

#### Stephen Gould stephen.gould@anu.edu.au

Robotic Vision Summer School (RVSS), 2024 Australian National University

9 February 2024





















financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets

- financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets
- mechanical engineering: maximise the span of a bridge subject to load constraints; minimise drag on a vehicle subject to volume constraints

- financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets
- mechanical engineering: maximise the span of a bridge subject to load constraints; minimise drag on a vehicle subject to volume constraints
- electrical engineering: minimise the size of a transistor in a circuit subject to power and timing constraints

- financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets
- mechanical engineering: maximise the span of a bridge subject to load constraints; minimise drag on a vehicle subject to volume constraints
- electrical engineering: minimise the size of a transistor in a circuit subject to power and timing constraints
- logistics and planning: find the cheapest way to distribute goods from suppliers to consumers across a transportation network

- financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets
- mechanical engineering: maximise the span of a bridge subject to load constraints; minimise drag on a vehicle subject to volume constraints
- electrical engineering: minimise the size of a transistor in a circuit subject to power and timing constraints
- logistics and planning: find the cheapest way to distribute goods from suppliers to consumers across a transportation network
- statistics/data science: curve fitting and data visualisation

- financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets
- mechanical engineering: maximise the span of a bridge subject to load constraints; minimise drag on a vehicle subject to volume constraints
- electrical engineering: minimise the size of a transistor in a circuit subject to power and timing constraints
- logistics and planning: find the cheapest way to distribute goods from suppliers to consumers across a transportation network
- statistics/data science: curve fitting and data visualisation
- robotics: optimise control parameters to achieve some goal state or trajectory; simultaneous localisation and mapping (SLAM); point/feature matching

- financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets
- mechanical engineering: maximise the span of a bridge subject to load constraints; minimise drag on a vehicle subject to volume constraints
- electrical engineering: minimise the size of a transistor in a circuit subject to power and timing constraints
- logistics and planning: find the cheapest way to distribute goods from suppliers to consumers across a transportation network
- statistics/data science: curve fitting and data visualisation
- robotics: optimise control parameters to achieve some goal state or trajectory; simultaneous localisation and mapping (SLAM); point/feature matching
- machine learning and deep learning: minimise loss functions with respect to the parameters of our model

### **Optimisation Problems**

find an assignment to variables that minimises a measure of cost subject to some constraints<sup>1</sup>

 $^1 {\sf In}$  these lectures we will be concerned with continuous-valued variables  $_{\sf Stephen \ {\sf Gould, \ RVSS \ 2024}}$ 

### **Optimisation Problems**

 $\begin{array}{ll} \text{minimize (over } x) & \text{objective}(x) \\ \text{subject to} & \text{constraints}(x) \end{array}$ 

### **Optimisation Problems**

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,p \\ & h_i(x)=0, \quad i=1,\ldots,q \end{array}$$

# Least Squares

minimize 
$$||Ax - b||_2^2$$

#### Least Squares

minimize  $||Ax - b||_2^2$ 

- unique solution if  $A^T A$  is invertible,  $x^* = (A^T A)^{-1} A^T b$
- ▶ solution via SVD,  $A = U\Sigma V^T$ , if  $A^T A$  not invertible,  $x^{\star} = V\Sigma^{-1}U^T b$ 
  - ▶ in fact,  $x^{\star} + w$  for any  $w \in \mathcal{N}(A)$  also a solution
- ▶ solution via QR factorisation,  $x^{\star} = R^{-1}Q^T b$
- ▶ solved in  $O(n^2m)$  time, less if structured
- typically use iterative solver (for large scale problems)

## Example: Polynomial Curve Fitting

fit *n*-th order polynomial  $f_a(x) = \sum_{k=0}^n a_k x^k$  to set of noisy points  $\{(x_i, y_i)\}_{i=1}^m$  (here *a* are the variables, and *x* and *y* are the data)

$$\begin{array}{c|c} \text{minimize (over } a) & \sum_{i=1}^{m} \left( f_a(x_i) - y_i \right)^2 & y & \bullet \\ \\ \text{minimize} & \left\| \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_m & x_m^2 & \dots & x_m^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} - \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} \right\|_2^2 & \bullet \\ \bullet & \bullet & \bullet \\ \end{array} \right\|$$

 $\int \int f_a(x)$ 

/

#### Part I. Machine Learning and Deep Learning

### Machine Learning from 10,000ft



### Machine Learning from 10,000ft



minimize (over  $\theta$ )  $\sum_{(x,y)\sim\mathcal{X}\times\mathcal{Y}} L(f_{\theta}(x), y)$ 

- loss L what to do
- ▶ model  $f_{\theta}$  how to do it
- optimised by gradient descent (or variant thereof)

#### Deep Learning as an End-to-end Computation Graph

Deep learning does this by constructing the model  $f_{\theta}$  (equiv. computation graph) as the composition of many simple parametrized functions (equiv. computation nodes).



 $y = f_8(f_4(f_3(f_2(f_1(x)))), f_7(f_6(f_5(f_1(x))))))$ 

(parameters  $\theta_i$  omitted for brevity)

## Backward Pass Gradient Calculation



#### Example 1.

$$\frac{\partial L}{\partial \theta_7} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial z_7} \frac{\partial z_7}{\partial \theta_7}$$

#### Backward Pass Gradient Calculation



#### Example 2.

$$\frac{\partial L}{\partial \theta_1} = \frac{\partial L}{\partial y} \left( \frac{\partial y}{\partial z_4} \frac{\partial z_4}{\partial z_3} \frac{\partial z_3}{\partial z_2} \frac{\partial z_2}{\partial z_1} + \frac{\partial y}{\partial z_7} \frac{\partial z_7}{\partial z_6} \frac{\partial z_6}{\partial z_5} \frac{\partial z_5}{\partial z_4} \right) \frac{\partial z_1}{\partial \theta_1}$$

Stephen Gould, RVSS 2024

### Deep Learning Node



Forward pass: compute output y as a function of the input x (and model parameters θ).

Backward pass: compute the derivative of the loss with respect to the input x (and model parameters θ) given the derivative of the loss with respect to the output y.

# Aside: Notation (Often Sloppy)

For scalar-valued functions:

total derivative:  $\frac{\mathrm{d}f}{\mathrm{d}x}$ 

partial derivative:  $\frac{\partial f}{\partial x}$ 

# Aside: Notation (Often Sloppy)

#### For scalar-valued functions:

total derivative: 
$$\frac{\mathrm{d}f}{\mathrm{d}x}$$
 partial derivative:  $\frac{\partial f}{\partial x}$ 

For multi-dimensional vector-valued functions,  $f : \mathbb{R}^n \to \mathbb{R}^m$ :

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = \begin{bmatrix} \frac{\mathrm{d}f_1}{\mathrm{d}x_1} & \cdots & \frac{\mathrm{d}f_1}{\mathrm{d}x_n} \\ \vdots & \ddots & \vdots \\ \frac{\mathrm{d}f_m}{\mathrm{d}x_1} & \cdots & \frac{\mathrm{d}f_m}{\mathrm{d}x_n} \end{bmatrix} \in \mathbb{R}^{m \times n} \qquad \qquad (\frac{\partial}{\partial x}f(x,y) \text{ for partial})$$

Sometimes D and  $D_X$  for  $\frac{d}{dx}$  and  $\frac{\partial}{\partial x}$ , respectively.

# Aside: Notation (Often Sloppy)

#### For scalar-valued functions:

total derivative: 
$$\frac{\mathrm{d}f}{\mathrm{d}x}$$
 partial derivative:  $\frac{\partial f}{\partial x}$ 

For multi-dimensional vector-valued functions,  $f : \mathbb{R}^n \to \mathbb{R}^m$ :

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = \begin{bmatrix} \frac{\mathrm{d}f_1}{\mathrm{d}x_1} & \cdots & \frac{\mathrm{d}f_1}{\mathrm{d}x_n} \\ \vdots & \ddots & \vdots \\ \frac{\mathrm{d}f_m}{\mathrm{d}x_1} & \cdots & \frac{\mathrm{d}f_m}{\mathrm{d}x_n} \end{bmatrix} \in \mathbb{R}^{m \times n} \qquad \qquad (\frac{\partial}{\partial x}f(x,y) \text{ for partial})$$

Sometimes D and  $D_X$  for  $\frac{d}{dx}$  and  $\frac{\partial}{\partial x}$ , respectively.

Mathematically, derivatives with respect to (scalar-valued) loss functions are row vectors (m = 1).













- parameters (usually) only take a small amount of memory (relative to data)
- derivatives take the same amount of space as the data and stored transposed!
- in-place operations may save memory in the forward pass
- re-using buffers may save memory in the backward pass
- at test time intermediate results are not stored

## Quick Quiz

Quick Quiz



y = Ax
Quick Quiz





$$\frac{\mathrm{d}L}{\mathrm{d}x} = \frac{\mathrm{d}L}{\mathrm{d}y}\frac{\mathrm{d}y}{\mathrm{d}x}$$
$$= \frac{\mathrm{d}L}{\mathrm{d}y}A$$

Stephen Gould, RVSS 2024

Quick Quiz







### Quick Quiz (2)



$$Ay = x$$

# Quick Quiz (2)



$$Ay = x$$
  
$$\therefore y = A^{-1}x$$

$$\frac{\mathrm{d}L}{\mathrm{d}x} = \frac{\mathrm{d}L}{\mathrm{d}y}\frac{\mathrm{d}y}{\mathrm{d}x}$$
$$= \frac{\mathrm{d}L}{\mathrm{d}y}A^{-1}$$

## • forward pass $O(n^3)$ , less if structured

Ay = x $\therefore y = A^{-1}x$ 

- ▶ backward pass solves  $w = A^T v$ 
  - **cheaper** than forward pass if decomposition of A is cached

 $\frac{\mathrm{d}L}{\mathrm{d}x} = \frac{\mathrm{d}L}{\mathrm{d}y}\frac{\mathrm{d}y}{\mathrm{d}x}$  $= \frac{\mathrm{d}L}{\mathrm{d}y}A^{-1}$ 



Quick Quiz (2)

### Automatic Differentiation (AD)

- algorithmic procedure that produces code for computing exact derivatives
   assumes numeric computations are composed of a small set of elementary operations that we know how to differentiate
  - arithmetic, exp, log, trigonometric
- workhorse of modern machine learning that greatly reduces development effort
- roughly speaking, for each line of the forward pass code, P, Q = foo(A, B, C), autodiff produces a line dLdA, dLdB, dLdC = foo\_vjp(dLdP, dLdQ) in the backward pass code

### Automatic Differentiation (AD)

- algorithmic procedure that produces code for computing exact derivatives
   assumes numeric computations are composed of a small set of elementary operations that we know how to differentiate
  - arithmetic, exp, log, trigonometric
- workhorse of modern machine learning that greatly reduces development effort
- roughly speaking, for each line of the forward pass code, P, Q = foo(A, B, C), autodiff produces a line dLdA, dLdB, dLdC = foo\_vjp(dLdP, dLdQ) in the backward pass code
- but it doesn't always work (see point 2), and when it does work it can be slow and/or memory intensive

▶ example

## Computing $1/\sqrt{x}$

```
float Q_rsgrt( float number )
1
  {
2
3
      long i;
4
      float x2, y;
5
      const float threehalfs = 1.5F;
6
7
      x2 = number * 0.5F;
8
      v = number:
      i = * ( long * ) &y; // evil floating point bit level hacking
9
      i = 0x5f3759df - ( i >> 1 ); // what the f**k?
10
11
      v = * (float *) &i:
      y = y * (threehalfs - (x2 * y * y)); // 1st iter
12
      // y = y * ( threehalfs - ( x^2 * y * y ) ); // 2nd iter, can be removed
13
14
15
      return v:
16
 }
```

#### Separate Forward and Backward Operations



#### Part II. Differentiable Optimisation

### Bi-level Optimisation: Stackelberg Games

Consider two players, a leader and a follower

▶ the market dictates the price it's willing to pay for some goods based on supply, i.e., quantity produced by both players,  $P(q_1 + q_2)$ 

### Bi-level Optimisation: Stackelberg Games

Consider two players, a leader and a follower

- ▶ the market dictates the price it's willing to pay for some goods based on supply, i.e., quantity produced by both players,  $P(q_1 + q_2)$
- ▶ each player has a cost structure associated with producing goods,  $C_i(q_i)$  and wants to maximize profits,  $q_i P(q_1 + q_2) C_i(q_i)$

#### Bi-level Optimisation: Stackelberg Games

Consider two players, a leader and a follower

- ▶ the market dictates the price it's willing to pay for some goods based on supply, i.e., quantity produced by both players,  $P(q_1 + q_2)$
- ▶ each player has a cost structure associated with producing goods,  $C_i(q_i)$  and wants to maximize profits,  $q_i P(q_1 + q_2) C_i(q_i)$
- the leader picks a quantity of goods to produce knowing that the follower will respond optimally. In other words, the leader solves

 $\begin{array}{ll} \text{maximize (over } q_1) & q_1 P(q_1+q_2) - C_1(q_1) \\ \text{subject to} & q_2 \in \operatorname{argmax}_q q P(q_1+q) - C_2(q) \end{array}$ 

Bi-level Optimisation Problems in Machine Learning

• quantities: input x, output y, parameters  $\theta$ 

$$\begin{array}{ll} \text{minimize (over } \theta) & L(x,y;\theta) \\ \text{subject to} & y \in \operatorname{argmin}_{u \in C(x;\theta)} f(x,u;\theta) \end{array}$$

 $\blacktriangleright$  lower-level is an optimisation problem parametrized by x and  $\theta$ 

Bi-level Optimisation Problems in Machine Learning

• quantities: input x, output y, parameters  $\theta$ 

minimize (over 
$$\theta$$
)  $L(x, y; \theta)$   
subject to  $y \in \operatorname{argmin}_{u \in C(x; \theta)} f(x, u; \theta)$ 

 $\blacktriangleright$  lower-level is an optimisation problem parametrized by x and  $\theta$ 

**gradient descent:** compute gradient of lower-level solution y with respect to  $\theta$ , and use the chain rule to get the total derivative,

$$heta \leftarrow heta - \eta \left( rac{\partial L}{\partial heta} + rac{\partial L}{\partial y} rac{\mathrm{d} y}{\mathrm{d} heta} 
ight)$$

by back-propagating through the optimisation problem

#### Differentiable Least Squares

Consider our old friend, the least-squares problem,

```
minimize ||Ax - b||_2^2
```

parameterized by A and b and with closed-form solution  $x^{\star} = (A^T A)^{-1} A^T b$ .

#### Differentiable Least Squares

Consider our old friend, the least-squares problem,

```
minimize ||Ax - b||_2^2
```

parameterized by A and b and with closed-form solution  $x^{\star} = (A^T A)^{-1} A^T b$ .

We are interested in derivatives of the solution with respect to the elements of A,

$$rac{\mathrm{d}x^{\star}}{\mathrm{d}A_{ij}} = rac{\mathrm{d}}{\mathrm{d}A_{ij}} \left(A^T\!A
ight)^{-1}\!A^T b \quad \in \mathbb{R}^n$$

We could also compute derivatives with respect to elements of b (but not here).

#### Least Squares Backward Pass

The backward pass combines  $\frac{dx^*}{dA_{ij}}$  with  $v^T = \frac{dL}{dx^*}$  via the vector-Jacobian product. After some algebraic manipulation we get

$$\left(rac{\mathrm{d}L}{\mathrm{d}A}
ight)^{T} = wr^{T} - x^{\star}(Aw)^{T} \hspace{1em} \in \mathbb{R}^{m imes n}$$

where  $w^T = v^T (A^T A)^{-1}$  and  $r = b - Ax^{\star}$ .

#### Least Squares Backward Pass

The backward pass combines  $\frac{dx^*}{dA_{ij}}$  with  $v^T = \frac{dL}{dx^*}$  via the vector-Jacobian product. After some algebraic manipulation we get

$$\left(rac{\mathrm{d}L}{\mathrm{d}A}
ight)^T = wr^T - x^\star (Aw)^T \quad \in \mathbb{R}^{m imes n}$$

where  $w^T = v^T (A^T A)^{-1}$  and  $r = b - Ax^{\star}$ .

(A<sup>T</sup>A)<sup>-1</sup> is used in both the forward and backward pass
 factored once to solve for x, e.g., into A = QR
 cache R and re-use when computing gradients

▶ derivation

#### PyTorch Implementation: Forward Pass

```
class LeastSquaresFcn(torch.autograd.Function):
       """PvTorch autograd function for least squares."""
       Østaticmethod
5
6
7
       def forward(ctx. A. b):
           B, M, N = A.shape
           assert b.shape == (B. M. 1)
                                                                                          A = QR
8
9
           with torch.no_grad():
                                                                                          x = R^{-1} \left( Q^T b \right)
                Q, R = torch.linalg.gr(A, mode='reduced')
11
                x = torch.linalg.solve_triangular(R,
12
13
                    torch.bmm(b.view(B, 1, M), Q).view(B, N, 1), upper=True)
                                                                                               (solves Rx = Q^T b)
14
           # save state for backward pass
15
           ctx.save for backward(A, b, x, R)
16
17
            # return solution
18
           return x
```

#### PyTorch Implementation: Backward Pass

```
Østaticmethod
2
       def backward(ctx. dx):
3
           # check for None tensors
4
           if dy is None:
5
                return None, None
6
7
           # unpack cached tensors
8
           A, b, x, R = ctx.saved_tensors
9
           B, M, N = A.shape
10
11
           dA, db = None, None
13
           w = torch.linalg.solve triangular(R.
14
                torch.linalg.solve_triangular(torch.transpose(R, 2, 1),
15
                dx, upper=False), upper=True)
16
           Aw = torch.bmm(A, w)
17
18
           if ctx.needs_input_grad[0]:
19
                r = b - torch.bmm(A, x)
20
                dA = torch.bmm(r.view(B.M.1), w.view(B.1.N)) - \setminus
                    torch.bmm(Aw.view(B,M,1), x.view(B,1,N))
           if ctx.needs_input_grad[1]:
                dh = \Delta w
24
25
           # return gradients
26
           return dA. db
```

$$w = (A^{T}A)^{-1}v$$
$$= R^{-1}(R^{-T}v)$$
$$r = b - Ax$$
$$\left(\frac{dL}{dA}\right)^{T} = rw^{T} - (Aw)x^{T}$$
$$\left(\frac{dL}{db}\right)^{T} = Aw$$

#### Imperative vs Declarative Nodes



- imperative node
- input-output relationship explicit,

$$y = \tilde{f}(x;\theta)$$

#### Imperative vs Declarative Nodes



- imperative node
- input-output relationship explicit,

$$y = \tilde{f}(x;\theta)$$



- declarative node
- input-output relationship specified as solution to an optimisation problem,

$$y \in \underset{u \in C(x)}{\operatorname{arg\,min}} f(x, u; \theta)$$

#### Imperative vs Declarative Nodes



- imperative node
- input-output relationship explicit,

$$y = \tilde{f}(x;\theta)$$



- declarative node
- input-output relationship specified as solution to an optimisation problem,

$$y \in \underset{u \in C(x)}{\operatorname{arg\,min}} f(x, u; \theta)$$

can co-exist in the same computation graph (network)

#### Average Pooling Example

$$\{x_i \in \mathbb{R}^m \mid i = 1, \dots, n\} \to \mathbb{R}^m$$

imperative specification

$$y = \frac{1}{n} \sum_{i=1}^{n} x_i$$

declarative specification

$$y = \operatorname{argmin}_{u \in \mathbb{R}^m} \sum_{i=1}^n \|u - x_i\|^2$$

#### Average Pooling Example

$$\{x_i \in \mathbb{R}^m \mid i = 1, \dots, n\} \to \mathbb{R}^m$$

imperative specification

$$y = \frac{1}{n} \sum_{i=1}^{n} x_i$$

declarative specification

$$y = \operatorname{argmin}_{u \in \mathbb{R}^m} \sum_{i=1}^n \|u - x_i\|^2$$

can be easily varied, e.g., made robust

$$y = \operatorname{argmin}_{u \in \mathbb{R}^m} \sum_{i=1}^n \phi(u - x_i)$$

for some penalty function  $\phi$ 

#### Average Pooling Example

$$\{x_i \in \mathbb{R}^m \mid i = 1, \dots, n\} \to \mathbb{R}^m$$



declarative specification

$$y = \operatorname{argmin}_{u \in \mathbb{R}^m} \sum_{i=1}^n \|u - x_i\|^2$$

can be easily varied, e.g., made robust

$$y = \operatorname{argmin}_{u \in \mathbb{R}^m} \sum_{i=1}^n \phi(u - x_i)$$

for some penalty function  $\phi$ 

#### Parametrized Optimisation Re-cap

Think of y and an implicit function of x (wlog we'll ignore  $\theta$  from here on),

 $y(x) = \operatorname{argmin}_{u \in C(x)} f(x, u)$ 



#### Parametrized Optimisation Re-cap

Think of y and an implicit function of x (wlog we'll ignore  $\theta$  from here on),

 $y(x) = \operatorname{argmin}_{u \in C(x)} f(x, u)$ 



Main question: How do we compute  $\frac{d}{dx} \operatorname{argmin}_{u \in C(x)} f(x, u)$ ?

Stephen Gould, RVSS 2024

Computing  $\frac{\mathrm{d}}{\mathrm{d}x} \operatorname{argmin}_{u \in C(x)} f(x, u)$ 

explicit from closed-form solution
 e.g., least-squares

Computing  $\frac{\mathrm{d}}{\mathrm{d}x} \operatorname{argmin}_{u \in C(x)} f(x, u)$ 

explicit from closed-form solution

e.g., least-squares

automatic differentiation of forward pass code

e.g., unrolling gradient descent (next)

Computing  $\frac{\mathrm{d}}{\mathrm{d}x} \operatorname{argmin}_{u \in C(x)} f(x, u)$ 

explicit from closed-form solution

- e.g., least-squares
- automatic differentiation of forward pass code
  - e.g., unrolling gradient descent (next)
- implicit differentiation of optimality conditions (later)
  - allows non-differentiable steps in the forward pass
  - no need to store intermediate calculations

#### Unrolling Gradient Descent

repeat until convergence:

$$y_t \leftarrow y_{t-1} - \eta \frac{\partial f}{\partial y}(x, y_{t-1})$$



#### Unrolling Gradient Descent

repeat until convergence:

$$y_t \leftarrow y_{t-1} - \eta \frac{\partial f}{\partial y}(x, y_{t-1})$$



#### Dini's Implicit Function Theorem

Consider the solution mapping associated with the equation f(x, u) = 0,

$$Y: x \mapsto \{u \in \mathbb{R}^m \mid f(x, u) = 0\}$$
 for  $x \in \mathbb{R}^n$ .

We are interested in how elements of Y(x) change as a function of x.

#### Dini's Implicit Function Theorem

Consider the solution mapping associated with the equation f(x, u) = 0,

$$Y: x \mapsto \{u \in \mathbb{R}^m \mid f(x, u) = 0\}$$
 for  $x \in \mathbb{R}^n$ .

We are interested in how elements of Y(x) change as a function of x.

#### Theorem

Let  $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$  be differentiable in a neighbourhood of (x, u) and such that f(x, u) = 0, and let  $\frac{\partial}{\partial u} f(x, u)$  be nonsingular. Then the solution mapping Y has a single-valued localization y around x for u which is differentiable in a neighbourhood  $\mathcal{X}$  of x with Jacobian satisfying

$$\frac{dy(x)}{dx} = -\left(\frac{\partial f(x, y(x))}{\partial y}\right)^{-1} \frac{\partial f(x, y(x))}{\partial x}$$

for every  $x \in \mathcal{X}$ .

Stephen Gould, RVSS 2024
### Unit Circle Example





$$f(x,y) = x^{2} + y^{2} - 1$$
$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\left(\frac{\partial f}{\partial y}\right)^{-1} \left(\frac{\partial f}{\partial x}\right)$$
$$= -\left(\frac{1}{2y}\right)(2x) = -\frac{x}{y}$$

Stephen Gould, RVSS 2024

### Differentiating Unconstrained Optimisation Problems

Let  $f:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$  be twice differentiable and let

 $y(x) \in \operatorname{argmin}_u f(x, u)$ 

then for non-zero Hessian

$$\frac{\mathrm{d}y(x)}{\mathrm{d}x} = -\left(\frac{\partial^2 f}{\partial y^2}\right)^{-1} \frac{\partial^2 f}{\partial x \partial y}$$

### Differentiating Unconstrained Optimisation Problems

Let  $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$  be twice differentiable and let

 $y(x) \in \operatorname{argmin}_{u} f(x, u)$ 

then for non-zero Hessian

$$\frac{\mathrm{d}y(x)}{\mathrm{d}x} = -\left(\frac{\partial^2 f}{\partial y^2}\right)^{-1} \frac{\partial^2 f}{\partial x \partial y}.$$



**Proof.** The derivative of f vanishes at (x, y), i.e.,  $y \in \operatorname{argmin}_u f(x, u) \implies \frac{\partial f(x, y)}{\partial y} = 0$ .

$$\begin{array}{ll} \mathsf{LHS}: & \frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial f(x,y)}{\partial y} & = \frac{\partial^2 f(x,y)}{\partial x \partial y} + \frac{\partial^2 f(x,y)}{\partial y^2}\frac{\mathrm{d}y}{\mathrm{d}x} \\ \mathsf{RHS}: & \frac{\mathrm{d}}{\mathrm{d}x}0 & = 0 \end{array}$$

Equating and rearranging gives the result. Or directly from Dini's implicit function theorem on  $\frac{\partial f(x,y)}{\partial y} = 0$ .

### Differentiable Optimisation: Big Picture Idea



Differentiating (Unconstrained) Optimisation Problems Consider functions  $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ . Let

 $y(x) \in \underset{u \in \mathbb{R}^m}{\operatorname{arg\,min}} f(x, u)$ 

Assume that y(x) exists and that f is twice differentiable in the neighbourhood of (x, y(x)). Then for H non-singular

$$\frac{\mathrm{d}y(x)}{\mathrm{d}x} = -H^{-1}B$$

where

$$B=rac{\partial^2 f(x,y)}{\partial x\partial y}\in \mathbb{R}^{m imes n}$$
  $H=rac{\partial^2 f(x,y)}{\partial y^2}\in \mathbb{R}^{m imes m}$ 

Differentiating (Unconstrained) Optimisation Problems Consider functions  $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ . Let

 $y(x) \in \underset{u \in \mathbb{R}^m}{\operatorname{arg\,min}} f(x, u)$ 

Assume that y(x) exists and that f is twice differentiable in the neighbourhood of (x, y(x)). Then for H non-singular

$$\frac{\mathrm{d}y(x)}{\mathrm{d}x} = -H^{-1}B$$

where

$$B = rac{\partial^2 f(x,y)}{\partial x \partial y} \in \mathbb{R}^{m imes n}$$
  $H = rac{\partial^2 f(x,y)}{\partial y^2} \in \mathbb{R}^{m imes m}$ 

This result can be extended to constrained optimisation problems by differentiating optimality conditions, e.g.,  $\nabla \mathcal{L} = 0$ .

Stephen Gould, RVSS 2024

## Automatic Differentiation for Differentiable Optimisation

(assuming a closed-form optimal solutions does not exist)

- At one extreme we can try back propagate through the optimisation algorithm (i.e., unrolling the optimisation procedure using automatic differentiation)
- At the other extreme we can use the implicit differentiation result to hand-craft efficient backward pass code
- There are also options in between, e.g.,
  - use automatic differentiation to obtain quantities in expression for  $\frac{dy(x)}{dx}$  from software implementations of the objective and (active) constraint functions
  - $\blacktriangleright$  implement the optimality condition  $\nabla \mathcal{L}=0$  in software and automatically differentiate that

#### Vector-Jacobian Product

For brevity consider the unconstrained optimisation case. The backward pass computes

$$\frac{\mathrm{d}L}{\mathrm{d}x} = \frac{\mathrm{d}L}{\mathrm{d}y}\frac{\mathrm{d}y}{\mathrm{d}x}$$
$$= \underbrace{(v^T)}_{\mathbb{R}^{1\times m}}\underbrace{(-H^{-1}B)}_{\mathbb{R}^{m\times n}}$$

evaluation order: 
$$-v^T (H^{-1}B)$$
  $(-v^T H^{-1}) B$   
 $\cos t^{\dagger}: O(m^2 n + mn)$   $O(m^2 + mn)$ 

 $^\dagger$  assumes  $H^{-1}$  is already factored (in  $O(m^3)$  if unstructured, less if structured)

# Summary and Open Questions

- optimisation problems can be embedded *inside* deep learning models
- back-propagation by either unrolling the optimisation algorithm or implicit differentiation of the optimality conditions
  - ▶ the former is easy to implement using automatic differentiation but memory intensive
  - ▶ the latter requires that solution be strongly convex locally (i.e., invertible H)
  - but does not need to know how the problem was solved, nor store intermediate forward-pass calculations
  - computing  $H^{-1}$  may be costly

# Summary and Open Questions

- > optimisation problems can be embedded *inside* deep learning models
- back-propagation by either unrolling the optimisation algorithm or implicit differentiation of the optimality conditions
  - ▶ the former is easy to implement using automatic differentiation but memory intensive
  - $\blacktriangleright$  the latter requires that solution be strongly convex locally (i.e., invertible H)
  - but does not need to know how the problem was solved, nor store intermediate forward-pass calculations
  - computing  $H^{-1}$  may be costly
- active area of research and many open questions
  - Are declarative nodes slower?
  - Do declarative nodes give theoretical guarantees?
  - How best to handle non-smooth or discrete optimization problems?
  - What about problems with multiple solutions?
  - What if the forward pass solution is suboptimal?
  - Can problems become infeasible during learning?

...

#### Part III. Applications

# **Optimal Transport**

One view of optimal transport is as a matching problem

- $\blacktriangleright$  from an *m*-by-*n* cost matrix *M*
- $\blacktriangleright$  to an *m*-by-*n* probability matrix *P*,

often formulated with an entropic regularisation term,

 $\begin{array}{ll} \mbox{minimize} & \langle M, P \rangle + \frac{1}{\gamma} \langle P, \log P \rangle \\ \mbox{subject to} & P {\bf 1} = r \\ & P^T {\bf 1} = c \end{array}$ 

with  $\mathbf{1}^T r = \mathbf{1}^T c = 1$ .

The row and column sum constraints ensure that P is a doubly stochastic matrix (lies within the convex hull of permutation matrices).



# Solving Entropic Optimal Transport

Solution takes the form

$$P_{ij} = \alpha_i \beta_j e^{-\gamma M_{ij}}$$

and can be found using the Sinkhorn algorithm,

• Set  $K_{ij} = e^{-\gamma M_{ij}}$  and  $\alpha, \beta \in \mathbb{R}^n_{++}$ 

Iterate until convergence,

```
\begin{array}{l} \alpha \leftarrow r \oslash K\beta \\ \beta \leftarrow c \oslash K^T \alpha \end{array}
```

where  $\oslash$  denotes componentwise division

• Return 
$$P = \operatorname{diag}(\alpha) K \operatorname{diag}(\beta)$$

## Differentiable Optimal Transport

Option 1: back-propagate through Sinkhorn algorithm

# Differentiable Optimal Transport

- Option 1: back-propagate through Sinkhorn algorithm
- Option 2: use the implicit differentiation result



# Differentiable Optimal Transport

- Option 1: back-propagate through Sinkhorn algorithm
- Option 2: use the implicit differentiation result



(think of vectorising M and P)

#### **Optimal Transport Gradient**

Derivation of the optimal transport gradient is quite tedious (see notes). The result:

$$\begin{aligned} \frac{\mathrm{d}L}{\mathrm{d}M} &= \frac{\mathrm{d}L}{\mathrm{d}P} \left( H^{-1} A^T \left( A H^{-1} A^T \right)^{-1} A H^{-1} - H^{-1} \right) B \\ &= \gamma \frac{\mathrm{d}L}{\mathrm{d}P} \mathrm{diag}(P) \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}^T \begin{bmatrix} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{12}^T & \Lambda_{22} \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} \mathrm{diag}(P) - \gamma \frac{\mathrm{d}L}{\mathrm{d}P} \mathrm{diag}(P) \end{aligned}$$

where

$$\begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} \mathbf{0}_n^T & \mathbf{1}_n^T & \dots & \mathbf{0}_n^T \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}_n^T & \mathbf{0}_n^T & \dots & \mathbf{1}_n^T \\ I_{n \times n} & I_{n \times n} & \dots & I_{n \times n} \end{bmatrix} \qquad \begin{pmatrix} AH^{-1}A^T \end{pmatrix}^{-1} = \frac{1}{\gamma} \begin{bmatrix} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{12}^T & \Lambda_{22} \end{bmatrix} \\ = \frac{1}{\gamma} \begin{bmatrix} \mathsf{diag}(r_{2:m}) & P_{2:m,1:n} \\ P_{2:m,1:n}^T & \mathsf{diag}(c) \end{bmatrix}^{-1}$$

#### Implementation

```
Østaticmethod
   def backward(ctx, dJdP)
3
       # unpacked cached tensors
4
      M. r. c. P = ctx saved tensors
5
       batches, m, n = P, shape
6
7
       # initialize backward gradients (-v^T H^{-1} B)
8
       dLdM = -1.0 * gamma * P * dLdP
9
10
       # compute [vHAt1, vHAt2] = -v^T H^{-1} A^T
11
       vHAt1, vHAt2 = sum(d.IdM[:, 1:m, 0:n], dim=2), sum(d.IdM, dim=1)
13
       # compute [v1, v2] = -v^T H^{-1} A^T (A H^{-1} A^T)^{-1}
14
       P_{over_c} = P[:, 1:m, 0:n] / c.view(batches, 1, n)
15
       lmd 11 = cholesky(diag embed(r[:, 1:m]) - bmm(P[:, 1:m, 0:n], P over c.transpose(1, 2)))
16
       lmd_{12} = cholesky_solve(P_over_c, lmd_{11})
17
       lmd_22 = diag_embed(1.0 / c) + bmm(lmd_12.transpose(1, 2), P_over_c)
18
19
       v1 = torch.cholesky_solve(vHAt1, lmd_11) - torch.bmm(lmd_12, vHAt2)
20
       v2 = torch.bmm(lmd_22, vHAt2) - torch.bmm(lmd_12.transpose(1, 2), vHAt1)
21
22
       # compute v^T H^{-1} A^T (A H^{-1} A^T)^{-1} A H^{-1} B - v^T H^{-1} B
23
       dLdM[:, 1:m, 0:n] -= v1.view(batches, m-1, 1) * P[:, 1:m, 0:n]
       dJdM -= v2.view(batches, 1. n) * P
24
25
26
       # return gradients
27
       return d.IdM
```

# Running Time



## Memory Usage



#### Application to Blind Perspective-n-Point (Campbell et al., ECCV 2020)



find the location where the photograph was taken

### **Coupled Problem**





 if we knew correspondences then determining camera pose would be easy  if we knew camera pose then determining correspondences would be easy

### Blind Perspective-n-Point Network Architecture



#### Blind Perspective-n-Point Results



more examples

# Further Resources

Diving deeper from here?

#### background reading



- Deep declarative networks (http://deepdeclarativenetworks.com)
  - Iots of small code examples and tutorials
- CVXPyLayers (https://github.com/cvxgrp/cvxpylayers)
- Theseus (https://sites.google.com/view/theseus-ai)
- JAXopt (https://github.com/google/jaxopt)

lecture notes available at https://users.cecs.anu.edu.au/~sgould



break-out slides

#### automatic differentiation

## Toy Example: Babylonian Algorithm .

Consider the following implementation for a forward operation:

1: procedure FWDFCN(x) 2:  $y_0 \leftarrow \frac{1}{2}x$ 3: for t = 1, ..., T do 4:  $y_t \leftarrow \frac{1}{2} \left( y_{t-1} + \frac{x}{y_{t-1}} \right)$ 5: end for 6: return  $y_T$ 7: end procedure

# Toy Example: Babylonian Algorithm .

Consider the following implementation for a forward operation:

1: procedure FWDFCN(x) 2:  $y_0 \leftarrow \frac{1}{2}x$ 3: for t = 1, ..., T do 4:  $y_t \leftarrow \frac{1}{2} \left( y_{t-1} + \frac{x}{y_{t-1}} \right)$ 5: end for 6: return  $y_T$ 7: end procedure Automatic differentiation algorithmically generates the backward code:

| 1: procedure BCKFCN $(x, y_T, \frac{dL}{dy_T})$                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 2: $\frac{\mathrm{d}L}{\mathrm{d}x} \leftarrow 0$                                                                                                   |
| 3: for $t = T, \ldots, 1$ do                                                                                                                        |
| $\partial y_t / \partial x$                                                                                                                         |
|                                                                                                                                                     |
| 4: $\frac{\mathrm{d}L}{\mathrm{d}x} \leftarrow \frac{\mathrm{d}L}{\mathrm{d}x} + \frac{\mathrm{d}L}{\mathrm{d}y_t} \left(\frac{1}{2y_{t-1}}\right)$ |
| 5: $\frac{\mathrm{d}L}{\mathrm{d}y_{t-1}} \leftarrow \frac{\mathrm{d}L}{\mathrm{d}y_t} \left(\frac{1}{2} - \frac{x}{2y_{t-1}^2}\right)$             |
|                                                                                                                                                     |
| $\partial y_t / \partial y_{t-1}$                                                                                                                   |
| 6: end for                                                                                                                                          |
| 7: $\frac{\mathrm{d}L}{\mathrm{d}x} \leftarrow \frac{\mathrm{d}L}{\mathrm{d}x} + \frac{\mathrm{d}L}{\mathrm{d}y_0} \frac{1}{2}$                     |
| 8: return $\frac{dL}{dr}$                                                                                                                           |
| 9: end procedure                                                                                                                                    |

# Toy Example: Babylonian Algorithm ...

Consider the following implementation for a forward operation:

1: procedure FwDFCN(x) 2:  $y_0 \leftarrow \frac{1}{2}x$ 3: for t = 1, ..., T do 4:  $y_t \leftarrow \frac{1}{2} \left( y_{t-1} + \frac{x}{y_{t-1}} \right)$ 5: end for 6: return  $y_T$ 7: end procedure

- computes  $y = \sqrt{x}$
- derivative computed directly is  $\frac{dy}{dx} = \frac{1}{2\sqrt{x}} = \frac{1}{2y}$

Automatic differentiation algorithmically generates the backward code:

| 1: procedure BCKFCN $(x, y_T, \frac{dL}{dy_T})$                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 2: $\frac{\mathrm{d}L}{\mathrm{d}r} \leftarrow 0$                                                                                                   |
| 3: for $t = T, \ldots, 1$ do                                                                                                                        |
| $\partial y_t / \partial x$                                                                                                                         |
|                                                                                                                                                     |
| 4: $\frac{\mathrm{d}L}{\mathrm{d}x} \leftarrow \frac{\mathrm{d}L}{\mathrm{d}x} + \frac{\mathrm{d}L}{\mathrm{d}y_t} \left(\frac{1}{2y_{t-1}}\right)$ |
| 5: $\frac{\mathrm{d}L}{\mathrm{d}y_{t-1}} \leftarrow \frac{\mathrm{d}L}{\mathrm{d}y_t} \left(\frac{1}{2} - \frac{x}{2y_{t-1}^2}\right)$             |
|                                                                                                                                                     |
| $\partial y_t / \partial y_{t-1}$                                                                                                                   |
| 6: end for                                                                                                                                          |
| 7: $\frac{\mathrm{d}L}{\mathrm{d}x} \leftarrow \frac{\mathrm{d}L}{\mathrm{d}x} + \frac{\mathrm{d}L}{\mathrm{d}y_0} \frac{1}{2}$                     |
| 8: return $\frac{dL}{dr}$                                                                                                                           |
| 9: end procedure                                                                                                                                    |

Computation Graph for Babylonian Algorithm .



$$y_T = f(x, f(x, f(x, \dots f(x, \frac{1}{2}x))))$$
 with  $f(x, y) = \frac{1}{2}\left(y + \frac{x}{y}\right)$ 

Computation Graph for Babylonian Algorithm .



$$y_T = f(x, f(x, f(x, \dots f(x, \frac{1}{2}x))))$$
 with  $f(x, y) = \frac{1}{2} \left( y + \frac{x}{y} \right)$ 

$$\frac{\mathrm{d}L}{\mathrm{d}x} = \frac{\mathrm{d}L}{\mathrm{d}y_T} \left( \frac{\partial y_T}{\partial x} + \frac{\partial y_T}{\partial y_{T-1}} \left( \frac{\partial y_{T-1}}{\partial x} + \frac{\partial y_{T-1}}{\partial y_{T-2}} \left( \dots + \frac{\partial y_0}{\partial x} \right) \right) \right)$$

least squares

#### Least Squares Backward Pass Derivation ...

Differentiating  $x^{\star}$  with respect to single element  $A_{ij}$ , we have

$$\frac{\mathrm{d}}{\mathrm{d}A_{ij}}x^{\star} = \frac{\mathrm{d}}{\mathrm{d}A_{ij}} \left(A^{T}A\right)^{-1} A^{T}b$$
$$= \left(\frac{\mathrm{d}}{\mathrm{d}A_{ij}} \left(A^{T}A\right)^{-1}\right) A^{T}b + \left(A^{T}A\right)^{-1} \left(\frac{\mathrm{d}}{\mathrm{d}A_{ij}} A^{T}b\right)$$

Using the identity  $\frac{d}{dz}Z^{-1} = -Z^{-1}\left(\frac{d}{dz}Z\right)Z^{-1}$  we get, for the first term,

$$\frac{\mathrm{d}}{\mathrm{d}A_{ij}} \left(A^{T}A\right)^{-1} = -\left(A^{T}A\right)^{-1} \left(\frac{\mathrm{d}}{\mathrm{d}A_{ij}} \left(A^{T}A\right)\right) \left(A^{T}A\right)^{-1}$$
$$= -\left(A^{T}A\right)^{-1} \left(E_{ij}^{T}A + A^{T}E_{ij}\right) \left(A^{T}A\right)^{-1}$$

where  $E_{ij}$  is a matrix with one in the (i, j)-th element and zeros elsewhere. Furthermore, for the second term,

$$\frac{\mathsf{d}}{\mathsf{d}A_{ij}}A^Tb = E_{ij}^Tb$$

### Least Squares Backward Pass Derivation (cont.)

Plugging these back into parent equation we have

$$\frac{d}{dA_{ij}}x^{\star} = -(A^{T}A)^{-1}(E_{ij}^{T}A + A^{T}E_{ij})(A^{T}A)^{-1}A^{T}b + (A^{T}A)^{-1}E_{ij}^{T}b$$
$$= -(A^{T}A)^{-1}(E_{ij}^{T}A + A^{T}E_{ij})x^{\star} + (A^{T}A)^{-1}E_{ij}^{T}b$$
$$= -(A^{T}A)^{-1}(E_{ij}^{T}(Ax^{\star} - b) + A^{T}E_{ij}x^{\star})$$
$$= -(A^{T}A)^{-1}((a_{i}^{T}x^{\star} - b_{i})e_{j} + x_{j}^{\star}a_{i})$$

where  $e_j = (0, 0, ..., 1, 0, ...) \in \mathbb{R}^n$  is the *j*-th canonical vector, i.e., vector with a one in the *j*-th component and zeros everywhere else, and  $a_i^T \in \mathbb{R}^{1 \times n}$  is the *i*-th row of matrix A.

Least Squares Backward Pass Derivation (cont.)

Let  $r = b - Ax^*$  and let  $v^T$  denote the backward coming gradient  $\frac{d}{dx^*}L$ . Then

$$\frac{\mathrm{d}L}{\mathrm{d}A_{ij}} = v^T \frac{\mathrm{d}x^*}{\mathrm{d}A_{ij}}$$
$$= v^T (A^T A)^{-1} (r_i e_j - x_j^* a_i)$$
$$= w^T (r_i e_j - x_j^* a_i)$$
$$= r_i w_j - w^T a_i x_j^*$$

where  $w = (A^T A)^{-1} v$ . We can compute the entire matrix of  $m \times n$  derivatives efficiently as the sum of outer products

$$\left(\frac{\mathrm{d}L}{\mathrm{d}A}\right)^T = \left[\frac{\mathrm{d}L}{\mathrm{d}A_{ij}}\right]_{\substack{i=1,\dots,m\\j=1,\dots,n}} = wr^T - x^*(Aw)^T$$
#### differentiating equality constrained problems

## Differentiating Equality Constrained Optimisation Problems $\bigoplus$ back Consider functions $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ and $h : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^q$ . Let

$$y(x) \in \underset{u \in \mathbb{R}^m}{\operatorname{arg\,min}} f(x, u)$$
  
subject to  $h(x, u) = 0_0$ 

Assume that y(x) exists, that f and h are twice differentiable in the neighbourhood of (x, y(x)), and that  $\operatorname{rank}(\frac{\partial h(x,y)}{\partial y}) = q$ .

#### Differentiating Equality Constrained Optimisation Problems Consider functions $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ and $h : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^q$ . Let

$$y(x) \in \operatorname*{arg\,min}_{u \in \mathbb{R}^m} f(x, u)$$
  
subject to  $h(x, u) = 0_d$ 

Assume that y(x) exists, that f and h are twice differentiable in the neighbourhood of (x, y(x)), and that  $\operatorname{rank}(\frac{\partial h(x,y)}{\partial y}) = q$ . Then for H non-singular

$$\frac{\mathrm{d}y(x)}{\mathrm{d}x} = H^{-1}A^{T}(AH^{-1}A^{T})^{-1}(AH^{-1}B - C) - H^{-1}B$$

where

$$\begin{split} A &= \frac{\partial h(x,y)}{\partial y} \in \mathbb{R}^{q \times m} \quad B = \frac{\partial^2 f(x,y)}{\partial x \partial y} - \sum_{i=1}^q \nu_i \frac{\partial^2 h_i(x,y)}{\partial x \partial y} \in \mathbb{R}^{m \times n} \\ C &= \frac{\partial h(x,y)}{\partial x} \in \mathbb{R}^{q \times n} \quad H = \frac{\partial^2 f(x,y)}{\partial y^2} - \sum_{i=1}^q \nu_i \frac{\partial^2 h_i(x,y)}{\partial y^2} \in \mathbb{R}^{m \times m} \end{split}$$

and 
$$\nu \in \mathbb{R}^q$$
 satisfies  $\nu^T A = \frac{\partial f(x,y)}{\partial y}$ .

Stephen Gould, RVSS 2024

# Dealing with Inequality Constraints ...

$$\begin{array}{l} y(x) \in \mathop{\arg\min}_{u \in \mathbb{R}^m} \; f_0(x,u) \\ \text{subject to} \; & h_i(x,u) = 0, \; i = 1, \dots, q \\ & f_i(x,u) \leq 0, \; i = 1, \dots, p. \end{array}$$

- Replace inequality constraints with log-barrier approximation
- Treat as equality constraints if active (y<sub>2</sub> or y<sub>3</sub>) and ignore otherwise (y<sub>1</sub> or y<sub>3</sub>)
  - may lead to one-sided gradients since  $\nu \succeq 0$



eigen decomposition

#### Deriving the Gradient for Eigen Decomposition .

Implicit differentiation of the optimality conditions with respect to  $X_{ij}$  gives,

$$\frac{\mathrm{d}}{\mathrm{d}X_{ij}}(Xy - \lambda_{\max}y) = \frac{1}{2}(E_{ij} + E_{ji})y - \frac{\mathrm{d}\lambda_{\max}}{\mathrm{d}X_{ij}}y + (X - \lambda_{\max}I)\frac{\mathrm{d}y}{\mathrm{d}X_{ij}} = 0$$
(1)

$$\frac{\mathrm{d}}{\mathrm{d}X_{ij}}(y^T y - 1) = 2y^T \frac{\mathrm{d}y}{\mathrm{d}X_{ij}} = 0$$
<sup>(2)</sup>

Pre-multiplying (1) by  $y^T$ , and using (2) and  $y^Ty=1$ , we get

$$\frac{\mathrm{d}\lambda_{\max}}{\mathrm{d}X_{ij}} = \frac{1}{2}y^T (E_{ij} + E_{ji})y$$

Pre-multiplying (1) by  $(X - \lambda_{\max}I)^{\dagger}$ , we get

$$\begin{aligned} \frac{1}{2} (X - \lambda_{\max}I)^{\dagger} (E_{ij} + E_{ji})y - (X - \lambda_{\max}I)^{\dagger} \frac{\mathrm{d}\lambda_{\max}}{\mathrm{d}X_{ij}}y + \frac{\mathrm{d}y}{\mathrm{d}X_{ij}} &= 0\\ \therefore \ \frac{\mathrm{d}y}{\mathrm{d}X_{ij}} &= -\frac{1}{2} (X - \lambda_{\max}I)^{\dagger} (E_{ij} + E_{ji})y \end{aligned}$$

since 
$$(X - \lambda_{\max}I)^{\dagger} \frac{\mathrm{d}\lambda_{\max}}{\mathrm{d}X_{ij}} y = \frac{\mathrm{d}\lambda_{\max}}{\mathrm{d}X_{ij}} (X - \lambda_{\max}I)^{\dagger}y = 0$$
 since if  $Az = 0$ , then  $A^{\dagger}z = 0$ .

Stephen Gould, RVSS 2024

additional examples

### Differentiable Eigen Decomposition

Finding the eigenvector corresponding to the maximum eigenvalue of a real symmetric matrix  $X \in \mathbb{R}^{m \times m}$  can be formulated as

maximize (over 
$$u \in \mathbb{R}^m$$
)  $u^T X u$   
subject to  $u^T u = 1$ 

which has applications in, for example, back propagating through normalized cuts.

#### Differentiable Eigen Decomposition

Finding the eigenvector corresponding to the maximum eigenvalue of a real symmetric matrix  $X \in \mathbb{R}^{m \times m}$  can be formulated as

maximize (over 
$$u \in \mathbb{R}^m$$
)  $u^T X u$   
subject to  $u^T u = 1$ 

which has applications in, for example, back propagating through normalized cuts. Optimality conditions (for solution y) are

$$Xy = \lambda_{\max}y$$
 and  $y^Ty = 1$ .

#### Differentiable Eigen Decomposition

Finding the eigenvector corresponding to the maximum eigenvalue of a real symmetric matrix  $X \in \mathbb{R}^{m \times m}$  can be formulated as

maximize (over 
$$u \in \mathbb{R}^m$$
)  $u^T X u$   
subject to  $u^T u = 1$ 

which has applications in, for example, back propagating through normalized cuts. Optimality conditions (for solution y) are

$$Xy = \lambda_{\max}y$$
 and  $y^Ty = 1$ .

Taking derivatives with respect to components of X we get,

$$rac{\mathrm{d}y}{\mathrm{d}X_{ij}} = -rac{1}{2}(X-\lambda_{\mathsf{max}}I)^{\dagger}(E_{ij}+E_{ji})y \quad \in \mathbb{R}^m$$

derivation

### **PyTorch Implementation**

```
class EigenDecompositionFcn(torch.autograd.Function);
2
       """PvTorch autograd function for eigen decomposition."""
 3
4
       Østaticmethod
5
       def forward(ctx, X):
6
           B, M, N = X.shape
7
8
           # use torch's eigh function to find the eigenvalues and eigenvectors of a symmetric matrix
9
           with torch.no grad():
               lmd, Y = torch.linalg.eigh(0.5 * (X + X.transpose(1, 2)))
11
           ctx.save_for_backward(lmd. Y)
           return Y
14
15
       Østaticmethod
16
       def backward(ctx, dJdY):
           lmd. Y = ctx.saved_tensors
18
           B, M, N = Y.shape
19
20
           # compute all pseudo-inverses simultaneously
21
           L = lmd.view(B, 1, M) - lmd.view(B, M, 1)
           L = torch.where(torch.abs(L) \leq eps. 0.0. 1.0 / L)
24
           # compute full gradient over all eigenvectors
25
           dJdX = torch.bmm(torch.bmm(Y. L * torch.bmm(Y.transpose(1, 2), dJdY)), Y.transpose(1, 2))
26
           dJdX = 0.5 * (dJdX + dJdX.transpose(1, 2))
27
28
           return dIdX
```

#### Experiment back

