$$
\text { A into } \frac{d}{d n}\left[\begin{array}{l}
\text { deep } \\
\text { declarative } \\
\text { networks }
\end{array}\right]
$$

Stephen Gould
stephen.gould@anu.edu.au

Robotic Vision Summer School (RVSS), 2024
Australian National University
9 February 2024

Discovery of Ceres

Discovery of Ceres

Discovery of Ceres

Discovery of Ceres

Optimisation is Everywhere

- financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets

Optimisation is Everywhere

- financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets
- mechanical engineering: maximise the span of a bridge subject to load constraints; minimise drag on a vehicle subject to volume constraints

Optimisation is Everywhere

- financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets
- mechanical engineering: maximise the span of a bridge subject to load constraints; minimise drag on a vehicle subject to volume constraints
- electrical engineering: minimise the size of a transistor in a circuit subject to power and timing constraints

Optimisation is Everywhere

- financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets
- mechanical engineering: maximise the span of a bridge subject to load constraints; minimise drag on a vehicle subject to volume constraints
- electrical engineering: minimise the size of a transistor in a circuit subject to power and timing constraints
- logistics and planning: find the cheapest way to distribute goods from suppliers to consumers across a transportation network

Optimisation is Everywhere

- financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets
- mechanical engineering: maximise the span of a bridge subject to load constraints; minimise drag on a vehicle subject to volume constraints
- electrical engineering: minimise the size of a transistor in a circuit subject to power and timing constraints
- logistics and planning: find the cheapest way to distribute goods from suppliers to consumers across a transportation network
- statistics/data science: curve fitting and data visualisation

Optimisation is Everywhere

- financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets
- mechanical engineering: maximise the span of a bridge subject to load constraints; minimise drag on a vehicle subject to volume constraints
- electrical engineering: minimise the size of a transistor in a circuit subject to power and timing constraints
- logistics and planning: find the cheapest way to distribute goods from suppliers to consumers across a transportation network
- statistics/data science: curve fitting and data visualisation
- robotics: optimise control parameters to achieve some goal state or trajectory; simultaneous localisation and mapping (SLAM); point/feature matching

Optimisation is Everywhere

- financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets
- mechanical engineering: maximise the span of a bridge subject to load constraints; minimise drag on a vehicle subject to volume constraints
- electrical engineering: minimise the size of a transistor in a circuit subject to power and timing constraints
- logistics and planning: find the cheapest way to distribute goods from suppliers to consumers across a transportation network
- statistics/data science: curve fitting and data visualisation
- robotics: optimise control parameters to achieve some goal state or trajectory; simultaneous localisation and mapping (SLAM); point/feature matching
- machine learning and deep learning: minimise loss functions with respect to the parameters of our model

Optimisation Problems

find an assignment to variables that minimises a measure of cost subject to some constraints ${ }^{1}$
${ }^{1}$ In these lectures we will be concerned with continuous-valued variables

Optimisation Problems

$$
\begin{array}{ll}
\text { minimize (over } x) & \text { objective }(x) \\
\text { subject to } & \text { constraints }(x)
\end{array}
$$

Optimisation Problems

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, p \\
& h_{i}(x)=0, \quad i=1, \ldots, q
\end{array}
$$

- $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ - optimisation variables
- $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ - objective (or cost or loss) function
- $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1, \ldots, p$ - inequality constraint functions
- $h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1, \ldots, q$ - equality constraint functions

Least Squares

$$
\operatorname{minimize}\|A x-b\|_{2}^{2}
$$

Least Squares

$$
\operatorname{minimize}\|A x-b\|_{2}^{2}
$$

- unique solution if $A^{T} A$ is invertible, $x^{\star}=\left(A^{T} A\right)^{-1} A^{T} b$
- solution via SVD, $A=U \Sigma V^{T}$, if $A^{T} A$ not invertible, $x^{\star}=V \Sigma^{-1} U^{T} b$
- in fact, $x^{\star}+w$ for any $w \in \mathcal{N}(A)$ also a solution
- solution via QR factorisation, $x^{\star}=R^{-1} Q^{T} b$
- solved in $O\left(n^{2} m\right)$ time, less if structured
- typically use iterative solver (for large scale problems)

Example: Polynomial Curve Fitting

fit n-th order polynomial $f_{a}(x)=\sum_{k=0}^{n} a_{k} x^{k}$ to set of noisy points $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{m}$ (here a are the variables, and x and y are the data)
minimize (over $a) \quad \sum_{i=1}^{m}\left(f_{a}\left(x_{i}\right)-y_{i}\right)^{2}$

$$
\operatorname{minimize}\left\|\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{m} & x_{m}^{2} & \ldots & x_{m}^{n}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]-\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]\right\|_{2}^{2}
$$

Part I. Machine Learning and Deep Learning

Machine Learning from 10,000ft

Machine Learning from 10,000ft

$$
\text { minimize }(\operatorname{over} \theta) \quad \sum_{(x, y) \sim \mathcal{X} \times \mathcal{Y}} L\left(f_{\theta}(x), y\right)
$$

- loss L - what to do
- model f_{θ} - how to do it
- optimised by gradient descent (or variant thereof)

Deep Learning as an End-to-end Computation Graph

Deep learning does this by constructing the model f_{θ} (equiv. computation graph) as the composition of many simple parametrized functions (equiv. computation nodes).

Backward Pass Gradient Calculation

Example 1.

$$
\frac{\partial L}{\partial \theta_{7}}=\frac{\partial L}{\partial y} \frac{\partial y}{\partial z_{7}} \frac{\partial z_{7}}{\partial \theta_{7}}
$$

Backward Pass Gradient Calculation

Example 2.

$$
\frac{\partial L}{\partial \theta_{1}}=\frac{\partial L}{\partial y}\left(\frac{\partial y}{\partial z_{4}} \frac{\partial z_{4}}{\partial z_{3}} \frac{\partial z_{3}}{\partial z_{2}} \frac{\partial z_{2}}{\partial z_{1}}+\frac{\partial y}{\partial z_{7}} \frac{\partial z_{7}}{\partial z_{6}} \frac{\partial z_{6}}{\partial z_{5}} \frac{\partial z_{5}}{\partial z_{4}}\right) \frac{\partial z_{1}}{\partial \theta_{1}}
$$

Deep Learning Node

- Forward pass: compute output y as a function of the input x (and model parameters θ).
- Backward pass: compute the derivative of the loss with respect to the input x (and model parameters θ) given the derivative of the loss with respect to the output y.

Aside: Notation (Often Sloppy)

For scalar-valued functions:

$$
\text { total derivative: } \frac{\mathrm{d} f}{\mathrm{~d} x} \quad \text { partial derivative: } \quad \frac{\partial f}{\partial x}
$$

Aside: Notation (Often Sloppy)

For scalar-valued functions:

$$
\text { total derivative: } \frac{\mathrm{d} f}{\mathrm{~d} x} \quad \text { partial derivative: } \quad \frac{\partial f}{\partial x}
$$

For multi-dimensional vector-valued functions, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} x} f(x)=\left[\begin{array}{ccc}
\frac{\mathrm{d} f_{1}}{\mathrm{~d} x_{1}} & \cdots & \frac{\mathrm{~d} f_{1}}{\mathrm{~d} x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\mathrm{~d} f_{m}}{\mathrm{~d} x_{1}} & \cdots & \frac{\mathrm{~d} f_{m}}{\mathrm{~d} x_{n}}
\end{array}\right] \in \mathbb{R}^{m \times n} \quad\left(\frac{\partial}{\partial x} f(x, y) \text { for partial }\right)
$$

Sometimes D and D_{X} for $\frac{\mathrm{d}}{\mathrm{d} x}$ and $\frac{\partial}{\partial x}$, respectively.

Aside: Notation (Often Sloppy)

For scalar-valued functions:

$$
\text { total derivative: } \frac{\mathrm{d} f}{\mathrm{~d} x} \quad \text { partial derivative: } \quad \frac{\partial f}{\partial x}
$$

For multi-dimensional vector-valued functions, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} x} f(x)=\left[\begin{array}{ccc}
\frac{\mathrm{d} f_{1}}{\mathrm{~d} x_{1}} & \cdots & \frac{\mathrm{~d} f_{1}}{\mathrm{~d} x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\mathrm{~d} f_{m}}{\mathrm{~d} x_{1}} & \cdots & \frac{\mathrm{~d} f_{m}}{\mathrm{~d} x_{n}}
\end{array}\right] \in \mathbb{R}^{m \times n} \quad\left(\frac{\partial}{\partial x} f(x, y) \text { for partial }\right)
$$

Sometimes D and D_{X} for $\frac{\mathrm{d}}{\mathrm{d} x}$ and $\frac{\partial}{\partial x}$, respectively.
Mathematically, derivatives with respect to (scalar-valued) loss functions are row vectors ($m=1$).

Concerning Memory

- data is often processed in batches $(B \times N \times \cdots \times C)$

Concerning Memory

- data is often processed in batches $(B \times N \times \cdots \times C)$

Concerning Memory

- data is often processed in batches $(B \times N \times \cdots \times C)$

Concerning Memory

- data is often processed in batches $(B \times N \times \cdots \times C)$

Concerning Memory

- data is often processed in batches $(B \times N \times \cdots \times C)$

Concerning Memory

- data is often processed in batches $(B \times N \times \cdots \times C)$

- parameters (usually) only take a small amount of memory (relative to data)
- derivatives take the same amount of space as the data and stored transposed!
- in-place operations may save memory in the forward pass
- re-using buffers may save memory in the backward pass
- at test time intermediate results are not stored

Quick Quiz

Quick Quiz

$$
y=A x
$$

Quick Quiz

$$
y=A x
$$

$$
\begin{aligned}
\frac{\mathrm{d} L}{\mathrm{~d} x} & =\frac{\mathrm{d} L}{\mathrm{~d} y} \frac{\mathrm{~d} y}{\mathrm{~d} x} \\
& =\frac{\mathrm{d} L}{\mathrm{~d} y} A
\end{aligned}
$$

Quick Quiz

$$
\begin{aligned}
& x \xrightarrow[\frac{\mathrm{~d} x}{\mathrm{~d} x} L]{\substack{\mathrm{d} y}} \begin{aligned}
\frac{\mathrm{d} L}{\mathrm{~d} x} & =\frac{\mathrm{d} L}{\mathrm{~d} y} \frac{\mathrm{~d} y}{\mathrm{~d} x} \\
& =\frac{\mathrm{d} L}{\mathrm{~d} y} A
\end{aligned}
\end{aligned}
$$

- forward pass $O\left(n^{2}\right)$, less if A is structured
- backward pass costs same as forward pass

Quick Quiz (2)

$$
A y=x
$$

Quick Quiz (2)

$$
\begin{aligned}
A y & =x \\
\therefore y & =A^{-1} x
\end{aligned}
$$

$$
\begin{aligned}
\frac{\mathrm{d} L}{\mathrm{~d} x} & =\frac{\mathrm{d} L}{\mathrm{~d} y} \frac{\mathrm{~d} y}{\mathrm{~d} x} \\
& =\frac{\mathrm{d} L}{\mathrm{~d} y} A^{-1}
\end{aligned}
$$

Quick Quiz (2)

$$
\begin{aligned}
A y & =x & \frac{\mathrm{~d} L}{\mathrm{~d} x} & =\frac{\mathrm{d} L}{\mathrm{~d} y} \frac{\mathrm{~d} y}{\mathrm{~d} x} \\
\therefore y & =A^{-1} x & & =\frac{\mathrm{d} L}{\mathrm{~d} y} A^{-1}
\end{aligned}
$$

- forward pass $O\left(n^{3}\right)$, less if structured
- backward pass solves $w=A^{T} v$
- cheaper than forward pass if decomposition of A is cached

Automatic Differentiation (AD)

- algorithmic procedure that produces code for computing exact derivatives
- assumes numeric computations are composed of a small set of elementary operations that we know how to differentiate
- arithmetic, exp, log, trigonometric
- workhorse of modern machine learning that greatly reduces development effort
- roughly speaking, for each line of the forward pass code, $P, Q=f o o(A, B, C)$, autodiff produces a line dLdA, dLdB, dLdC = foo_vjp(dLdP, dLdQ) in the backward pass code

Automatic Differentiation (AD)

- algorithmic procedure that produces code for computing exact derivatives
- assumes numeric computations are composed of a small set of elementary operations that we know how to differentiate
- arithmetic, exp, log, trigonometric
- workhorse of modern machine learning that greatly reduces development effort
- roughly speaking, for each line of the forward pass code, $P, Q=f o o(A, B, C)$, autodiff produces a line dLdA, dLdB, dLdC = foo_vjp(dLdP, dLdQ) in the backward pass code
- but it doesn't always work (see point 2), and when it does work it can be slow and/or memory intensive

Computing $1 / \sqrt{x}$

```
float Q_rsqrt( float number )
{
    long i;
    float x2, y;
    const float threehalfs = 1.5F;
    x2 = number * 0.5F;
    y = number;
    i = * ( long * ) &y; // evil floating point bit level hacking
    i = 0x5f3759df - ( i >> 1 ); // what the f**k?
    y = * ( float * ) &i;
    y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iter
    // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iter, can be removed
    return y;
}
```


Separate Forward and Backward Operations

Part II. Differentiable Optimisation

Bi-level Optimisation: Stackelberg Games

Consider two players, a leader and a follower

- the market dictates the price it's willing to pay for some goods based on supply, i.e., quantity produced by both players, $P\left(q_{1}+q_{2}\right)$

Bi-level Optimisation: Stackelberg Games

Consider two players, a leader and a follower

- the market dictates the price it's willing to pay for some goods based on supply, i.e., quantity produced by both players, $P\left(q_{1}+q_{2}\right)$
- each player has a cost structure associated with producing goods, $C_{i}\left(q_{i}\right)$ and wants to maximize profits, $q_{i} P\left(q_{1}+q_{2}\right)-C_{i}\left(q_{i}\right)$

Bi-level Optimisation: Stackelberg Games

Consider two players, a leader and a follower

- the market dictates the price it's willing to pay for some goods based on supply, i.e., quantity produced by both players, $P\left(q_{1}+q_{2}\right)$
- each player has a cost structure associated with producing goods, $C_{i}\left(q_{i}\right)$ and wants to maximize profits, $q_{i} P\left(q_{1}+q_{2}\right)-C_{i}\left(q_{i}\right)$
- the leader picks a quantity of goods to produce knowing that the follower will respond optimally. In other words, the leader solves

$$
\begin{array}{ll}
\operatorname{maximize}\left(\text { over } q_{1}\right) & q_{1} P\left(q_{1}+q_{2}\right)-C_{1}\left(q_{1}\right) \\
\text { subject to } & q_{2} \in \operatorname{argmax}_{q} q P\left(q_{1}+q\right)-C_{2}(q)
\end{array}
$$

Bi-level Optimisation Problems in Machine Learning

- quantities: input x, output y, parameters θ

$$
\begin{array}{ll}
\operatorname{minimize}(\text { over } \theta) & L(x, y ; \theta) \\
\text { subject to } & y \in \operatorname{argmin}_{u \in C(x ; \theta)} f(x, u ; \theta)
\end{array}
$$

- lower-level is an optimisation problem parametrized by x and θ

Bi-level Optimisation Problems in Machine Learning

- quantities: input x, output y, parameters θ

$$
\begin{array}{ll}
\operatorname{minimize}(\text { over } \theta) & L(x, y ; \theta) \\
\text { subject to } & y \in \operatorname{argmin}_{u \in C(x ; \theta)} f(x, u ; \theta)
\end{array}
$$

- lower-level is an optimisation problem parametrized by x and θ
- gradient descent: compute gradient of lower-level solution y with respect to θ, and use the chain rule to get the total derivative,

$$
\theta \leftarrow \theta-\eta\left(\frac{\partial L}{\partial \theta}+\frac{\partial L}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} \theta}\right)
$$

- by back-propagating through the optimisation problem

Differentiable Least Squares

Consider our old friend, the least-squares problem,

$$
\operatorname{minimize} \quad\|A x-b\|_{2}^{2}
$$

parameterized by A and b and with closed-form solution $x^{\star}=\left(A^{T} A\right)^{-1} A^{T} b$.

Differentiable Least Squares

Consider our old friend, the least-squares problem,

$$
\operatorname{minimize}\|A x-b\|_{2}^{2}
$$

parameterized by A and b and with closed-form solution $x^{\star}=\left(A^{T} A\right)^{-1} A^{T} b$.

We are interested in derivatives of the solution with respect to the elements of A,

$$
\frac{\mathrm{d} x^{\star}}{\mathrm{d} A_{i j}}=\frac{\mathrm{d}}{\mathrm{~d} A_{i j}}\left(A^{T} A\right)^{-1} A^{T} b
$$

We could also compute derivatives with respect to elements of b (but not here).

Least Squares Backward Pass

The backward pass combines $\frac{\mathrm{d} x^{\star}}{\mathrm{d} A_{i j}}$ with $v^{T}=\frac{\mathrm{d} L}{\mathrm{~d} x^{\star}}$ via the vector-Jacobian product. After some algebraic manipulation we get

$$
\left(\frac{\mathrm{d} L}{\mathrm{~d} A}\right)^{T}=w r^{T}-x^{\star}(A w)^{T}
$$

where $w^{T}=v^{T}\left(A^{T} A\right)^{-1}$ and $r=b-A x^{\star}$.

Least Squares Backward Pass

The backward pass combines $\frac{\mathrm{d} x^{\star}}{\mathrm{d} A_{i j}}$ with $v^{T}=\frac{\mathrm{d} L}{\mathrm{~d} x^{\star}}$ via the vector-Jacobian product. After some algebraic manipulation we get

$$
\left(\frac{\mathrm{d} L}{\mathrm{~d} A}\right)^{T}=w r^{T}-x^{\star}(A w)^{T}
$$

$\in \mathbb{R}^{m \times n}$
where $w^{T}=v^{T}\left(A^{T} A\right)^{-1}$ and $r=b-A x^{\star}$.

- $\left(A^{T} A\right)^{-1}$ is used in both the forward and backward pass
- factored once to solve for x, e.g., into $A=Q R$
- cache R and re-use when computing gradients

PyTorch Implementation: Forward Pass

```
class LeastSquaresFcn(torch.autograd.Function):
    """PyTorch autograd function for least squares."""
    @staticmethod
    def forward(ctx, A, b):
        B, M, N = A.shape
        assert b.shape == (B, M, 1)
        with torch.no_grad():
            Q, R = torch.linalg.qr(A, mode='reduced')
            x = torch.linalg.solve_triangular(R,
                torch.bmm(b.view(B, 1, M), Q).view(B, N, 1), upper=True)
        # save state for backward pass
        ctx.save_for_backward(A, b, x, R)
        # return solution
        return x
```

$$
\begin{aligned}
A & =Q R \\
x & =R^{-1}\left(Q^{T} b\right)
\end{aligned}
$$

(solves $R x=Q^{T} b$)

PyTorch Implementation: Backward Pass

```
@staticmethod
def backward(ctx, dx):
    # check for None tensors
    if dx is None:
        return None, None
    # unpack cached tensors
    A, b, x, R = ctx.saved_tensors
    B,M,N=A.shape
    dA, db = None, None
    w = torch.linalg.solve_triangular(R,
        torch.linalg.solve_triangular(torch.transpose(R, 2, 1),
        dx, upper=False), upper=True)
    Aw = torch.bmm(A, w)
    if ctx.needs_input_grad [0]:
        r = b - torch.bmm(A, x)
        dA = torch.bmm(r.view (B,M,1), w.view (B,1,N)) - \
            torch.bmm(Aw.view(B,M,1), x.view(B,1,N))
    if ctx.needs_input_grad[1]:
        db}=A
    # return gradients
    return dA, db
```


Imperative vs Declarative Nodes

- imperative node
- input-output relationship explicit,

$$
y=\tilde{f}(x ; \theta)
$$

Imperative vs Declarative Nodes

- imperative node
- input-output relationship explicit,

$$
y=\tilde{f}(x ; \theta)
$$

- declarative node
- input-output relationship specified as solution to an optimisation problem,

$$
y \in \underset{u \in C(x)}{\arg \min } f(x, u ; \theta)
$$

Imperative vs Declarative Nodes

- imperative node
- input-output relationship explicit,

$$
y=\tilde{f}(x ; \theta)
$$

- declarative node
- input-output relationship specified as solution to an optimisation problem,

$$
y \in \underset{u \in C(x)}{\arg \min } f(x, u ; \theta)
$$

can co-exist in the same computation graph (network)

Average Pooling Example

$$
\left\{x_{i} \in \mathbb{R}^{m} \mid i=1, \ldots, n\right\} \rightarrow \mathbb{R}^{m}
$$

- imperative specification
- declarative specification

$$
y=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

$$
y=\operatorname{argmin}_{u \in \mathbb{R}^{m}} \sum_{i=1}^{n}\left\|u-x_{i}\right\|^{2}
$$

Average Pooling Example

$$
\left\{x_{i} \in \mathbb{R}^{m} \mid i=1, \ldots, n\right\} \rightarrow \mathbb{R}^{m}
$$

- imperative specification

$$
y=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- declarative specification

$$
y=\operatorname{argmin}_{u \in \mathbb{R}^{m}} \sum_{i=1}^{n}\left\|u-x_{i}\right\|^{2}
$$

- can be easily varied, e.g., made robust

$$
y=\operatorname{argmin}_{u \in \mathbb{R}^{m}} \sum_{i=1}^{n} \phi\left(u-x_{i}\right)
$$

for some penalty function ϕ

Average Pooling Example

$$
\left\{x_{i} \in \mathbb{R}^{m} \mid i=1, \ldots, n\right\} \rightarrow \mathbb{R}^{m}
$$

- declarative specification

$$
y=\operatorname{argmin}_{u \in \mathbb{R}^{m}} \sum_{i=1}^{n}\left\|u-x_{i}\right\|^{2}
$$

- can be easily varied, e.g., made robust

$$
y=\operatorname{argmin}_{u \in \mathbb{R}^{m}} \sum_{i=1}^{n} \phi\left(u-x_{i}\right)
$$

for some penalty function ϕ

Parametrized Optimisation Re-cap

Think of y and an implicit function of x (wlog we'll ignore θ from here on),

$$
y(x)=\operatorname{argmin}_{u \in C(x)} f(x, u)
$$

input/parameter, x

Parametrized Optimisation Re-cap

Think of y and an implicit function of x (wlog we'll ignore θ from here on),

$$
y(x)=\operatorname{argmin}_{u \in C(x)} f(x, u)
$$

Main question: How do we compute $\frac{\mathrm{d}}{\mathrm{d} x} \operatorname{argmin}_{u \in C(x)} f(x, u)$?

Computing $\frac{\mathrm{d}}{\mathrm{d} x} \operatorname{argmin}_{u \in C(x)} f(x, u)$

- explicit from closed-form solution
- e.g., least-squares

Computing $\frac{\mathrm{d}}{\mathrm{d} x} \operatorname{argmin}_{u \in C(x)} f(x, u)$

- explicit from closed-form solution
- e.g., least-squares
- automatic differentiation of forward pass code
- e.g., unrolling gradient descent (next)

Computing $\frac{\mathrm{d}}{\mathrm{d} x} \operatorname{argmin}_{u \in C(x)} f(x, u)$

- explicit from closed-form solution
- e.g., least-squares
- automatic differentiation of forward pass code
- e.g., unrolling gradient descent (next)
- implicit differentiation of optimality conditions (later)
- allows non-differentiable steps in the forward pass
- no need to store intermediate calculations

Unrolling Gradient Descent

repeat until convergence:

$$
y_{t} \leftarrow y_{t-1}-\eta \frac{\partial f}{\partial y}\left(x, y_{t-1}\right)
$$

Unrolling Gradient Descent

repeat until convergence:

$$
y_{t} \leftarrow y_{t-1}-\eta \frac{\partial f}{\partial y}\left(x, y_{t-1}\right)
$$

$$
\frac{\mathrm{d} y_{t}}{\mathrm{~d} x}=\frac{\partial y_{t}}{\partial x}+\frac{\partial y_{t}}{\partial y_{t-1}} \frac{\mathrm{~d} y_{t-1}}{\mathrm{~d} x}=-\eta \frac{\partial^{2} f}{\partial x \partial y}\left(x, y_{t-1}\right)+\left(I-\eta \frac{\partial^{2} f}{\partial y^{2}}\left(x, y_{t-1}\right)\right) \frac{\mathrm{d} y_{t-1}}{\mathrm{~d} x}
$$

Dini's Implicit Function Theorem

Consider the solution mapping associated with the equation $f(x, u)=0$,

$$
Y: x \mapsto\left\{u \in \mathbb{R}^{m} \mid f(x, u)=0\right\} \text { for } x \in \mathbb{R}^{n}
$$

We are interested in how elements of $Y(x)$ change as a function of x.

Dini's Implicit Function Theorem

Consider the solution mapping associated with the equation $f(x, u)=0$,

$$
Y: x \mapsto\left\{u \in \mathbb{R}^{m} \mid f(x, u)=0\right\} \text { for } x \in \mathbb{R}^{n}
$$

We are interested in how elements of $Y(x)$ change as a function of x.
Theorem
Let $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be differentiable in a neighbourhood of (x, u) and such that $f(x, u)=0$, and let $\frac{\partial}{\partial u} f(x, u)$ be nonsingular. Then the solution mapping Y has a single-valued localization y around x for u which is differentiable in a neighbourhood \mathcal{X} of x with Jacobian satisfying

$$
\frac{d y(x)}{d x}=-\left(\frac{\partial f(x, y(x))}{\partial y}\right)^{-1} \frac{\partial f(x, y(x))}{\partial x}
$$

for every $x \in \mathcal{X}$.

Unit Circle Example

$$
\begin{aligned}
y & = \pm \sqrt{1-x^{2}} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{\mp 2 x}{2 \sqrt{1-x^{2}}}=-\frac{x}{y}
\end{aligned}
$$

$$
\begin{aligned}
f(x, y) & =x^{2}+y^{2}-1 \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =-\left(\frac{\partial f}{\partial y}\right)^{-1}\left(\frac{\partial f}{\partial x}\right) \\
& =-\left(\frac{1}{2 y}\right)(2 x)=-\frac{x}{y}
\end{aligned}
$$

Differentiating Unconstrained Optimisation Problems

Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable and let

$$
y(x) \in \operatorname{argmin}_{u} f(x, u)
$$

then for non-zero Hessian

$$
\frac{\mathrm{d} y(x)}{\mathrm{d} x}=-\left(\frac{\partial^{2} f}{\partial y^{2}}\right)^{-1} \frac{\partial^{2} f}{\partial x \partial y}
$$

Differentiating Unconstrained Optimisation Problems

Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable and let

$$
y(x) \in \operatorname{argmin}_{u} f(x, u)
$$

then for non-zero Hessian

$$
\frac{\mathrm{d} y(x)}{\mathrm{d} x}=-\left(\frac{\partial^{2} f}{\partial y^{2}}\right)^{-1} \frac{\partial^{2} f}{\partial x \partial y}
$$

Proof. The derivative of f vanishes at (x, y), i.e., $y \in \operatorname{argmin}_{u} f(x, u) \Longrightarrow \frac{\partial f(x, y)}{\partial y}=0$.

$$
\begin{aligned}
\text { LHS : } & \frac{\mathrm{d}}{\mathrm{~d} x} \frac{\partial f(x, y)}{\partial y} & =\frac{\partial^{2} f(x, y)}{\partial x \partial y}+\frac{\partial^{2} f(x, y)}{\partial y^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} x} \\
\text { RHS : } & \frac{\mathrm{d}}{\mathrm{~d} x} 0 & =0
\end{aligned}
$$

Equating and rearranging gives the result. Or directly from Dini's implicit function theorem on $\frac{\partial f(x, y)}{\partial y}=0$.

Differentiable Optimisation: Big Picture Idea

Differentiating (Unconstrained) Optimisation Problems

Consider functions $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$. Let

$$
y(x) \in \underset{u \in \mathbb{R}^{m}}{\arg \min } f(x, u)
$$

Assume that $y(x)$ exists and that f is twice differentiable in the neighbourhood of $(x, y(x))$. Then for H non-singular

$$
\frac{\mathrm{d} y(x)}{\mathrm{d} x}=-H^{-1} B
$$

where

$$
B=\frac{\partial^{2} f(x, y)}{\partial x \partial y} \in \mathbb{R}^{m \times n} \quad H=\frac{\partial^{2} f(x, y)}{\partial y^{2}}
$$

Differentiating (Unconstrained) Optimisation Problems

Consider functions $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$. Let

$$
y(x) \in \underset{u \in \mathbb{R}^{m}}{\arg \min } f(x, u)
$$

Assume that $y(x)$ exists and that f is twice differentiable in the neighbourhood of $(x, y(x))$. Then for H non-singular

$$
\frac{\mathrm{d} y(x)}{\mathrm{d} x}=-H^{-1} B
$$

where

$$
B=\frac{\partial^{2} f(x, y)}{\partial x \partial y} \in \mathbb{R}^{m \times n} \quad H=\frac{\partial^{2} f(x, y)}{\partial y^{2}}
$$

This result can be extended to constrained optimisation problems by differentiating optimality conditions, e.g., $\nabla \mathcal{L}=0$.

Automatic Differentiation for Differentiable Optimisation

(assuming a closed-form optimal solutions does not exist)

- At one extreme we can try back propagate through the optimisation algorithm (i.e., unrolling the optimisation procedure using automatic differentiation)
- At the other extreme we can use the implicit differentiation result to hand-craft efficient backward pass code
- There are also options in between, e.g.,
- use automatic differentiation to obtain quantities in expression for $\frac{\mathrm{d} y(x)}{\mathrm{d} x}$ from software implementations of the objective and (active) constraint functions
- implement the optimality condition $\nabla \mathcal{L}=0$ in software and automatically differentiate that

Vector-Jacobian Product

For brevity consider the unconstrained optimisation case. The backward pass computes

$$
\begin{aligned}
\frac{\mathrm{d} L}{\mathrm{~d} x} & =\frac{\mathrm{d} L}{\mathrm{~d} y} \frac{\mathrm{~d} y}{\mathrm{~d} x} \\
& =\underbrace{\left(v^{T}\right)}_{\mathbb{R}^{1 \times m}} \underbrace{\left(-H^{-1} B\right)}_{\mathbb{R}^{m \times n}}
\end{aligned}
$$

evaluation order: $\quad-v^{T}\left(H^{-1} B\right) \quad\left(-v^{T} H^{-1}\right) B$

$$
\text { cost }^{\dagger}: O\left(m^{2} n+m n\right) \quad O\left(m^{2}+m n\right)
$$

${ }^{\dagger}$ assumes H^{-1} is already factored (in $O\left(m^{3}\right)$ if unstructured, less if structured)

Summary and Open Questions

- optimisation problems can be embedded inside deep learning models
- back-propagation by either unrolling the optimisation algorithm or implicit differentiation of the optimality conditions
- the former is easy to implement using automatic differentiation but memory intensive
- the latter requires that solution be strongly convex locally (i.e., invertible H)
- but does not need to know how the problem was solved, nor store intermediate forward-pass calculations
- computing H^{-1} may be costly

Summary and Open Questions

- optimisation problems can be embedded inside deep learning models
- back-propagation by either unrolling the optimisation algorithm or implicit differentiation of the optimality conditions
- the former is easy to implement using automatic differentiation but memory intensive
- the latter requires that solution be strongly convex locally (i.e., invertible H)
- but does not need to know how the problem was solved, nor store intermediate forward-pass calculations
- computing H^{-1} may be costly
- active area of research and many open questions
- Are declarative nodes slower?
- Do declarative nodes give theoretical guarantees?
- How best to handle non-smooth or discrete optimization problems?
- What about problems with multiple solutions?
- What if the forward pass solution is suboptimal?
- Can problems become infeasible during learning?
- ...

Part III. Applications

Optimal Transport

One view of optimal transport is as a matching problem

- from an m-by- n cost matrix M
- to an m-by- n probability matrix P,
often formulated with an entropic regularisation term,

$$
\begin{array}{ll}
\operatorname{minimize} & \langle M, P\rangle+\frac{1}{\gamma}\langle P, \log P\rangle \\
\text { subject to } & P \mathbf{1}=r \\
& P^{T} \mathbf{1}=c
\end{array}
$$

with $\mathbf{1}^{T} r=\mathbf{1}^{T} c=1$.
The row and column sum constraints ensure that P is a
 doubly stochastic matrix (lies within the convex hull of permutation matrices).

Solving Entropic Optimal Transport

Solution takes the form

$$
P_{i j}=\alpha_{i} \beta_{j} e^{-\gamma M_{i j}}
$$

and can be found using the Sinkhorn algorithm,

- Set $K_{i j}=e^{-\gamma M_{i j}}$ and $\alpha, \beta \in \mathbb{R}_{++}^{n}$
- Iterate until convergence,

$$
\begin{aligned}
& \alpha \leftarrow r \oslash K \beta \\
& \beta \leftarrow c \oslash K^{T} \alpha
\end{aligned}
$$

where \oslash denotes componentwise division

- Return $P=\boldsymbol{\operatorname { d i a g }}(\alpha) K \boldsymbol{\operatorname { d i a g }}(\beta)$

Differentiable Optimal Transport

- Option 1: back-propagate through Sinkhorn algorithm

Differentiable Optimal Transport

- Option 1: back-propagate through Sinkhorn algorithm
- Option 2: use the implicit differentiation result

$$
\underbrace{\frac{\mathrm{d} L}{\mathrm{~d} M}}_{m \text {-by-n }}=\underbrace{\frac{\mathrm{d} L}{\mathrm{~d} P}}_{m \text {-by-n }} \overbrace{\frac{\mathrm{d} P}{\mathrm{~d} M}}^{\mathrm{d} M}
$$

Differentiable Optimal Transport

- Option 1: back-propagate through Sinkhorn algorithm
- Option 2: use the implicit differentiation result

$$
\underbrace{\frac{\mathrm{d} L}{\mathrm{~d} M}}_{\text {1-by- } m n}=\underbrace{\frac{\mathrm{d} L}{\mathrm{~d} P}}_{1 \text {-by }-m n} \overbrace{\frac{\mathrm{~d} P}{\mathrm{~d} M}}^{m n \text {-by- } m n} \quad \text { (think of vectorising } M \text { and } P \text {) }
$$

Optimal Transport Gradient

Derivation of the optimal transport gradient is quite tedious (see notes). The result:

$$
\begin{aligned}
\frac{\mathrm{d} L}{\mathrm{~d} M} & =\frac{\mathrm{d} L}{\mathrm{~d} P}\left(H^{-1} A^{T}\left(A H^{-1} A^{T}\right)^{-1} A H^{-1}-H^{-1}\right) B \\
& =\gamma \frac{\mathrm{d} L}{\mathrm{~d} P} \boldsymbol{\operatorname { d i a g }}(P)\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]^{T}\left[\begin{array}{ll}
\Lambda_{11} & \Lambda_{12} \\
\Lambda_{12}^{T} & \Lambda_{22}
\end{array}\right]\left[\begin{array}{c}
A_{1} \\
A_{2}
\end{array}\right] \boldsymbol{\operatorname { d i a g } (P) - \gamma \frac { \mathrm { d } L } { \mathrm { d } P } \operatorname { d i a g } (P)}
\end{aligned}
$$

where

$$
\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]=\left[\begin{array}{cccc}
\mathbf{0}_{n}^{T} & \mathbf{1}_{n}^{T} & \ldots & \mathbf{0}_{n}^{T} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0}_{n}^{T} & \mathbf{0}_{n}^{T} & \ldots & \mathbf{1}_{n}^{T} \\
I_{n \times n} & I_{n \times n} & \ldots & I_{n \times n}
\end{array}\right] \quad\left(A H^{-1} A^{T}\right)^{-1}=\frac{1}{\gamma}\left[\begin{array}{cc}
\Lambda_{11} & \Lambda_{12} \\
\Lambda_{12}^{T} & \Lambda_{22}
\end{array}\right] \quad \text { } \begin{array}{ll}
& =\frac{1}{\gamma}\left[\begin{array}{cc}
\operatorname{diag}\left(r_{2: m}\right) & P_{2: m, 1: n} \\
P_{2: m, 1: n}^{T} & \operatorname{diag}(c)
\end{array}\right]^{-1}
\end{array}
$$

Implementation

```
@staticmethod
def backward(ctx, dJdP)
    # unpacked cached tensors
    M, r, c, P = ctx.saved_tensors
    batches, m, n = P.shape
    # initialize backward gradients (-v^T H^{-1} B)
    dLdM = -1.0 * gamma * P * dLdP
    # compute [vHAt1, vHAt2] = -v^T H^{-1} A^T
    vHAt1, vHAt2 = sum(dJdM[:, 1:m, 0:n], dim=2), sum(dJdM, dim=1)
    # compute [v1, v2] = -v^T H^{-1} A^T (A H^{-1] A^T)^{-1}
    P_over_c = P[:, 1:m, 0:n] / c.view(batches, 1, n)
    lmd_11 = cholesky(diag_embed(r[:, 1:m]) - bmm(P[:,1:m,0:n], P_over_c.transpose(1, 2)))
    lmd_12 = cholesky_solve(P_over_c, lmd_11)
    lmd_22 = diag_embed(1.0 / c) + bmm(lmd_12.transpose(1, 2), P_over_c)
    v1 = torch.cholesky_solve(vHAt1, lmd_11) - torch.bmm(lmd_12, vHAt2)
    v2 = torch.bmm(lmd_22, vHAt2) - torch.bmm(lmd_12.transpose(1, 2), vHAt1)
    # compute v^T H^{-1} A^T (A H^{-1] A^T)^{-1} A H^{-1} B - v^T H^{-1} B
    dLdM[:, 1:m, 0:n] -= v1.view(batches, m-1, 1) * P[:, 1:m, 0:n]
    dJdM -= v2.view(batches, 1, n) * P
    # return gradients
    return dJdM
```


Running Time

Memory Usage

Application to Blind Perspective-n-Point

(Campbell et al., ECCV 2020)

find the location where the photograph was taken

Coupled Problem

- if we knew correspondences then determining camera pose would be easy
- if we knew camera pose then determining correspondences would be easy

Blind Perspective-n-Point Network Architecture

Blind Perspective-n-Point Results

Further Resources

Diving deeper from here?

- background reading

- Deep declarative networks (http://deepdeclarativenetworks.com)
- lots of small code examples and tutorials
- CVXPyLayers (https://github.com/cvxgrp/cvxpylayers)
- Theseus (https://sites.google.com/view/theseus-ai)
- JAXopt (https://github.com/google/jaxopt)
lecture notes available at https://users.cecs.anu.edu.au/~sgould

break-out slides

automatic differentiation

Toy Example: Babylonian Algorithm

Consider the following implementation for a forward operation:

```
procedure \(\operatorname{FwdFcn}(x)\)
    \(y_{0} \leftarrow \frac{1}{2} x\)
    for \(t=1, \ldots, T\) do
        \(y_{t} \leftarrow \frac{1}{2}\left(y_{t-1}+\frac{x}{y_{t-1}}\right)\)
    end for
    return \(y_{T}\)
end procedure
```


Toy Example: Babylonian Algorithm

Consider the following implementation for a forward operation:

```
procedure \(\operatorname{FwdFcn}(x)\)
    \(y_{0} \leftarrow \frac{1}{2} x\)
    for \(t=1, \ldots, T\) do
        \(y_{t} \leftarrow \frac{1}{2}\left(y_{t-1}+\frac{x}{y_{t-1}}\right)\)
    end for
    return \(y_{T}\)
end procedure
```

Automatic differentiation algorithmically generates the backward code:

```
procedure \(\operatorname{BckFcN}\left(x, y_{T}, \frac{\mathrm{~d} L}{\mathrm{~d} y_{T}}\right)\)
    \(\frac{\mathrm{d} L}{\mathrm{~d} x} \leftarrow 0\)
    for \(t=T, \ldots, 1\) do
        \(\frac{\mathrm{d} L}{\mathrm{~d} x} \leftarrow \frac{\mathrm{~d} L}{\mathrm{~d} x}+\frac{\mathrm{d} L}{\mathrm{~d} y_{t}} \overbrace{\left(\frac{1}{2 y_{t-1}}\right)}^{\partial y_{t} / \partial x}\)
        \(\frac{\mathrm{d} L}{\mathrm{~d} y_{t-1}} \leftarrow \frac{\mathrm{~d} L}{\mathrm{~d} y_{t}} \underbrace{\left(\frac{1}{2}-\frac{x}{2 y_{t-1}^{2}}\right)}_{\partial y_{t} / \partial y_{t-1}}\)
    end for
    \(\frac{\mathrm{d} L}{\mathrm{~d} x} \leftarrow \frac{\mathrm{~d} L}{\mathrm{~d} x}+\frac{\mathrm{d} L}{\mathrm{~d} y_{0}} \frac{1}{2}\)
    return \(\frac{\mathrm{d} L}{\mathrm{~d} x}\)
end procedure
```


Toy Example: Babylonian Algorithm mack

Consider the following implementation for a forward operation:

```
procedure \(\operatorname{FwdFcn}(x)\)
    \(y_{0} \leftarrow \frac{1}{2} x\)
    for \(t=1, \ldots, T\) do
        \(y_{t} \leftarrow \frac{1}{2}\left(y_{t-1}+\frac{x}{y_{t-1}}\right)\)
    end for
    return \(y_{T}\)
end procedure
```

- computes $y=\sqrt{x}$
- derivative computed directly is

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2 \sqrt{x}}=\frac{1}{2 y}
$$

Automatic differentiation algorithmically generates the backward code:

```
procedure \(\operatorname{BCKFCN}\left(x, y_{T}, \frac{\mathrm{~d} L}{\mathrm{~d} y_{T}}\right)\)
    \(\frac{\mathrm{d} L}{\mathrm{~d} x} \leftarrow 0\)
    for \(t=T, \ldots, 1\) do
        \(\frac{\mathrm{d} L}{\mathrm{~d} x} \leftarrow \frac{\mathrm{~d} L}{\mathrm{~d} x}+\frac{\mathrm{d} L}{\mathrm{~d} y_{t}} \overbrace{\left(\frac{1}{2 y_{t-1}}\right)}^{\partial y_{t} / \partial x}\)
        \(\frac{\mathrm{d} L}{\mathrm{~d} y_{t-1}} \leftarrow \frac{\mathrm{~d} L}{\mathrm{~d} y_{t}} \underbrace{\left(\frac{1}{2}-\frac{x}{2 y_{t-1}^{2}}\right)}_{\partial y_{t} / \partial y_{t-1}}\)
    end for
    \(\frac{\mathrm{d} L}{\mathrm{~d} x} \leftarrow \frac{\mathrm{~d} L}{\mathrm{~d} x}+\frac{\mathrm{d} L}{\mathrm{~d} y_{0}} \frac{1}{2}\)
    return \(\frac{\mathrm{d} L}{\mathrm{~d} x}\)
end procedure
```


Computation Graph for Babylonian Algorithm

Computation Graph for Babylonian Algorithm

$$
y_{T}=f\left(x, f\left(x, f\left(x, \ldots f\left(x, \frac{1}{2} x\right)\right)\right)\right) \text { with } f(x, y)=\frac{1}{2}\left(y+\frac{x}{y}\right)
$$

$$
\frac{\mathrm{d} L}{\mathrm{~d} x}=\frac{\mathrm{d} L}{\mathrm{~d} y_{T}}\left(\frac{\partial y_{T}}{\partial x}+\frac{\partial y_{T}}{\partial y_{T-1}}\left(\frac{\partial y_{T-1}}{\partial x}+\frac{\partial y_{T-1}}{\partial y_{T-2}}\left(\ldots+\frac{\partial y_{0}}{\partial x}\right)\right)\right)
$$

least squares

Least Squares Backward Pass Derivation mack

Differentiating x^{\star} with respect to single element $A_{i j}$, we have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} A_{i j}} x^{\star} & =\frac{\mathrm{d}}{\mathrm{~d} A_{i j}}\left(A^{T} A\right)^{-1} A^{T} b \\
& =\left(\frac{\mathrm{d}}{\mathrm{~d} A_{i j}}\left(A^{T} A\right)^{-1}\right) A^{T} b+\left(A^{T} A\right)^{-1}\left(\frac{\mathrm{~d}}{\mathrm{~d} A_{i j}} A^{T} b\right)
\end{aligned}
$$

Using the identity $\frac{\mathrm{d}}{\mathrm{d} z} Z^{-1}=-Z^{-1}\left(\frac{\mathrm{~d}}{\mathrm{~d} z} Z\right) Z^{-1}$ we get, for the first term,

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} A_{i j}}\left(A^{T} A\right)^{-1} & =-\left(A^{T} A\right)^{-1}\left(\frac{\mathrm{~d}}{\mathrm{~d} A_{i j}}\left(A^{T} A\right)\right)\left(A^{T} A\right)^{-1} \\
& =-\left(A^{T} A\right)^{-1}\left(E_{i j}^{T} A+A^{T} E_{i j}\right)\left(A^{T} A\right)^{-1}
\end{aligned}
$$

where $E_{i j}$ is a matrix with one in the (i, j)-th element and zeros elsewhere. Furthermore, for the second term,

$$
\frac{\mathrm{d}}{\mathrm{~d} A_{i j}} A^{T} b=E_{i j}^{T} b
$$

Least Squares Backward Pass Derivation (cont.)

Plugging these back into parent equation we have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} A_{i j}} x^{\star} & =-\left(A^{T} A\right)^{-1}\left(E_{i j}^{T} A+A^{T} E_{i j}\right)\left(A^{T} A\right)^{-1} A^{T} b+\left(A^{T} A\right)^{-1} E_{i j}^{T} b \\
& =-\left(A^{T} A\right)^{-1}\left(E_{i j}^{T} A+A^{T} E_{i j}\right) x^{\star}+\left(A^{T} A\right)^{-1} E_{i j}^{T} b \\
& =-\left(A^{T} A\right)^{-1}\left(E_{i j}^{T}\left(A x^{\star}-b\right)+A^{T} E_{i j} x^{\star}\right) \\
& =-\left(A^{T} A\right)^{-1}\left(\left(a_{i}^{T} x^{\star}-b_{i}\right) e_{j}+x_{j}^{\star} a_{i}\right)
\end{aligned}
$$

where $e_{j}=(0,0, \ldots, 1,0, \ldots) \in \mathbb{R}^{n}$ is the j-th canonical vector, i.e., vector with a one in the j-th component and zeros everywhere else, and $a_{i}^{T} \in \mathbb{R}^{1 \times n}$ is the i-th row of matrix A.

Least Squares Backward Pass Derivation (cont.)

Let $r=b-A x^{\star}$ and let v^{T} denote the backward coming gradient $\frac{\mathrm{d}}{\mathrm{d} x^{\star}} L$. Then

$$
\begin{aligned}
\frac{\mathrm{d} L}{\mathrm{~d} A_{i j}} & =v^{T} \frac{\mathrm{~d} x^{\star}}{\mathrm{d} A_{i j}} \\
& =v^{T}\left(A^{T} A\right)^{-1}\left(r_{i} e_{j}-x_{j}^{\star} a_{i}\right) \\
& =w^{T}\left(r_{i} e_{j}-x_{j}^{\star} a_{i}\right) \\
& =r_{i} w_{j}-w^{T} a_{i} x_{j}^{\star}
\end{aligned}
$$

where $w=\left(A^{T} A\right)^{-1} v$. We can compute the entire matrix of $m \times n$ derivatives efficiently as the sum of outer products

$$
\left(\frac{\mathrm{d} L}{\mathrm{~d} A}\right)^{T}=\left[\frac{\mathrm{d} L}{\mathrm{~d} A_{i j}}\right]_{\substack{i=1, \ldots, m \\ j=1, \ldots, n}}=w r^{T}-x^{\star}(A w)^{T}
$$

differentiating equality constrained problems

Differentiating Equality Constrained Optimisation Problems © back

Consider functions $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ and $h: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{q}$. Let

$$
\begin{array}{rl}
y(x) \in \underset{\text { subject to }}{\arg \min _{u \in \mathbb{R}^{m}}} & h(x, u) \\
& f(x, u)=0_{q}
\end{array}
$$

Assume that $y(x)$ exists, that f and h are twice differentiable in the neighbourhood of $(x, y(x))$, and that $\operatorname{rank}\left(\frac{\partial h(x, y)}{\partial y}\right)=q$.

Differentiating Equality Constrained Optimisation Problems

Consider functions $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ and $h: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{q}$. Let

$$
\begin{array}{rl}
y(x) \in \underset{u \in \mathbb{R}^{m}}{\arg \min _{u}} & f(x, u) \\
& \text { subject to }
\end{array} h(x, u)=0_{q}
$$

Assume that $y(x)$ exists, that f and h are twice differentiable in the neighbourhood of $(x, y(x))$, and that $\boldsymbol{\operatorname { r a n k }}\left(\frac{\partial h(x, y)}{\partial y}\right)=q$. Then for H non-singular

$$
\frac{\mathrm{d} y(x)}{\mathrm{d} x}=H^{-1} A^{T}\left(A H^{-1} A^{T}\right)^{-1}\left(A H^{-1} B-C\right)-H^{-1} B
$$

where

$$
\begin{array}{ll}
A=\frac{\partial h(x, y)}{\partial y} \in \mathbb{R}^{q \times m} & B=\frac{\partial^{2} f(x, y)}{\partial x \partial y}-\sum_{i=1}^{q} \nu_{i} \frac{\partial^{2} h_{i}(x, y)}{\partial x \partial y} \\
C=\frac{\partial h(x, y)}{\partial x} \in \mathbb{R}^{q \times n} & H=\frac{\partial^{2} f(x, y)}{\partial y^{2}}-\sum_{i=1}^{q} \nu_{i} \frac{\partial^{2} h_{i}(x, y)}{\partial y^{2}}
\end{array}
$$

and $\nu \in \mathbb{R}^{q}$ satisfies $\nu^{T} A=\frac{\partial f(x, y)}{\partial y}$.

Dealing with Inequality Constraints © back

$$
\begin{array}{ll}
y(x) \in \underset{u \in \mathbb{R}^{m}}{\arg \min _{u}(x, u)} & f_{0}(x, \ldots, p
\end{array}
$$

- Replace inequality constraints with log-barrier approximation
- Treat as equality constraints if active (y_{2} or y_{3}) and ignore otherwise (y_{1} or y_{3})

- may lead to one-sided gradients since $\nu \succeq 0$

eigen decomposition

Deriving the Gradient for Eigen Decomposition © back

Implicit differentiation of the optimality conditions with respect to $X_{i j}$ gives,

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} X_{i j}}\left(X y-\lambda_{\max } y\right) & =\frac{1}{2}\left(E_{i j}+E_{j i}\right) y-\frac{\mathrm{d} \lambda_{\max }}{\mathrm{d} X_{i j}} y+\left(X-\lambda_{\max } I\right) \frac{\mathrm{d} y}{\mathrm{~d} X_{i j}}=0 \tag{1}\\
\frac{\mathrm{~d}}{\mathrm{~d} X_{i j}}\left(y^{T} y-1\right) & =2 y^{T} \frac{\mathrm{~d} y}{\mathrm{~d} X_{i j}}=0 \tag{2}
\end{align*}
$$

Pre-multiplying (1) by y^{T}, and using (2) and $y^{T} y=1$, we get

$$
\frac{\mathrm{d} \lambda_{\max }}{\mathrm{d} X_{i j}}=\frac{1}{2} y^{T}\left(E_{i j}+E_{j i}\right) y
$$

Pre-multiplying (1) by $\left(X-\lambda_{\max } I\right)^{\dagger}$, we get

$$
\begin{gathered}
\frac{1}{2}\left(X-\lambda_{\max } I\right)^{\dagger}\left(E_{i j}+E_{j i}\right) y-\left(X-\lambda_{\max } I\right)^{\dagger} \frac{\mathrm{d} \lambda_{\max }}{\mathrm{d} X_{i j}} y+\frac{\mathrm{d} y}{\mathrm{~d} X_{i j}}=0 \\
\therefore \frac{\mathrm{~d} y}{\mathrm{~d} X_{i j}}=-\frac{1}{2}\left(X-\lambda_{\max } I\right)^{\dagger}\left(E_{i j}+E_{j i}\right) y
\end{gathered}
$$

since $\left(X-\lambda_{\max } I\right)^{\dagger} \frac{\mathrm{d} \lambda_{\max }}{\mathrm{d} X_{i j}} y=\frac{\mathrm{d} \lambda_{\max }}{\mathrm{d} X_{i j}}\left(X-\lambda_{\max } I\right)^{\dagger} y=0$ since if $A z=0$, then $A^{\dagger} z=0$.

additional examples

Differentiable Eigen Decomposition

Finding the eigenvector corresponding to the maximum eigenvalue of a real symmetric matrix $X \in \mathbb{R}^{m \times m}$ can be formulated as

$$
\begin{array}{ll}
\text { maximize (over } u \in \mathbb{R}^{m} \text {) } & u^{T} X u \\
\text { subject to } & u^{T} u=1
\end{array}
$$

which has applications in, for example, back propagating through normalized cuts.

Differentiable Eigen Decomposition

Finding the eigenvector corresponding to the maximum eigenvalue of a real symmetric matrix $X \in \mathbb{R}^{m \times m}$ can be formulated as

$$
\begin{array}{ll}
\text { maximize (over } u \in \mathbb{R}^{m} \text {) } & u^{T} X u \\
\text { subject to } & u^{T} u=1
\end{array}
$$

which has applications in, for example, back propagating through normalized cuts. Optimality conditions (for solution y) are

$$
X y=\lambda_{\max } y \quad \text { and } \quad y^{T} y=1
$$

Differentiable Eigen Decomposition

Finding the eigenvector corresponding to the maximum eigenvalue of a real symmetric matrix $X \in \mathbb{R}^{m \times m}$ can be formulated as

$$
\begin{array}{ll}
\text { maximize (over } u \in \mathbb{R}^{m} \text {) } & u^{T} X u \\
\text { subject to } & u^{T} u=1
\end{array}
$$

which has applications in, for example, back propagating through normalized cuts. Optimality conditions (for solution y) are

$$
X y=\lambda_{\max } y \quad \text { and } \quad y^{T} y=1
$$

Taking derivatives with respect to components of X we get,

$$
\frac{\mathrm{d} y}{\mathrm{~d} X_{i j}}=-\frac{1}{2}\left(X-\lambda_{\max } I\right)^{\dagger}\left(E_{i j}+E_{j i}\right) y
$$

PyTorch Implementation

```
class EigenDecompositionFcn(torch.autograd.Function):
    """PyTorch autograd function for eigen decomposition."""
    @staticmethod
    def forward(ctx, X):
        B, M, N = X.shape
        # use torch's eigh function to find the eigenvalues and eigenvectors of a symmetric matrix
        with torch.no_grad():
            lmd, Y = torch.linalg.eigh(0.5 * (X + X.transpose(1, 2)))
        ctx.save_for_backward(1md, Y)
        return Y
    @staticmethod
    def backward(ctx, dJdY):
        lmd, Y = ctx.saved_tensors
        B, M, N = Y.shape
        # compute all pseudo-inverses simultaneously
        L = lmd.view(B, 1, M) - lmd.view(B, M, 1)
        L = torch.where(torch.abs(L) < eps, 0.0, 1.0 / L)
        # compute full gradient over all eigenvectors
        dJdX = torch.bmm(torch.bmm(Y, L * torch.bmm(Y.transpose(1, 2), dJdY)), Y.transpose(1, 2))
        dJdX = 0.5 * (dJdX + dJdX.transpose(1, 2))
        return dJdX
```


Experiment

Differentiable eigen decomposition

Differentiable eigen decomposition implementation comparison

