yt ) � � t ; 8t ; y 2 Y t

� t � 0; 8t
D2� � 0

Learning algorithm repeatedly
solves above QP using sampled representation�
�nds violated constraints using lower linear envelope
representationf (ak ; bk )g

Variants of the feature representation and corresponding
learning objective can also be used.
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Synthetic Experiments
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Synthetic Experiments

In these experiments the ground-truth location of the squares
are given.
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Synthetic Results
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Synthetic Results

groundtruth data pairwise crf 3rd iteration �nal iteration
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Learned Parameters for Synthetic Experiments
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h = [0.1, 0.1]

h = [0.5, 0.1]

� is the signal-to-noise ratio.
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Interactive Image Segmentation

\GrabCut" [Rother et al., SIGGRAPH 2004]
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Interactive Image Segmentation

\GrabCut" [Rother et al., SIGGRAPH 2004]

Our experimental setup
leave-one-out cross-validation on 50 images
baseline: 8-neighborhood pairwise CRF
higher-order: lower linear envelope potential on
non-overlapping superpixels
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\GrabCut" Experiments

Stephen Gould 22/24



\GrabCut" Experiments

Superpixels determined via a bottom-up unsupervised
approach.
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\GrabCut" Results
image truth baseline higher-order
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\GrabCut" Results
image truth baseline higher-order

Quantitatively we see a 15% reduction in error rate.
Simply enforcing hard consistency within superpixels results in
1% increasein error rate.
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motivation
higher-order models are important for image understanding
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Summary

motivation
higher-order models are important for image understanding

this work|binary lower linear envelope potentials
telescoping-sum construction for exact MAP inference in time
polynomial in the number of variables and number of linear
envelope functions
representation for learning parameters of lower linear envelope
potentials using max-margin framework
demonstrated in the context of �gure-ground segmentation

future work
apply to multi-class setting
explore relationship with latent-variable SVMs

questions?
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