

Stephen Gould stephen.gould@anu.edu.au

Robotic Vision Summer School (RVSS), 2024 Australian National University

9 February 2024

financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets

- financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets
- mechanical engineering: maximise the span of a bridge subject to load constraints; minimise drag on a vehicle subject to volume constraints

- financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets
- mechanical engineering: maximise the span of a bridge subject to load constraints; minimise drag on a vehicle subject to volume constraints
- electrical engineering: minimise the size of a transistor in a circuit subject to power and timing constraints

- financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets
- mechanical engineering: maximise the span of a bridge subject to load constraints; minimise drag on a vehicle subject to volume constraints
- electrical engineering: minimise the size of a transistor in a circuit subject to power and timing constraints
- logistics and planning: find the cheapest way to distribute goods from suppliers to consumers across a transportation network

- financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets
- mechanical engineering: maximise the span of a bridge subject to load constraints; minimise drag on a vehicle subject to volume constraints
- electrical engineering: minimise the size of a transistor in a circuit subject to power and timing constraints
- logistics and planning: find the cheapest way to distribute goods from suppliers to consumers across a transportation network
- statistics/data science: curve fitting and data visualisation

- financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets
- mechanical engineering: maximise the span of a bridge subject to load constraints; minimise drag on a vehicle subject to volume constraints
- electrical engineering: minimise the size of a transistor in a circuit subject to power and timing constraints
- logistics and planning: find the cheapest way to distribute goods from suppliers to consumers across a transportation network
- statistics/data science: curve fitting and data visualisation
- robotics: optimise control parameters to achieve some goal state or trajectory; simultaneous localisation and mapping (SLAM); point/feature matching

- financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets
- mechanical engineering: maximise the span of a bridge subject to load constraints; minimise drag on a vehicle subject to volume constraints
- electrical engineering: minimise the size of a transistor in a circuit subject to power and timing constraints
- logistics and planning: find the cheapest way to distribute goods from suppliers to consumers across a transportation network
- statistics/data science: curve fitting and data visualisation
- robotics: optimise control parameters to achieve some goal state or trajectory; simultaneous localisation and mapping (SLAM); point/feature matching
- machine learning and deep learning: minimise loss functions with respect to the parameters of our model

Optimisation Problems

find an assignment to variables that minimises a measure of cost subject to some constraints¹

 $^1 {\sf In}$ these lectures we will be concerned with continuous-valued variables $_{\sf Stephen \ {\sf Gould, \ RVSS \ 2024}}$

Optimisation Problems

 $\begin{array}{ll} \text{minimize (over } x) & \text{objective}(x) \\ \text{subject to} & \text{constraints}(x) \end{array}$

Optimisation Problems

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,p \\ & h_i(x)=0, \quad i=1,\ldots,q \end{array}$$

Least Squares

minimize
$$||Ax - b||_2^2$$

Least Squares

minimize $||Ax - b||_2^2$

- unique solution if $A^T A$ is invertible, $x^* = (A^T A)^{-1} A^T b$
- ▶ solution via SVD, $A = U\Sigma V^T$, if $A^T A$ not invertible, $x^{\star} = V\Sigma^{-1}U^T b$
 - ▶ in fact, $x^{\star} + w$ for any $w \in \mathcal{N}(A)$ also a solution
- ▶ solution via QR factorisation, $x^{\star} = R^{-1}Q^T b$
- ▶ solved in $O(n^2m)$ time, less if structured
- typically use iterative solver (for large scale problems)

Example: Polynomial Curve Fitting

fit *n*-th order polynomial $f_a(x) = \sum_{k=0}^n a_k x^k$ to set of noisy points $\{(x_i, y_i)\}_{i=1}^m$ (here *a* are the variables, and *x* and *y* are the data)

$$\begin{array}{c|c} \text{minimize (over } a) & \sum_{i=1}^{m} \left(f_a(x_i) - y_i \right)^2 & y & \bullet \\ \\ \text{minimize} & \left\| \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_m & x_m^2 & \dots & x_m^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} - \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} \right\|_2^2 & \bullet \\ \bullet & \bullet & \bullet \\ \end{array} \right\|$$

 $\int \int f_a(x)$

/

Part I. Machine Learning and Deep Learning

Machine Learning from 10,000ft

Machine Learning from 10,000ft

minimize (over θ) $\sum_{(x,y)\sim\mathcal{X}\times\mathcal{Y}} L(f_{\theta}(x), y)$

- loss L what to do
- ▶ model f_{θ} how to do it
- optimised by gradient descent (or variant thereof)

Deep Learning as an End-to-end Computation Graph

Deep learning does this by constructing the model f_{θ} (equiv. computation graph) as the composition of many simple parametrized functions (equiv. computation nodes).

 $y = f_8(f_4(f_3(f_2(f_1(x)))), f_7(f_6(f_5(f_1(x))))))$

(parameters θ_i omitted for brevity)

Backward Pass Gradient Calculation

Example 1.

$$\frac{\partial L}{\partial \theta_7} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial z_7} \frac{\partial z_7}{\partial \theta_7}$$

Backward Pass Gradient Calculation

Example 2.

$$\frac{\partial L}{\partial \theta_1} = \frac{\partial L}{\partial y} \left(\frac{\partial y}{\partial z_4} \frac{\partial z_4}{\partial z_3} \frac{\partial z_3}{\partial z_2} \frac{\partial z_2}{\partial z_1} + \frac{\partial y}{\partial z_7} \frac{\partial z_7}{\partial z_6} \frac{\partial z_6}{\partial z_5} \frac{\partial z_5}{\partial z_4} \right) \frac{\partial z_1}{\partial \theta_1}$$

Stephen Gould, RVSS 2024

Deep Learning Node

Forward pass: compute output y as a function of the input x (and model parameters θ).

Backward pass: compute the derivative of the loss with respect to the input x (and model parameters θ) given the derivative of the loss with respect to the output y.

Aside: Notation (Often Sloppy)

For scalar-valued functions:

total derivative: $\frac{\mathrm{d}f}{\mathrm{d}x}$

partial derivative: $\frac{\partial f}{\partial x}$

Aside: Notation (Often Sloppy)

For scalar-valued functions:

total derivative:
$$\frac{\mathrm{d}f}{\mathrm{d}x}$$
 partial derivative: $\frac{\partial f}{\partial x}$

For multi-dimensional vector-valued functions, $f : \mathbb{R}^n \to \mathbb{R}^m$:

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = \begin{bmatrix} \frac{\mathrm{d}f_1}{\mathrm{d}x_1} & \cdots & \frac{\mathrm{d}f_1}{\mathrm{d}x_n} \\ \vdots & \ddots & \vdots \\ \frac{\mathrm{d}f_m}{\mathrm{d}x_1} & \cdots & \frac{\mathrm{d}f_m}{\mathrm{d}x_n} \end{bmatrix} \in \mathbb{R}^{m \times n} \qquad \qquad (\frac{\partial}{\partial x}f(x,y) \text{ for partial})$$

Sometimes D and D_X for $\frac{d}{dx}$ and $\frac{\partial}{\partial x}$, respectively.

Aside: Notation (Often Sloppy)

For scalar-valued functions:

total derivative:
$$\frac{\mathrm{d}f}{\mathrm{d}x}$$
 partial derivative: $\frac{\partial f}{\partial x}$

For multi-dimensional vector-valued functions, $f : \mathbb{R}^n \to \mathbb{R}^m$:

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = \begin{bmatrix} \frac{\mathrm{d}f_1}{\mathrm{d}x_1} & \cdots & \frac{\mathrm{d}f_1}{\mathrm{d}x_n} \\ \vdots & \ddots & \vdots \\ \frac{\mathrm{d}f_m}{\mathrm{d}x_1} & \cdots & \frac{\mathrm{d}f_m}{\mathrm{d}x_n} \end{bmatrix} \in \mathbb{R}^{m \times n} \qquad \qquad (\frac{\partial}{\partial x}f(x,y) \text{ for partial})$$

Sometimes D and D_X for $\frac{d}{dx}$ and $\frac{\partial}{\partial x}$, respectively.

Mathematically, derivatives with respect to (scalar-valued) loss functions are row vectors (m = 1).

- parameters (usually) only take a small amount of memory (relative to data)
- derivatives take the same amount of space as the data and stored transposed!
- in-place operations may save memory in the forward pass
- re-using buffers may save memory in the backward pass
- at test time intermediate results are not stored

Quick Quiz

Quick Quiz

y = Ax
Quick Quiz

$$\frac{\mathrm{d}L}{\mathrm{d}x} = \frac{\mathrm{d}L}{\mathrm{d}y}\frac{\mathrm{d}y}{\mathrm{d}x}$$
$$= \frac{\mathrm{d}L}{\mathrm{d}y}A$$

Stephen Gould, RVSS 2024

Quick Quiz

Quick Quiz (2)

$$Ay = x$$

Quick Quiz (2)

$$Ay = x$$

$$\therefore y = A^{-1}x$$

$$\frac{\mathrm{d}L}{\mathrm{d}x} = \frac{\mathrm{d}L}{\mathrm{d}y}\frac{\mathrm{d}y}{\mathrm{d}x}$$
$$= \frac{\mathrm{d}L}{\mathrm{d}y}A^{-1}$$

• forward pass $O(n^3)$, less if structured

Ay = x $\therefore y = A^{-1}x$

- ▶ backward pass solves $w = A^T v$
 - **cheaper** than forward pass if decomposition of A is cached

 $\frac{\mathrm{d}L}{\mathrm{d}x} = \frac{\mathrm{d}L}{\mathrm{d}y}\frac{\mathrm{d}y}{\mathrm{d}x}$ $= \frac{\mathrm{d}L}{\mathrm{d}y}A^{-1}$

Quick Quiz (2)

Automatic Differentiation (AD)

- algorithmic procedure that produces code for computing exact derivatives
 assumes numeric computations are composed of a small set of elementary operations that we know how to differentiate
 - arithmetic, exp, log, trigonometric
- workhorse of modern machine learning that greatly reduces development effort
- roughly speaking, for each line of the forward pass code, P, Q = foo(A, B, C), autodiff produces a line dLdA, dLdB, dLdC = foo_vjp(dLdP, dLdQ) in the backward pass code

Automatic Differentiation (AD)

- algorithmic procedure that produces code for computing exact derivatives
 assumes numeric computations are composed of a small set of elementary operations that we know how to differentiate
 - arithmetic, exp, log, trigonometric
- workhorse of modern machine learning that greatly reduces development effort
- roughly speaking, for each line of the forward pass code, P, Q = foo(A, B, C), autodiff produces a line dLdA, dLdB, dLdC = foo_vjp(dLdP, dLdQ) in the backward pass code
- but it doesn't always work (see point 2), and when it does work it can be slow and/or memory intensive

▶ example

Computing $1/\sqrt{x}$

```
float Q_rsgrt( float number )
1
  {
2
3
      long i;
4
      float x2, y;
5
      const float threehalfs = 1.5F;
6
7
      x2 = number * 0.5F;
8
      v = number:
      i = * ( long * ) &y; // evil floating point bit level hacking
9
      i = 0x5f3759df - ( i >> 1 ); // what the f**k?
10
11
      v = * (float *) &i:
      y = y * (threehalfs - (x2 * y * y)); // 1st iter
12
      // y = y * ( threehalfs - ( x^2 * y * y ) ); // 2nd iter, can be removed
13
14
15
      return v:
16
 }
```

Separate Forward and Backward Operations

Part II. Differentiable Optimisation

Bi-level Optimisation: Stackelberg Games

Consider two players, a leader and a follower

▶ the market dictates the price it's willing to pay for some goods based on supply, i.e., quantity produced by both players, $P(q_1 + q_2)$

Bi-level Optimisation: Stackelberg Games

Consider two players, a leader and a follower

- ▶ the market dictates the price it's willing to pay for some goods based on supply, i.e., quantity produced by both players, $P(q_1 + q_2)$
- ▶ each player has a cost structure associated with producing goods, $C_i(q_i)$ and wants to maximize profits, $q_i P(q_1 + q_2) C_i(q_i)$

Bi-level Optimisation: Stackelberg Games

Consider two players, a leader and a follower

- ▶ the market dictates the price it's willing to pay for some goods based on supply, i.e., quantity produced by both players, $P(q_1 + q_2)$
- ▶ each player has a cost structure associated with producing goods, $C_i(q_i)$ and wants to maximize profits, $q_i P(q_1 + q_2) C_i(q_i)$
- the leader picks a quantity of goods to produce knowing that the follower will respond optimally. In other words, the leader solves

 $\begin{array}{ll} \text{maximize (over } q_1) & q_1 P(q_1+q_2) - C_1(q_1) \\ \text{subject to} & q_2 \in \operatorname{argmax}_q q P(q_1+q) - C_2(q) \end{array}$

Bi-level Optimisation Problems in Machine Learning

• quantities: input x, output y, parameters θ

$$\begin{array}{ll} \text{minimize (over } \theta) & L(x,y;\theta) \\ \text{subject to} & y \in \operatorname{argmin}_{u \in C(x;\theta)} f(x,u;\theta) \end{array}$$

 \blacktriangleright lower-level is an optimisation problem parametrized by x and θ

Bi-level Optimisation Problems in Machine Learning

• quantities: input x, output y, parameters θ

minimize (over
$$\theta$$
) $L(x, y; \theta)$
subject to $y \in \operatorname{argmin}_{u \in C(x; \theta)} f(x, u; \theta)$

 \blacktriangleright lower-level is an optimisation problem parametrized by x and θ

gradient descent: compute gradient of lower-level solution y with respect to θ , and use the chain rule to get the total derivative,

$$heta \leftarrow heta - \eta \left(rac{\partial L}{\partial heta} + rac{\partial L}{\partial y} rac{\mathrm{d} y}{\mathrm{d} heta}
ight)$$

by back-propagating through the optimisation problem

Differentiable Least Squares

Consider our old friend, the least-squares problem,

```
minimize ||Ax - b||_2^2
```

parameterized by A and b and with closed-form solution $x^{\star} = (A^T A)^{-1} A^T b$.

Differentiable Least Squares

Consider our old friend, the least-squares problem,

```
minimize ||Ax - b||_2^2
```

parameterized by A and b and with closed-form solution $x^{\star} = (A^T A)^{-1} A^T b$.

We are interested in derivatives of the solution with respect to the elements of A,

$$rac{\mathrm{d}x^{\star}}{\mathrm{d}A_{ij}} = rac{\mathrm{d}}{\mathrm{d}A_{ij}} \left(A^T\!A
ight)^{-1}\!A^T b \quad \in \mathbb{R}^n$$

We could also compute derivatives with respect to elements of b (but not here).

Least Squares Backward Pass

The backward pass combines $\frac{dx^*}{dA_{ij}}$ with $v^T = \frac{dL}{dx^*}$ via the vector-Jacobian product. After some algebraic manipulation we get

$$\left(rac{\mathrm{d}L}{\mathrm{d}A}
ight)^{T} = wr^{T} - x^{\star}(Aw)^{T} \hspace{1em} \in \mathbb{R}^{m imes n}$$

where $w^T = v^T (A^T A)^{-1}$ and $r = b - Ax^{\star}$.

Least Squares Backward Pass

The backward pass combines $\frac{dx^*}{dA_{ij}}$ with $v^T = \frac{dL}{dx^*}$ via the vector-Jacobian product. After some algebraic manipulation we get

$$\left(rac{\mathrm{d}L}{\mathrm{d}A}
ight)^T = wr^T - x^\star (Aw)^T \quad \in \mathbb{R}^{m imes n}$$

where $w^T = v^T (A^T A)^{-1}$ and $r = b - Ax^{\star}$.

(A^TA)⁻¹ is used in both the forward and backward pass
 factored once to solve for x, e.g., into A = QR
 cache R and re-use when computing gradients

▶ derivation

PyTorch Implementation: Forward Pass

```
class LeastSquaresFcn(torch.autograd.Function):
       """PvTorch autograd function for least squares."""
       Østaticmethod
5
6
7
       def forward(ctx. A. b):
           B, M, N = A.shape
           assert b.shape == (B. M. 1)
                                                                                          A = QR
8
9
           with torch.no_grad():
                                                                                          x = R^{-1} \left( Q^T b \right)
                Q, R = torch.linalg.gr(A, mode='reduced')
11
                x = torch.linalg.solve_triangular(R,
12
13
                    torch.bmm(b.view(B, 1, M), Q).view(B, N, 1), upper=True)
                                                                                               (solves Rx = Q^T b)
14
           # save state for backward pass
15
           ctx.save for backward(A, b, x, R)
16
17
            # return solution
18
           return x
```

PyTorch Implementation: Backward Pass

```
Østaticmethod
2
       def backward(ctx. dx):
3
           # check for None tensors
4
           if dy is None:
5
                return None, None
6
7
           # unpack cached tensors
8
           A, b, x, R = ctx.saved_tensors
9
           B, M, N = A.shape
10
11
           dA, db = None, None
13
           w = torch.linalg.solve triangular(R.
14
                torch.linalg.solve_triangular(torch.transpose(R, 2, 1),
15
                dx, upper=False), upper=True)
16
           Aw = torch.bmm(A, w)
17
18
           if ctx.needs_input_grad[0]:
19
                r = b - torch.bmm(A, x)
20
                dA = torch.bmm(r.view(B.M.1), w.view(B.1.N)) - \setminus
                    torch.bmm(Aw.view(B,M,1), x.view(B,1,N))
           if ctx.needs_input_grad[1]:
                dh = \Delta w
24
25
           # return gradients
26
           return dA. db
```

$$w = (A^{T}A)^{-1}v$$
$$= R^{-1}(R^{-T}v)$$
$$r = b - Ax$$
$$\left(\frac{dL}{dA}\right)^{T} = rw^{T} - (Aw)x^{T}$$
$$\left(\frac{dL}{db}\right)^{T} = Aw$$

Imperative vs Declarative Nodes

- imperative node
- input-output relationship explicit,

$$y = \tilde{f}(x;\theta)$$

Imperative vs Declarative Nodes

- imperative node
- input-output relationship explicit,

$$y = \tilde{f}(x;\theta)$$

- declarative node
- input-output relationship specified as solution to an optimisation problem,

$$y \in \underset{u \in C(x)}{\operatorname{arg\,min}} f(x, u; \theta)$$

Imperative vs Declarative Nodes

- imperative node
- input-output relationship explicit,

$$y = \tilde{f}(x;\theta)$$

- declarative node
- input-output relationship specified as solution to an optimisation problem,

$$y \in \underset{u \in C(x)}{\operatorname{arg\,min}} f(x, u; \theta)$$

can co-exist in the same computation graph (network)

Average Pooling Example

$$\{x_i \in \mathbb{R}^m \mid i = 1, \dots, n\} \to \mathbb{R}^m$$

imperative specification

$$y = \frac{1}{n} \sum_{i=1}^{n} x_i$$

declarative specification

$$y = \operatorname{argmin}_{u \in \mathbb{R}^m} \sum_{i=1}^n \|u - x_i\|^2$$

Average Pooling Example

$$\{x_i \in \mathbb{R}^m \mid i = 1, \dots, n\} \to \mathbb{R}^m$$

imperative specification

$$y = \frac{1}{n} \sum_{i=1}^{n} x_i$$

declarative specification

$$y = \operatorname{argmin}_{u \in \mathbb{R}^m} \sum_{i=1}^n \|u - x_i\|^2$$

can be easily varied, e.g., made robust

$$y = \operatorname{argmin}_{u \in \mathbb{R}^m} \sum_{i=1}^n \phi(u - x_i)$$

for some penalty function ϕ

Average Pooling Example

$$\{x_i \in \mathbb{R}^m \mid i = 1, \dots, n\} \to \mathbb{R}^m$$

declarative specification

$$y = \operatorname{argmin}_{u \in \mathbb{R}^m} \sum_{i=1}^n \|u - x_i\|^2$$

can be easily varied, e.g., made robust

$$y = \operatorname{argmin}_{u \in \mathbb{R}^m} \sum_{i=1}^n \phi(u - x_i)$$

for some penalty function ϕ

Parametrized Optimisation Re-cap

Think of y and an implicit function of x (wlog we'll ignore θ from here on),

 $y(x) = \operatorname{argmin}_{u \in C(x)} f(x, u)$

Parametrized Optimisation Re-cap

Think of y and an implicit function of x (wlog we'll ignore θ from here on),

 $y(x) = \operatorname{argmin}_{u \in C(x)} f(x, u)$

Main question: How do we compute $\frac{d}{dx} \operatorname{argmin}_{u \in C(x)} f(x, u)$?

Stephen Gould, RVSS 2024

Computing $\frac{\mathrm{d}}{\mathrm{d}x} \operatorname{argmin}_{u \in C(x)} f(x, u)$

explicit from closed-form solution
 e.g., least-squares

Computing $\frac{\mathrm{d}}{\mathrm{d}x} \operatorname{argmin}_{u \in C(x)} f(x, u)$

explicit from closed-form solution

e.g., least-squares

automatic differentiation of forward pass code

e.g., unrolling gradient descent (next)

Computing $\frac{\mathrm{d}}{\mathrm{d}x} \operatorname{argmin}_{u \in C(x)} f(x, u)$

explicit from closed-form solution

- e.g., least-squares
- automatic differentiation of forward pass code
 - e.g., unrolling gradient descent (next)
- implicit differentiation of optimality conditions (later)
 - allows non-differentiable steps in the forward pass
 - no need to store intermediate calculations

Unrolling Gradient Descent

repeat until convergence:

$$y_t \leftarrow y_{t-1} - \eta \frac{\partial f}{\partial y}(x, y_{t-1})$$

Unrolling Gradient Descent

repeat until convergence:

$$y_t \leftarrow y_{t-1} - \eta \frac{\partial f}{\partial y}(x, y_{t-1})$$

Dini's Implicit Function Theorem

Consider the solution mapping associated with the equation f(x, u) = 0,

$$Y: x \mapsto \{u \in \mathbb{R}^m \mid f(x, u) = 0\}$$
 for $x \in \mathbb{R}^n$.

We are interested in how elements of Y(x) change as a function of x.

Dini's Implicit Function Theorem

Consider the solution mapping associated with the equation f(x, u) = 0,

$$Y: x \mapsto \{u \in \mathbb{R}^m \mid f(x, u) = 0\}$$
 for $x \in \mathbb{R}^n$.

We are interested in how elements of Y(x) change as a function of x.

Theorem

Let $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be differentiable in a neighbourhood of (x, u) and such that f(x, u) = 0, and let $\frac{\partial}{\partial u} f(x, u)$ be nonsingular. Then the solution mapping Y has a single-valued localization y around x for u which is differentiable in a neighbourhood \mathcal{X} of x with Jacobian satisfying

$$\frac{dy(x)}{dx} = -\left(\frac{\partial f(x, y(x))}{\partial y}\right)^{-1} \frac{\partial f(x, y(x))}{\partial x}$$

for every $x \in \mathcal{X}$.

Stephen Gould, RVSS 2024
Unit Circle Example

$$f(x,y) = x^{2} + y^{2} - 1$$
$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\left(\frac{\partial f}{\partial y}\right)^{-1} \left(\frac{\partial f}{\partial x}\right)$$
$$= -\left(\frac{1}{2y}\right)(2x) = -\frac{x}{y}$$

Stephen Gould, RVSS 2024

Differentiating Unconstrained Optimisation Problems

Let $f:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ be twice differentiable and let

 $y(x) \in \operatorname{argmin}_u f(x, u)$

then for non-zero Hessian

$$\frac{\mathrm{d}y(x)}{\mathrm{d}x} = -\left(\frac{\partial^2 f}{\partial y^2}\right)^{-1} \frac{\partial^2 f}{\partial x \partial y}$$

Differentiating Unconstrained Optimisation Problems

Let $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be twice differentiable and let

 $y(x) \in \operatorname{argmin}_{u} f(x, u)$

then for non-zero Hessian

$$\frac{\mathrm{d}y(x)}{\mathrm{d}x} = -\left(\frac{\partial^2 f}{\partial y^2}\right)^{-1} \frac{\partial^2 f}{\partial x \partial y}.$$

Proof. The derivative of f vanishes at (x, y), i.e., $y \in \operatorname{argmin}_u f(x, u) \implies \frac{\partial f(x, y)}{\partial y} = 0$.

$$\begin{array}{ll} \mathsf{LHS}: & \frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial f(x,y)}{\partial y} & = \frac{\partial^2 f(x,y)}{\partial x \partial y} + \frac{\partial^2 f(x,y)}{\partial y^2}\frac{\mathrm{d}y}{\mathrm{d}x} \\ \mathsf{RHS}: & \frac{\mathrm{d}}{\mathrm{d}x}0 & = 0 \end{array}$$

Equating and rearranging gives the result. Or directly from Dini's implicit function theorem on $\frac{\partial f(x,y)}{\partial y} = 0$.

Differentiable Optimisation: Big Picture Idea

Differentiating (Unconstrained) Optimisation Problems Consider functions $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$. Let

 $y(x) \in \underset{u \in \mathbb{R}^m}{\operatorname{arg\,min}} f(x, u)$

Assume that y(x) exists and that f is twice differentiable in the neighbourhood of (x, y(x)). Then for H non-singular

$$\frac{\mathrm{d}y(x)}{\mathrm{d}x} = -H^{-1}B$$

where

$$B=rac{\partial^2 f(x,y)}{\partial x\partial y}\in \mathbb{R}^{m imes n}$$
 $H=rac{\partial^2 f(x,y)}{\partial y^2}\in \mathbb{R}^{m imes m}$

Differentiating (Unconstrained) Optimisation Problems Consider functions $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$. Let

 $y(x) \in \underset{u \in \mathbb{R}^m}{\operatorname{arg\,min}} f(x, u)$

Assume that y(x) exists and that f is twice differentiable in the neighbourhood of (x, y(x)). Then for H non-singular

$$\frac{\mathrm{d}y(x)}{\mathrm{d}x} = -H^{-1}B$$

where

$$B = rac{\partial^2 f(x,y)}{\partial x \partial y} \in \mathbb{R}^{m imes n}$$
 $H = rac{\partial^2 f(x,y)}{\partial y^2} \in \mathbb{R}^{m imes m}$

This result can be extended to constrained optimisation problems by differentiating optimality conditions, e.g., $\nabla \mathcal{L} = 0$.

Stephen Gould, RVSS 2024

Automatic Differentiation for Differentiable Optimisation

(assuming a closed-form optimal solutions does not exist)

- At one extreme we can try back propagate through the optimisation algorithm (i.e., unrolling the optimisation procedure using automatic differentiation)
- At the other extreme we can use the implicit differentiation result to hand-craft efficient backward pass code
- There are also options in between, e.g.,
 - use automatic differentiation to obtain quantities in expression for $\frac{dy(x)}{dx}$ from software implementations of the objective and (active) constraint functions
 - \blacktriangleright implement the optimality condition $\nabla \mathcal{L}=0$ in software and automatically differentiate that

Vector-Jacobian Product

For brevity consider the unconstrained optimisation case. The backward pass computes

$$\frac{\mathrm{d}L}{\mathrm{d}x} = \frac{\mathrm{d}L}{\mathrm{d}y}\frac{\mathrm{d}y}{\mathrm{d}x}$$
$$= \underbrace{(v^T)}_{\mathbb{R}^{1\times m}}\underbrace{(-H^{-1}B)}_{\mathbb{R}^{m\times n}}$$

evaluation order:
$$-v^T (H^{-1}B)$$
 $(-v^T H^{-1}) B$
 $\cos t^{\dagger}: O(m^2 n + mn)$ $O(m^2 + mn)$

 † assumes H^{-1} is already factored (in $O(m^3)$ if unstructured, less if structured)

Summary and Open Questions

- optimisation problems can be embedded *inside* deep learning models
- back-propagation by either unrolling the optimisation algorithm or implicit differentiation of the optimality conditions
 - ▶ the former is easy to implement using automatic differentiation but memory intensive
 - ▶ the latter requires that solution be strongly convex locally (i.e., invertible H)
 - but does not need to know how the problem was solved, nor store intermediate forward-pass calculations
 - computing H^{-1} may be costly

Summary and Open Questions

- > optimisation problems can be embedded *inside* deep learning models
- back-propagation by either unrolling the optimisation algorithm or implicit differentiation of the optimality conditions
 - ▶ the former is easy to implement using automatic differentiation but memory intensive
 - \blacktriangleright the latter requires that solution be strongly convex locally (i.e., invertible H)
 - but does not need to know how the problem was solved, nor store intermediate forward-pass calculations
 - computing H^{-1} may be costly
- active area of research and many open questions
 - Are declarative nodes slower?
 - Do declarative nodes give theoretical guarantees?
 - How best to handle non-smooth or discrete optimization problems?
 - What about problems with multiple solutions?
 - What if the forward pass solution is suboptimal?
 - Can problems become infeasible during learning?

...

Part III. Applications

Optimal Transport

One view of optimal transport is as a matching problem

- \blacktriangleright from an *m*-by-*n* cost matrix *M*
- \blacktriangleright to an *m*-by-*n* probability matrix *P*,

often formulated with an entropic regularisation term,

 $\begin{array}{ll} \mbox{minimize} & \langle M, P \rangle + \frac{1}{\gamma} \langle P, \log P \rangle \\ \mbox{subject to} & P {\bf 1} = r \\ & P^T {\bf 1} = c \end{array}$

with $\mathbf{1}^T r = \mathbf{1}^T c = 1$.

The row and column sum constraints ensure that P is a doubly stochastic matrix (lies within the convex hull of permutation matrices).

Solving Entropic Optimal Transport

Solution takes the form

$$P_{ij} = \alpha_i \beta_j e^{-\gamma M_{ij}}$$

and can be found using the Sinkhorn algorithm,

• Set $K_{ij} = e^{-\gamma M_{ij}}$ and $\alpha, \beta \in \mathbb{R}^n_{++}$

Iterate until convergence,

```
\begin{array}{l} \alpha \leftarrow r \oslash K\beta \\ \beta \leftarrow c \oslash K^T \alpha \end{array}
```

where \oslash denotes componentwise division

• Return
$$P = \operatorname{diag}(\alpha) K \operatorname{diag}(\beta)$$

Differentiable Optimal Transport

Option 1: back-propagate through Sinkhorn algorithm

Differentiable Optimal Transport

- Option 1: back-propagate through Sinkhorn algorithm
- Option 2: use the implicit differentiation result

Differentiable Optimal Transport

- Option 1: back-propagate through Sinkhorn algorithm
- Option 2: use the implicit differentiation result

(think of vectorising M and P)

Optimal Transport Gradient

Derivation of the optimal transport gradient is quite tedious (see notes). The result:

$$\begin{aligned} \frac{\mathrm{d}L}{\mathrm{d}M} &= \frac{\mathrm{d}L}{\mathrm{d}P} \left(H^{-1} A^T \left(A H^{-1} A^T \right)^{-1} A H^{-1} - H^{-1} \right) B \\ &= \gamma \frac{\mathrm{d}L}{\mathrm{d}P} \mathrm{diag}(P) \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}^T \begin{bmatrix} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{12}^T & \Lambda_{22} \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} \mathrm{diag}(P) - \gamma \frac{\mathrm{d}L}{\mathrm{d}P} \mathrm{diag}(P) \end{aligned}$$

where

$$\begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} \mathbf{0}_n^T & \mathbf{1}_n^T & \dots & \mathbf{0}_n^T \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}_n^T & \mathbf{0}_n^T & \dots & \mathbf{1}_n^T \\ I_{n \times n} & I_{n \times n} & \dots & I_{n \times n} \end{bmatrix} \qquad \begin{pmatrix} AH^{-1}A^T \end{pmatrix}^{-1} = \frac{1}{\gamma} \begin{bmatrix} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{12}^T & \Lambda_{22} \end{bmatrix} \\ = \frac{1}{\gamma} \begin{bmatrix} \mathsf{diag}(r_{2:m}) & P_{2:m,1:n} \\ P_{2:m,1:n}^T & \mathsf{diag}(c) \end{bmatrix}^{-1}$$

Implementation

```
Østaticmethod
   def backward(ctx, dJdP)
3
       # unpacked cached tensors
4
      M. r. c. P = ctx saved tensors
5
       batches, m, n = P, shape
6
7
       # initialize backward gradients (-v^T H^{-1} B)
8
       dLdM = -1.0 * gamma * P * dLdP
9
10
       # compute [vHAt1, vHAt2] = -v^T H^{-1} A^T
11
       vHAt1, vHAt2 = sum(d.IdM[:, 1:m, 0:n], dim=2), sum(d.IdM, dim=1)
13
       # compute [v1, v2] = -v^T H^{-1} A^T (A H^{-1} A^T)^{-1}
14
       P_{over_c} = P[:, 1:m, 0:n] / c.view(batches, 1, n)
15
       lmd 11 = cholesky(diag embed(r[:, 1:m]) - bmm(P[:, 1:m, 0:n], P over c.transpose(1, 2)))
16
       lmd_{12} = cholesky_solve(P_over_c, lmd_{11})
17
       lmd_22 = diag_embed(1.0 / c) + bmm(lmd_12.transpose(1, 2), P_over_c)
18
19
       v1 = torch.cholesky_solve(vHAt1, lmd_11) - torch.bmm(lmd_12, vHAt2)
20
       v2 = torch.bmm(lmd_22, vHAt2) - torch.bmm(lmd_12.transpose(1, 2), vHAt1)
21
22
       # compute v^T H^{-1} A^T (A H^{-1} A^T)^{-1} A H^{-1} B - v^T H^{-1} B
23
       dLdM[:, 1:m, 0:n] -= v1.view(batches, m-1, 1) * P[:, 1:m, 0:n]
       dJdM -= v2.view(batches, 1. n) * P
24
25
26
       # return gradients
27
       return d.IdM
```

Running Time

Memory Usage

Application to Blind Perspective-n-Point (Campbell et al., ECCV 2020)

find the location where the photograph was taken

Coupled Problem

 if we knew correspondences then determining camera pose would be easy if we knew camera pose then determining correspondences would be easy

Blind Perspective-n-Point Network Architecture

Blind Perspective-n-Point Results

more examples

Further Resources

Diving deeper from here?

background reading

- Deep declarative networks (http://deepdeclarativenetworks.com)
 - Iots of small code examples and tutorials
- CVXPyLayers (https://github.com/cvxgrp/cvxpylayers)
- Theseus (https://sites.google.com/view/theseus-ai)
- JAXopt (https://github.com/google/jaxopt)

lecture notes available at https://users.cecs.anu.edu.au/~sgould

break-out slides

automatic differentiation

Toy Example: Babylonian Algorithm .

Consider the following implementation for a forward operation:

1: procedure FWDFCN(x) 2: $y_0 \leftarrow \frac{1}{2}x$ 3: for t = 1, ..., T do 4: $y_t \leftarrow \frac{1}{2} \left(y_{t-1} + \frac{x}{y_{t-1}} \right)$ 5: end for 6: return y_T 7: end procedure

Toy Example: Babylonian Algorithm .

Consider the following implementation for a forward operation:

1: procedure FWDFCN(x) 2: $y_0 \leftarrow \frac{1}{2}x$ 3: for t = 1, ..., T do 4: $y_t \leftarrow \frac{1}{2} \left(y_{t-1} + \frac{x}{y_{t-1}} \right)$ 5: end for 6: return y_T 7: end procedure Automatic differentiation algorithmically generates the backward code:

1: procedure BCKFCN $(x, y_T, \frac{dL}{dy_T})$
2: $\frac{\mathrm{d}L}{\mathrm{d}x} \leftarrow 0$
3: for $t = T, \ldots, 1$ do
$\partial y_t / \partial x$
4: $\frac{\mathrm{d}L}{\mathrm{d}x} \leftarrow \frac{\mathrm{d}L}{\mathrm{d}x} + \frac{\mathrm{d}L}{\mathrm{d}y_t} \left(\frac{1}{2y_{t-1}}\right)$
5: $\frac{\mathrm{d}L}{\mathrm{d}y_{t-1}} \leftarrow \frac{\mathrm{d}L}{\mathrm{d}y_t} \left(\frac{1}{2} - \frac{x}{2y_{t-1}^2}\right)$
$\partial y_t / \partial y_{t-1}$
6: end for
7: $\frac{\mathrm{d}L}{\mathrm{d}x} \leftarrow \frac{\mathrm{d}L}{\mathrm{d}x} + \frac{\mathrm{d}L}{\mathrm{d}y_0} \frac{1}{2}$
8: return $\frac{dL}{dr}$
9: end procedure

Toy Example: Babylonian Algorithm ...

Consider the following implementation for a forward operation:

1: procedure FwDFCN(x) 2: $y_0 \leftarrow \frac{1}{2}x$ 3: for t = 1, ..., T do 4: $y_t \leftarrow \frac{1}{2} \left(y_{t-1} + \frac{x}{y_{t-1}} \right)$ 5: end for 6: return y_T 7: end procedure

- computes $y = \sqrt{x}$
- derivative computed directly is $\frac{dy}{dx} = \frac{1}{2\sqrt{x}} = \frac{1}{2y}$

Automatic differentiation algorithmically generates the backward code:

1: procedure BCKFCN $(x, y_T, \frac{dL}{dy_T})$
2: $\frac{\mathrm{d}L}{\mathrm{d}r} \leftarrow 0$
3: for $t = T, \ldots, 1$ do
$\partial y_t / \partial x$
4: $\frac{\mathrm{d}L}{\mathrm{d}x} \leftarrow \frac{\mathrm{d}L}{\mathrm{d}x} + \frac{\mathrm{d}L}{\mathrm{d}y_t} \left(\frac{1}{2y_{t-1}}\right)$
5: $\frac{\mathrm{d}L}{\mathrm{d}y_{t-1}} \leftarrow \frac{\mathrm{d}L}{\mathrm{d}y_t} \left(\frac{1}{2} - \frac{x}{2y_{t-1}^2}\right)$
$\partial y_t / \partial y_{t-1}$
6: end for
7: $\frac{\mathrm{d}L}{\mathrm{d}x} \leftarrow \frac{\mathrm{d}L}{\mathrm{d}x} + \frac{\mathrm{d}L}{\mathrm{d}y_0} \frac{1}{2}$
8: return $\frac{dL}{dr}$
9: end procedure

Computation Graph for Babylonian Algorithm .

$$y_T = f(x, f(x, f(x, \dots f(x, \frac{1}{2}x))))$$
 with $f(x, y) = \frac{1}{2}\left(y + \frac{x}{y}\right)$

Computation Graph for Babylonian Algorithm .

$$y_T = f(x, f(x, f(x, \dots f(x, \frac{1}{2}x))))$$
 with $f(x, y) = \frac{1}{2} \left(y + \frac{x}{y} \right)$

$$\frac{\mathrm{d}L}{\mathrm{d}x} = \frac{\mathrm{d}L}{\mathrm{d}y_T} \left(\frac{\partial y_T}{\partial x} + \frac{\partial y_T}{\partial y_{T-1}} \left(\frac{\partial y_{T-1}}{\partial x} + \frac{\partial y_{T-1}}{\partial y_{T-2}} \left(\dots + \frac{\partial y_0}{\partial x} \right) \right) \right)$$

least squares

Least Squares Backward Pass Derivation ...

Differentiating x^{\star} with respect to single element A_{ij} , we have

$$\frac{\mathrm{d}}{\mathrm{d}A_{ij}}x^{\star} = \frac{\mathrm{d}}{\mathrm{d}A_{ij}} \left(A^{T}A\right)^{-1} A^{T}b$$
$$= \left(\frac{\mathrm{d}}{\mathrm{d}A_{ij}} \left(A^{T}A\right)^{-1}\right) A^{T}b + \left(A^{T}A\right)^{-1} \left(\frac{\mathrm{d}}{\mathrm{d}A_{ij}} A^{T}b\right)$$

Using the identity $\frac{d}{dz}Z^{-1} = -Z^{-1}\left(\frac{d}{dz}Z\right)Z^{-1}$ we get, for the first term,

$$\frac{\mathrm{d}}{\mathrm{d}A_{ij}} \left(A^{T}A\right)^{-1} = -\left(A^{T}A\right)^{-1} \left(\frac{\mathrm{d}}{\mathrm{d}A_{ij}} \left(A^{T}A\right)\right) \left(A^{T}A\right)^{-1}$$
$$= -\left(A^{T}A\right)^{-1} \left(E_{ij}^{T}A + A^{T}E_{ij}\right) \left(A^{T}A\right)^{-1}$$

where E_{ij} is a matrix with one in the (i, j)-th element and zeros elsewhere. Furthermore, for the second term,

$$\frac{\mathsf{d}}{\mathsf{d}A_{ij}}A^Tb = E_{ij}^Tb$$

Least Squares Backward Pass Derivation (cont.)

Plugging these back into parent equation we have

$$\frac{d}{dA_{ij}}x^{\star} = -(A^{T}A)^{-1}(E_{ij}^{T}A + A^{T}E_{ij})(A^{T}A)^{-1}A^{T}b + (A^{T}A)^{-1}E_{ij}^{T}b$$
$$= -(A^{T}A)^{-1}(E_{ij}^{T}A + A^{T}E_{ij})x^{\star} + (A^{T}A)^{-1}E_{ij}^{T}b$$
$$= -(A^{T}A)^{-1}(E_{ij}^{T}(Ax^{\star} - b) + A^{T}E_{ij}x^{\star})$$
$$= -(A^{T}A)^{-1}((a_{i}^{T}x^{\star} - b_{i})e_{j} + x_{j}^{\star}a_{i})$$

where $e_j = (0, 0, ..., 1, 0, ...) \in \mathbb{R}^n$ is the *j*-th canonical vector, i.e., vector with a one in the *j*-th component and zeros everywhere else, and $a_i^T \in \mathbb{R}^{1 \times n}$ is the *i*-th row of matrix A.

Least Squares Backward Pass Derivation (cont.)

Let $r = b - Ax^*$ and let v^T denote the backward coming gradient $\frac{d}{dx^*}L$. Then

$$\frac{\mathrm{d}L}{\mathrm{d}A_{ij}} = v^T \frac{\mathrm{d}x^*}{\mathrm{d}A_{ij}}$$
$$= v^T (A^T A)^{-1} (r_i e_j - x_j^* a_i)$$
$$= w^T (r_i e_j - x_j^* a_i)$$
$$= r_i w_j - w^T a_i x_j^*$$

where $w = (A^T A)^{-1} v$. We can compute the entire matrix of $m \times n$ derivatives efficiently as the sum of outer products

$$\left(\frac{\mathrm{d}L}{\mathrm{d}A}\right)^T = \left[\frac{\mathrm{d}L}{\mathrm{d}A_{ij}}\right]_{\substack{i=1,\dots,m\\j=1,\dots,n}} = wr^T - x^*(Aw)^T$$
differentiating equality constrained problems

Differentiating Equality Constrained Optimisation Problems \bigoplus back Consider functions $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ and $h : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^q$. Let

$$y(x) \in \underset{u \in \mathbb{R}^m}{\operatorname{arg\,min}} f(x, u)$$

subject to $h(x, u) = 0_0$

Assume that y(x) exists, that f and h are twice differentiable in the neighbourhood of (x, y(x)), and that $\operatorname{rank}(\frac{\partial h(x,y)}{\partial y}) = q$.

Differentiating Equality Constrained Optimisation Problems Consider functions $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ and $h : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^q$. Let

$$y(x) \in \operatorname*{arg\,min}_{u \in \mathbb{R}^m} f(x, u)$$

subject to $h(x, u) = 0_d$

Assume that y(x) exists, that f and h are twice differentiable in the neighbourhood of (x, y(x)), and that $\operatorname{rank}(\frac{\partial h(x,y)}{\partial y}) = q$. Then for H non-singular

$$\frac{\mathrm{d}y(x)}{\mathrm{d}x} = H^{-1}A^{T}(AH^{-1}A^{T})^{-1}(AH^{-1}B - C) - H^{-1}B$$

where

$$\begin{split} A &= \frac{\partial h(x,y)}{\partial y} \in \mathbb{R}^{q \times m} \quad B = \frac{\partial^2 f(x,y)}{\partial x \partial y} - \sum_{i=1}^q \nu_i \frac{\partial^2 h_i(x,y)}{\partial x \partial y} \in \mathbb{R}^{m \times n} \\ C &= \frac{\partial h(x,y)}{\partial x} \in \mathbb{R}^{q \times n} \quad H = \frac{\partial^2 f(x,y)}{\partial y^2} - \sum_{i=1}^q \nu_i \frac{\partial^2 h_i(x,y)}{\partial y^2} \in \mathbb{R}^{m \times m} \end{split}$$

and
$$\nu \in \mathbb{R}^q$$
 satisfies $\nu^T A = \frac{\partial f(x,y)}{\partial y}$.

Stephen Gould, RVSS 2024

Dealing with Inequality Constraints ...

$$\begin{array}{l} y(x) \in \mathop{\arg\min}_{u \in \mathbb{R}^m} \; f_0(x,u) \\ \text{subject to} \; & h_i(x,u) = 0, \; i = 1, \dots, q \\ & f_i(x,u) \leq 0, \; i = 1, \dots, p. \end{array}$$

- Replace inequality constraints with log-barrier approximation
- Treat as equality constraints if active (y₂ or y₃) and ignore otherwise (y₁ or y₃)
 - may lead to one-sided gradients since $\nu \succeq 0$

eigen decomposition

Deriving the Gradient for Eigen Decomposition .

Implicit differentiation of the optimality conditions with respect to X_{ij} gives,

$$\frac{\mathrm{d}}{\mathrm{d}X_{ij}}(Xy - \lambda_{\max}y) = \frac{1}{2}(E_{ij} + E_{ji})y - \frac{\mathrm{d}\lambda_{\max}}{\mathrm{d}X_{ij}}y + (X - \lambda_{\max}I)\frac{\mathrm{d}y}{\mathrm{d}X_{ij}} = 0$$
(1)

$$\frac{\mathrm{d}}{\mathrm{d}X_{ij}}(y^T y - 1) = 2y^T \frac{\mathrm{d}y}{\mathrm{d}X_{ij}} = 0$$
⁽²⁾

Pre-multiplying (1) by y^T , and using (2) and $y^Ty=1$, we get

$$\frac{\mathrm{d}\lambda_{\max}}{\mathrm{d}X_{ij}} = \frac{1}{2}y^T (E_{ij} + E_{ji})y$$

Pre-multiplying (1) by $(X - \lambda_{\max}I)^{\dagger}$, we get

$$\begin{aligned} \frac{1}{2} (X - \lambda_{\max}I)^{\dagger} (E_{ij} + E_{ji})y - (X - \lambda_{\max}I)^{\dagger} \frac{\mathrm{d}\lambda_{\max}}{\mathrm{d}X_{ij}}y + \frac{\mathrm{d}y}{\mathrm{d}X_{ij}} &= 0\\ \therefore \ \frac{\mathrm{d}y}{\mathrm{d}X_{ij}} &= -\frac{1}{2} (X - \lambda_{\max}I)^{\dagger} (E_{ij} + E_{ji})y \end{aligned}$$

since
$$(X - \lambda_{\max}I)^{\dagger} \frac{\mathrm{d}\lambda_{\max}}{\mathrm{d}X_{ij}} y = \frac{\mathrm{d}\lambda_{\max}}{\mathrm{d}X_{ij}} (X - \lambda_{\max}I)^{\dagger}y = 0$$
 since if $Az = 0$, then $A^{\dagger}z = 0$.

Stephen Gould, RVSS 2024

additional examples

Differentiable Eigen Decomposition

Finding the eigenvector corresponding to the maximum eigenvalue of a real symmetric matrix $X \in \mathbb{R}^{m \times m}$ can be formulated as

maximize (over
$$u \in \mathbb{R}^m$$
) $u^T X u$
subject to $u^T u = 1$

which has applications in, for example, back propagating through normalized cuts.

Differentiable Eigen Decomposition

Finding the eigenvector corresponding to the maximum eigenvalue of a real symmetric matrix $X \in \mathbb{R}^{m \times m}$ can be formulated as

maximize (over
$$u \in \mathbb{R}^m$$
) $u^T X u$
subject to $u^T u = 1$

which has applications in, for example, back propagating through normalized cuts. Optimality conditions (for solution y) are

$$Xy = \lambda_{\max}y$$
 and $y^Ty = 1$.

Differentiable Eigen Decomposition

Finding the eigenvector corresponding to the maximum eigenvalue of a real symmetric matrix $X \in \mathbb{R}^{m \times m}$ can be formulated as

maximize (over
$$u \in \mathbb{R}^m$$
) $u^T X u$
subject to $u^T u = 1$

which has applications in, for example, back propagating through normalized cuts. Optimality conditions (for solution y) are

$$Xy = \lambda_{\max}y$$
 and $y^Ty = 1$.

Taking derivatives with respect to components of X we get,

$$rac{\mathrm{d}y}{\mathrm{d}X_{ij}} = -rac{1}{2}(X-\lambda_{\mathsf{max}}I)^{\dagger}(E_{ij}+E_{ji})y \quad \in \mathbb{R}^m$$

derivation

PyTorch Implementation

```
class EigenDecompositionFcn(torch.autograd.Function);
2
       """PvTorch autograd function for eigen decomposition."""
 3
4
       Østaticmethod
5
       def forward(ctx, X):
6
           B, M, N = X.shape
7
8
           # use torch's eigh function to find the eigenvalues and eigenvectors of a symmetric matrix
9
           with torch.no grad():
               lmd, Y = torch.linalg.eigh(0.5 * (X + X.transpose(1, 2)))
11
           ctx.save_for_backward(lmd. Y)
           return Y
14
15
       Østaticmethod
16
       def backward(ctx, dJdY):
           lmd. Y = ctx.saved_tensors
18
           B, M, N = Y.shape
19
20
           # compute all pseudo-inverses simultaneously
21
           L = lmd.view(B, 1, M) - lmd.view(B, M, 1)
           L = torch.where(torch.abs(L) \leq eps. 0.0. 1.0 / L)
24
           # compute full gradient over all eigenvectors
25
           dJdX = torch.bmm(torch.bmm(Y. L * torch.bmm(Y.transpose(1, 2), dJdY)), Y.transpose(1, 2))
26
           dJdX = 0.5 * (dJdX + dJdX.transpose(1, 2))
27
28
           return dIdX
```

Experiment back

