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Interactive segmentation Semantic labeling (He et

(Boykov and Jolly, 2001; et al., 2005) al., 2004; Shotton et al.,
Boykov and Funka-Lea, 2006; Gould et al., 2009)
2006)

Stereo matching (Schar-

stein and Szeliski, 2002) Photo montage (Agarwala et al., 2004) Denoising
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Motivation: Image Labeling

These problems are typically solved using a pairwise condition
Markov random eld.

However, pairwise terms are often not expressive enough.
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Consistency Potentials

Suppose an oracle told us which pixels belong together, eog., f
the gure-ground segmentation problem we might have

Then we would only need to label the so-callsgperpixelgather
than individual pixels.
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Consistency Potentials

Unfortunately we don't have a perfect oracle. So what can we do?

penalty

‘ number of disagreements

[Kohli et al., 2007]
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Consistency Potentials

Unfortunately we don't have a perfect oracle. So what can we do?

penalty penalty penalty

‘ number of disagreements | number of disagreements | number of disagreements

[Kohli et al., 2007] [Kohli et al., 2008] [Kohli and Kumar, 20]L0
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Higher-order Markov Random Fields

The energy functionfor a higher-order MRF over discrete random

variablesy = fyy;:::;yng can be written as:
cligigﬁytentia#s
E(y;x; )= c(Ye)

X ¢ X X
= s Towr e
| {z—} |z 12 {z—3}

unary pairwise higher-order

where thepotential functions ’, F and ¢ encode preferences
for unary, pairwise and-ary variable assignments, respectively.

The goal of inference is to nd/’ = argming E(y;x; ).
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Binary Lower Linear Envelope MRFs
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Energy Minimizationkohli and Kumar, CVPR 2019]
H . )
cYe) mln ay yi + by =m||(nffk(yc)g
i2C

Introduce multi-valued auxiliary random variatie? f 1;:::;Kg
and write

unary a airwise
L y nﬂp {
A

2= [z= KIf(ye):
k

Now minimize jointly ovely and z.

Stephen Gould 8/24



Australian
I\

ational
Bz University

Energy Minimization (Attempt 2)
)

X
ye) ., min & yi+ b =minfi(yc)g
i2C
Introduce auxiliary binary random variables= ( z1;:::; zx) with

mutual exclusion constraint and write
unary and pairwise glopal
i i el
e(ye;2) = zfe(ye) stz =1:
k k
Now minimize jointly ovely and z.
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Energy Minimization (Attempt 3)

C )
de), min & yi+ b =minfi(yo)g
i2C
Assume sorted omy. Introduce auxiliary binary random variables
Z=(2z1;:::;2z¢ 1) with inclusionconstraints and write
z_r}TrZ{ Z( unary arﬂ pairwise { pa'ﬂv'si{
)= alyo) v z(fea (Vo) F(¥e)) Stz Zeo:
k

Now minimize jointly overy and z.
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Relationship to Binary Pairwise MRFs

Each transformation results in a di erent latent variable Markov
random eld:

Attempt 1 Attempt 2 Attempt 3
(multi-valued; (binary; (binary;
pairwise) non-pairwise) pairwise)
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Exact Inference

o Claim 1: The binary pairwise MRF induced by \Energy
Minimization Attempt 3" is submodular (see paper for proof)
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Exact Inference

o Claim 1: The binary pairwise MRF induced by \Energy
Minimization Attempt 3" is submodular (see paper for proof)

o Claim 2: Submodular binary MRFs can be minimized in time
polynomial in the number of variablegHammer, 1965)

s Empirically, very fast algorithms exist for quadratic subdular
problems ([Boykov and Kolmogorov, 2004])

o We can performexactinference in lower linear envelope binary

Markov random elds
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Max-margin Learning for Structured Prediction

o Energy function. Parameterized by 2 RY,

. e
E(y;x; )= VX )= T (¥;X)
|Z {z }

easy inference
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Max-margin Learning for Structured Prediction

o Energy function. Parameterized by 2 RY,

. e
E(y;x; )= VX )= T (¥;X)
|Z {z }

easy inference

P
o Structured loss function. e.g., ( §;y) = % L [9i 8 vil

o Learning algorithm. Given a training sef (xt;yt)gthl, solve
the margin-rescalingptimization problem [Taskar et al., 2005;
Tsochantaridis et al., 2003
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Max-margin Learning for Structured Prediction

P
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Max-margin Learning for Structured Prediction

P
minimize 3k K3+ & | ¢ very ar
subjectto T v : . 8t:y2Y
j | t(y) iz t(yt? |( y ﬁ) § y2Yy
energy di erence rescaled margin
t O 8t

P
minimize 7k k3+ £ | ¢ o
subjectto ¢ max (yiyy) T o(y) + T ey 8t
2Y¢ {Z }

loss-augmented inference (for given )

t O 8t
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Lower Linear Envelope Representation

It remains to represent the lower linear envelope in a form that is
amenable to learning.

()

Eve) . min & yi+ by
i2C

= T (Ye)
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Lower Linear Envelope Representation for Learning

o Sample-based representation with concavity constraints:
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Lower Linear Envelope Representation for Learning

o Sample-based representation with concavity constraints:
2k k1 kO
l’UCn

Lo Qx+by

Ve '?___\
// \\
0/' k \ X

o Features (y.) are 1-ofn indicator vectors

lolololojolo|1|ojofolo/ololo]

o Can extend to be invariant of clique size
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Max-margin Learning for Lower Linear Envelope MR

minimize .

subject to

P
%k k%"' % tt
T t(y T t(Yi)
t O
D2 0

8t;y2Y,
8t
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Max-margin Learning for Lower Linear Envelope MR

P
minimize . 1k K3+ & |
subjectto T ((y) T () (Vi) i 8ty2Yy
t O 8t
D2 0

o Learning algorithm repeatedly
s solves above QP using sampled representation
@ nds violated constraints using lower linear envelope
representatiorf (ax; bx)g
o Variants of the feature representation and corresponding
learning objective can also be used.
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Synthetic Experiments
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Synthetic Experiments

penalty

@ number of disagreements

o In these experiments the ground-truth location of the squares
are given.
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Synthetic Results
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Synthetic Results

o

groundtruth data pairwise crf3rd iteration nal iteration

fha
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Synthetic Results

groundtruth data

groundtruth data

Stephen Gould

e

o

pairwise cri

pairwise crf

3rd

3rd iteration
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nal iteration
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Learned Parameters for Synthetic Experiments

=(0:1;0:1)

—e—h =[0.1, 0.1]
——h =[0.5, 0.1]

0:5: 0 1) 2 4 6 8 10
o is the signal-to-noise ratio.
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Interactive Image Segmentation

o \GrabCut" [Rother et al., SIGGRAPH 2004]
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Interactive Image Segmentation

o \GrabCut" [Rother et al., SIGGRAPH 2004]

o Our experimental setup
s leave-one-out cross-validation on 50 images
s baseline: 8-neighborhood pairwise CRF
s higher-order: lower linear envelope potential on
non-overlapping superpixels
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\GrabCut" Experiments
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\GrabCut" Experiments

penalty

number of disagreements

o Superpixels determined via a bottom-up unsupervised
approach.
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image truth baseline higher-order
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\GrabCut" Results

image truth baseline higher-order

o Quantitatively we see a 15% reduction in error rate.
o Simply enforcing hard consistency within superpixels results i
1% increasdn error rate.
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o telescoping-sum construction for exact MAP inference iméi
polynomial in the number of variables and number of linear
envelope functions

s representation for learning parameters of lower linearelope
potentials using max-margin framework

o demonstrated in the context of gure-ground segmentation

o future work

s apply to multi-class setting
o explore relationship with latent-variable SVMs

o questions?
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