
A into
d

dn

 deep
declarative
networks


Stephen Gould

stephen.gould@anu.edu.au

Robotic Vision Summer School (RVSS), 2024
Australian National University

9 February 2024

Stephen Gould, RVSS 2024 1/69

Discovery of Ceres

x̂4

x3
x2

x1

Stephen Gould, RVSS 2024 2/69

Discovery of Ceres

x̂4

x3
x2

x1

Stephen Gould, RVSS 2024 2/69

Discovery of Ceres

x̂4

x3
x2

x1

Stephen Gould, RVSS 2024 2/69

Discovery of Ceres

x̂4

x3
x2

x1

Stephen Gould, RVSS 2024 2/69

Optimisation is Everywhere

▶ financial mathematics: maximise profits or minimise costs subject to constraints
on resources and budgets

▶ mechanical engineering: maximise the span of a bridge subject to load
constraints; minimise drag on a vehicle subject to volume constraints

▶ electrical engineering: minimise the size of a transistor in a circuit subject to
power and timing constraints

▶ logistics and planning: find the cheapest way to distribute goods from suppliers
to consumers across a transportation network

▶ statistics/data science: curve fitting and data visualisation

▶ robotics: optimise control parameters to achieve some goal state or trajectory;
simultaneous localisation and mapping (SLAM); point/feature matching

▶ machine learning and deep learning: minimise loss functions with respect to
the parameters of our model

Stephen Gould, RVSS 2024 3/69

Optimisation is Everywhere

▶ financial mathematics: maximise profits or minimise costs subject to constraints
on resources and budgets

▶ mechanical engineering: maximise the span of a bridge subject to load
constraints; minimise drag on a vehicle subject to volume constraints

▶ electrical engineering: minimise the size of a transistor in a circuit subject to
power and timing constraints

▶ logistics and planning: find the cheapest way to distribute goods from suppliers
to consumers across a transportation network

▶ statistics/data science: curve fitting and data visualisation

▶ robotics: optimise control parameters to achieve some goal state or trajectory;
simultaneous localisation and mapping (SLAM); point/feature matching

▶ machine learning and deep learning: minimise loss functions with respect to
the parameters of our model

Stephen Gould, RVSS 2024 3/69

Optimisation is Everywhere

▶ financial mathematics: maximise profits or minimise costs subject to constraints
on resources and budgets

▶ mechanical engineering: maximise the span of a bridge subject to load
constraints; minimise drag on a vehicle subject to volume constraints

▶ electrical engineering: minimise the size of a transistor in a circuit subject to
power and timing constraints

▶ logistics and planning: find the cheapest way to distribute goods from suppliers
to consumers across a transportation network

▶ statistics/data science: curve fitting and data visualisation

▶ robotics: optimise control parameters to achieve some goal state or trajectory;
simultaneous localisation and mapping (SLAM); point/feature matching

▶ machine learning and deep learning: minimise loss functions with respect to
the parameters of our model

Stephen Gould, RVSS 2024 3/69

Optimisation is Everywhere

▶ financial mathematics: maximise profits or minimise costs subject to constraints
on resources and budgets

▶ mechanical engineering: maximise the span of a bridge subject to load
constraints; minimise drag on a vehicle subject to volume constraints

▶ electrical engineering: minimise the size of a transistor in a circuit subject to
power and timing constraints

▶ logistics and planning: find the cheapest way to distribute goods from suppliers
to consumers across a transportation network

▶ statistics/data science: curve fitting and data visualisation

▶ robotics: optimise control parameters to achieve some goal state or trajectory;
simultaneous localisation and mapping (SLAM); point/feature matching

▶ machine learning and deep learning: minimise loss functions with respect to
the parameters of our model

Stephen Gould, RVSS 2024 3/69

Optimisation is Everywhere

▶ financial mathematics: maximise profits or minimise costs subject to constraints
on resources and budgets

▶ mechanical engineering: maximise the span of a bridge subject to load
constraints; minimise drag on a vehicle subject to volume constraints

▶ electrical engineering: minimise the size of a transistor in a circuit subject to
power and timing constraints

▶ logistics and planning: find the cheapest way to distribute goods from suppliers
to consumers across a transportation network

▶ statistics/data science: curve fitting and data visualisation

▶ robotics: optimise control parameters to achieve some goal state or trajectory;
simultaneous localisation and mapping (SLAM); point/feature matching

▶ machine learning and deep learning: minimise loss functions with respect to
the parameters of our model

Stephen Gould, RVSS 2024 3/69

Optimisation is Everywhere

▶ financial mathematics: maximise profits or minimise costs subject to constraints
on resources and budgets

▶ mechanical engineering: maximise the span of a bridge subject to load
constraints; minimise drag on a vehicle subject to volume constraints

▶ electrical engineering: minimise the size of a transistor in a circuit subject to
power and timing constraints

▶ logistics and planning: find the cheapest way to distribute goods from suppliers
to consumers across a transportation network

▶ statistics/data science: curve fitting and data visualisation

▶ robotics: optimise control parameters to achieve some goal state or trajectory;
simultaneous localisation and mapping (SLAM); point/feature matching

▶ machine learning and deep learning: minimise loss functions with respect to
the parameters of our model

Stephen Gould, RVSS 2024 3/69

Optimisation is Everywhere

▶ financial mathematics: maximise profits or minimise costs subject to constraints
on resources and budgets

▶ mechanical engineering: maximise the span of a bridge subject to load
constraints; minimise drag on a vehicle subject to volume constraints

▶ electrical engineering: minimise the size of a transistor in a circuit subject to
power and timing constraints

▶ logistics and planning: find the cheapest way to distribute goods from suppliers
to consumers across a transportation network

▶ statistics/data science: curve fitting and data visualisation

▶ robotics: optimise control parameters to achieve some goal state or trajectory;
simultaneous localisation and mapping (SLAM); point/feature matching

▶ machine learning and deep learning: minimise loss functions with respect to
the parameters of our model

Stephen Gould, RVSS 2024 3/69

Optimisation Problems

find an assignment to variables that minimises
a measure of cost subject to some constraints1

1In these lectures we will be concerned with continuous-valued variables
Stephen Gould, RVSS 2024 4/69

Optimisation Problems

minimize (over x) objective(x)
subject to constraints(x)

Stephen Gould, RVSS 2024 4/69

Optimisation Problems

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , p

hi(x) = 0, i = 1, . . . , q

▶ x = (x1, . . . , xn) ∈ Rn — optimisation variables

▶ f0 : Rn → R — objective (or cost or loss) function

▶ fi : Rn → R, i = 1, . . . , p — inequality constraint functions

▶ hi : Rn → R, i = 1, . . . , q — equality constraint functions

Stephen Gould, RVSS 2024 4/69

Least Squares

minimize ∥Ax− b∥22

▶ unique solution if ATA is invertible, x⋆ =
(
ATA

)−1
AT b

▶ solution via SVD, A = UΣV T , if ATA not invertible, x⋆ = V Σ−1UT b
▶ in fact, x⋆ + w for any w ∈ N (A) also a solution

▶ solution via QR factorisation, x⋆ = R−1QT b

▶ solved in O(n2m) time, less if structured

▶ typically use iterative solver (for large scale problems)

Stephen Gould, RVSS 2024 5/69

Least Squares

minimize ∥Ax− b∥22

▶ unique solution if ATA is invertible, x⋆ =
(
ATA

)−1
AT b

▶ solution via SVD, A = UΣV T , if ATA not invertible, x⋆ = V Σ−1UT b
▶ in fact, x⋆ + w for any w ∈ N (A) also a solution

▶ solution via QR factorisation, x⋆ = R−1QT b

▶ solved in O(n2m) time, less if structured

▶ typically use iterative solver (for large scale problems)

Stephen Gould, RVSS 2024 5/69

Example: Polynomial Curve Fitting

fit n-th order polynomial fa(x) =
∑n

k=0 akx
k to set of noisy points {(xi, yi)}mi=1

(here a are the variables, and x and y are the data)

minimize (over a)
∑m

i=1 (fa(xi)− yi)
2

minimize

∥∥∥∥∥∥∥∥∥


1 x1 x2

1 . . . xn
1

1 x2 x2
2 . . . xn

2
...

...
...

. . .
...

1 xm x2
m . . . xn

m



a0
a1
...
an

−

y1
y2
...

ym


∥∥∥∥∥∥∥∥∥

2

2

fa(x)

x

y

Stephen Gould, RVSS 2024 6/69

Part I. Machine Learning and Deep Learning

Stephen Gould, RVSS 2024 7/69

Machine Learning from 10,000ft

f : X → Y

minimize (over θ)
∑

(x,y)∼X×Y L(fθ(x), y)

▶ loss L — what to do

▶ model fθ — how to do it

▶ optimised by gradient descent (or variant thereof)

Stephen Gould, RVSS 2024 8/69

Machine Learning from 10,000ft

fθ : X × Ω→ Y

minimize (over θ)
∑

(x,y)∼X×Y L(fθ(x), y)

▶ loss L — what to do

▶ model fθ — how to do it

▶ optimised by gradient descent (or variant thereof)

Stephen Gould, RVSS 2024 8/69

Deep Learning as an End-to-end Computation Graph
Deep learning does this by constructing the model fθ (equiv. computation graph) as
the composition of many simple parametrized functions (equiv. computation nodes).

f1

f2 f3 f4

f5 f6 f7

f8x y

θ1

θ2 θ3 θ4

θ5 θ6 θ7

θ8

y = f8(f4(f3(f2(f1(x)))), f7(f6(f5(f1(x)))))

(parameters θi omitted for brevity)
Stephen Gould, RVSS 2024 9/69

Backward Pass Gradient Calculation

f1

f2 f3 f4

f5 f6 f7

f8x

z7

y

θ1

θ2 θ3 θ4

θ5 θ6 θ7

θ8

Example 1.

∂L

∂θ7
=

∂L

∂y

∂y

∂z7

∂z7
∂θ7

Stephen Gould, RVSS 2024 10/69

Backward Pass Gradient Calculation

f1

f2 f3 f4

f5 f6 f7

f8x

z1

z2 z3
z4

z1

z5 z6

z7

y

θ1

θ2 θ3 θ4

θ5 θ6 θ7

θ8

Example 2.

∂L

∂θ1
=

∂L

∂y

(
∂y

∂z4

∂z4
∂z3

∂z3
∂z2

∂z2
∂z1

+
∂y

∂z7

∂z7
∂z6

∂z6
∂z5

∂z5
∂z4

)
∂z1
∂θ1

Stephen Gould, RVSS 2024 11/69

Deep Learning Node

f̃ output, yinput, x

parameters, θ

d
dyL

d
dxL

d
dθL

▶ Forward pass: compute output y as a
function of the input x (and model
parameters θ).

▶ Backward pass: compute the
derivative of the loss with respect to
the input x (and model parameters θ)
given the derivative of the loss with
respect to the output y.

Stephen Gould, RVSS 2024 12/69

Aside: Notation (Often Sloppy)

For scalar-valued functions:

total derivative:
df

dx
partial derivative:

∂f

∂x

For multi-dimensional vector-valued functions, f : Rn → Rm:

d

dx
f(x) =


df1
dx1

. . . df1
dxn

...
. . .

...
dfm
dx1

. . . dfm
dxn

 ∈ Rm×n (
∂

∂x
f(x, y) for partial)

Sometimes D and DX for d
dx and ∂

∂x , respectively.

Mathematically, derivatives with respect to (scalar-valued) loss functions are
row vectors (m = 1).

Stephen Gould, RVSS 2024 13/69

Aside: Notation (Often Sloppy)

For scalar-valued functions:

total derivative:
df

dx
partial derivative:

∂f

∂x

For multi-dimensional vector-valued functions, f : Rn → Rm:

d

dx
f(x) =


df1
dx1

. . . df1
dxn

...
. . .

...
dfm
dx1

. . . dfm
dxn

 ∈ Rm×n (
∂

∂x
f(x, y) for partial)

Sometimes D and DX for d
dx and ∂

∂x , respectively.

Mathematically, derivatives with respect to (scalar-valued) loss functions are
row vectors (m = 1).

Stephen Gould, RVSS 2024 13/69

Aside: Notation (Often Sloppy)

For scalar-valued functions:

total derivative:
df

dx
partial derivative:

∂f

∂x

For multi-dimensional vector-valued functions, f : Rn → Rm:

d

dx
f(x) =


df1
dx1

. . . df1
dxn

...
. . .

...
dfm
dx1

. . . dfm
dxn

 ∈ Rm×n (
∂

∂x
f(x, y) for partial)

Sometimes D and DX for d
dx and ∂

∂x , respectively.

Mathematically, derivatives with respect to (scalar-valued) loss functions are
row vectors (m = 1).

Stephen Gould, RVSS 2024 13/69

Concerning Memory
▶ data is often processed in batches (B ×N × · · · × C)

f1 f2 f3x
y

L(θ)

ytarget

y

θ1 θ2 θ3

▶ parameters (usually) only take a small amount of memory (relative to data)

▶ derivatives take the same amount of space as the data and stored transposed!

▶ in-place operations may save memory in the forward pass

▶ re-using buffers may save memory in the backward pass

▶ at test time intermediate results are not stored

Stephen Gould, RVSS 2024 14/69

Concerning Memory
▶ data is often processed in batches (B ×N × · · · × C)

f1 f2 f3x
y

L(θ)

ytarget

y

θ1 θ2 θ3

▶ parameters (usually) only take a small amount of memory (relative to data)

▶ derivatives take the same amount of space as the data and stored transposed!

▶ in-place operations may save memory in the forward pass

▶ re-using buffers may save memory in the backward pass

▶ at test time intermediate results are not stored

Stephen Gould, RVSS 2024 14/69

Concerning Memory
▶ data is often processed in batches (B ×N × · · · × C)

f1 f2 f3x
y

L(θ)

ytarget

y

θ1 θ2 θ3

▶ parameters (usually) only take a small amount of memory (relative to data)

▶ derivatives take the same amount of space as the data and stored transposed!

▶ in-place operations may save memory in the forward pass

▶ re-using buffers may save memory in the backward pass

▶ at test time intermediate results are not stored

Stephen Gould, RVSS 2024 14/69

Concerning Memory
▶ data is often processed in batches (B ×N × · · · × C)

f1 f2 f3x

y

L(θ)

ytarget

y

θ1 θ2 θ3

▶ parameters (usually) only take a small amount of memory (relative to data)

▶ derivatives take the same amount of space as the data and stored transposed!

▶ in-place operations may save memory in the forward pass

▶ re-using buffers may save memory in the backward pass

▶ at test time intermediate results are not stored

Stephen Gould, RVSS 2024 14/69

Concerning Memory
▶ data is often processed in batches (B ×N × · · · × C)

f1 f2 f3x

y

L(θ)

ytarget

y

θ1 θ2 θ3

▶ parameters (usually) only take a small amount of memory (relative to data)

▶ derivatives take the same amount of space as the data and stored transposed!

▶ in-place operations may save memory in the forward pass

▶ re-using buffers may save memory in the backward pass

▶ at test time intermediate results are not stored

Stephen Gould, RVSS 2024 14/69

Concerning Memory
▶ data is often processed in batches (B ×N × · · · × C)

f1 f2 f3x

y

L(θ)

ytarget

y

θ1 θ2 θ3

▶ parameters (usually) only take a small amount of memory (relative to data)

▶ derivatives take the same amount of space as the data and stored transposed!

▶ in-place operations may save memory in the forward pass

▶ re-using buffers may save memory in the backward pass

▶ at test time intermediate results are not stored
Stephen Gould, RVSS 2024 14/69

Quick Quiz

f yx
d
dyL

d
dxL

y = Ax dL

dx
=

dL

dy

dy

dx

=
dL

dy
A

▶ forward pass O(n2), less if A is structured

▶ backward pass costs same as forward pass

Stephen Gould, RVSS 2024 15/69

Quick Quiz

f yx
d
dyL

d
dxL

y = Ax

dL

dx
=

dL

dy

dy

dx

=
dL

dy
A

▶ forward pass O(n2), less if A is structured

▶ backward pass costs same as forward pass

Stephen Gould, RVSS 2024 15/69

Quick Quiz

f yx
d
dyL

d
dxL

y = Ax dL

dx
=

dL

dy

dy

dx

=
dL

dy
A

▶ forward pass O(n2), less if A is structured

▶ backward pass costs same as forward pass

Stephen Gould, RVSS 2024 15/69

Quick Quiz

f yx
d
dyL

d
dxL

y = Ax dL

dx
=

dL

dy

dy

dx

=
dL

dy
A

▶ forward pass O(n2), less if A is structured

▶ backward pass costs same as forward pass

Stephen Gould, RVSS 2024 15/69

Quick Quiz (2)

f yx
d
dyL

d
dxL

Ay = x

dL

dx
=

dL

dy

dy

dx

=
dL

dy
A−1

▶ forward pass O(n3), less if structured

▶ backward pass solves w = AT v
▶ cheaper than forward pass if decomposition of A is cached

Stephen Gould, RVSS 2024 16/69

Quick Quiz (2)

f yx
d
dyL

d
dxL

Ay = x

∴ y = A−1x

dL

dx
=

dL

dy

dy

dx

=
dL

dy
A−1

▶ forward pass O(n3), less if structured

▶ backward pass solves w = AT v
▶ cheaper than forward pass if decomposition of A is cached

Stephen Gould, RVSS 2024 16/69

Quick Quiz (2)

f yx
d
dyL

d
dxL

Ay = x

∴ y = A−1x

dL

dx
=

dL

dy

dy

dx

=
dL

dy
A−1

▶ forward pass O(n3), less if structured

▶ backward pass solves w = AT v
▶ cheaper than forward pass if decomposition of A is cached

Stephen Gould, RVSS 2024 16/69

Automatic Differentiation (AD)

▶ algorithmic procedure that produces code for computing exact derivatives
▶ assumes numeric computations are composed of a small set of elementary

operations that we know how to differentiate
▶ arithmetic, exp, log, trigonometric

▶ workhorse of modern machine learning that greatly reduces development effort

▶ roughly speaking, for each line of the forward pass code, P, Q = foo(A, B, C),
autodiff produces a line dLdA, dLdB, dLdC = foo vjp(dLdP, dLdQ) in the
backward pass code

▶ but it doesn’t always work (see point 2), and when it does work it can be slow
and/or memory intensive

example

Stephen Gould, RVSS 2024 17/69

Automatic Differentiation (AD)

▶ algorithmic procedure that produces code for computing exact derivatives
▶ assumes numeric computations are composed of a small set of elementary

operations that we know how to differentiate
▶ arithmetic, exp, log, trigonometric

▶ workhorse of modern machine learning that greatly reduces development effort

▶ roughly speaking, for each line of the forward pass code, P, Q = foo(A, B, C),
autodiff produces a line dLdA, dLdB, dLdC = foo vjp(dLdP, dLdQ) in the
backward pass code

▶ but it doesn’t always work (see point 2), and when it does work it can be slow
and/or memory intensive

example

Stephen Gould, RVSS 2024 17/69

Computing 1/
√
x

1 float Q_rsqrt(float number)

2 {

3 long i;

4 float x2 , y;

5 const float threehalfs = 1.5F;

6

7 x2 = number * 0.5F;

8 y = number;

9 i = * (long *) &y; // evil floating point bit level hacking

10 i = 0x5f3759df - (i >> 1); // what the f**k?

11 y = * (float *) &i;

12 y = y * (threehalfs - (x2 * y * y)); // 1st iter

13 // y = y * (threehalfs - (x2 * y * y)); // 2nd iter , can be removed

14

15 return y;

16 }

Stephen Gould, RVSS 2024 18/69

Separate Forward and Backward Operations

y = 1√
x

dy
dx = −1

2y
3

output, y

input, x

parameters, θ

d
dyLd

dxL

d
dθL

Stephen Gould, RVSS 2024 19/69

Part II. Differentiable Optimisation

Stephen Gould, RVSS 2024 20/69

Bi-level Optimisation: Stackelberg Games

Consider two players, a leader and a follower

▶ the market dictates the price it’s willing to pay for some goods based on supply,
i.e., quantity produced by both players, P (q1 + q2)

▶ each player has a cost structure associated with producing goods, Ci(qi) and
wants to maximize profits, qiP (q1 + q2)− Ci(qi)

▶ the leader picks a quantity of goods to produce knowing that the follower will
respond optimally. In other words, the leader solves

maximize (over q1) q1P (q1 + q2)− C1(q1)
subject to q2 ∈ argmaxq qP (q1 + q)− C2(q)

Stephen Gould, RVSS 2024 21/69

Bi-level Optimisation: Stackelberg Games

Consider two players, a leader and a follower

▶ the market dictates the price it’s willing to pay for some goods based on supply,
i.e., quantity produced by both players, P (q1 + q2)

▶ each player has a cost structure associated with producing goods, Ci(qi) and
wants to maximize profits, qiP (q1 + q2)− Ci(qi)

▶ the leader picks a quantity of goods to produce knowing that the follower will
respond optimally. In other words, the leader solves

maximize (over q1) q1P (q1 + q2)− C1(q1)
subject to q2 ∈ argmaxq qP (q1 + q)− C2(q)

Stephen Gould, RVSS 2024 21/69

Bi-level Optimisation: Stackelberg Games

Consider two players, a leader and a follower

▶ the market dictates the price it’s willing to pay for some goods based on supply,
i.e., quantity produced by both players, P (q1 + q2)

▶ each player has a cost structure associated with producing goods, Ci(qi) and
wants to maximize profits, qiP (q1 + q2)− Ci(qi)

▶ the leader picks a quantity of goods to produce knowing that the follower will
respond optimally. In other words, the leader solves

maximize (over q1) q1P (q1 + q2)− C1(q1)
subject to q2 ∈ argmaxq qP (q1 + q)− C2(q)

Stephen Gould, RVSS 2024 21/69

Bi-level Optimisation Problems in Machine Learning

▶ quantities: input x, output y, parameters θ

minimize (over θ) L(x, y; θ)
subject to y ∈ argminu∈C(x;θ) f(x, u; θ)

▶ lower-level is an optimisation problem parametrized by x and θ

▶ gradient descent: compute gradient of lower-level solution y with respect to θ,
and use the chain rule to get the total derivative,

θ ← θ − η

(
∂L

∂θ
+

∂L

∂y

dy

dθ

)
▶ by back-propagating through the optimisation problem

Stephen Gould, RVSS 2024 22/69

Bi-level Optimisation Problems in Machine Learning

▶ quantities: input x, output y, parameters θ

minimize (over θ) L(x, y; θ)
subject to y ∈ argminu∈C(x;θ) f(x, u; θ)

▶ lower-level is an optimisation problem parametrized by x and θ

▶ gradient descent: compute gradient of lower-level solution y with respect to θ,
and use the chain rule to get the total derivative,

θ ← θ − η

(
∂L

∂θ
+

∂L

∂y

dy

dθ

)
▶ by back-propagating through the optimisation problem

Stephen Gould, RVSS 2024 22/69

Differentiable Least Squares

Consider our old friend, the least-squares problem,

minimize ∥Ax− b∥22

parameterized by A and b and with closed-form solution x⋆ =
(
ATA

)−1
AT b.

We are interested in derivatives of the solution with respect to the elements of A,

dx⋆

dAij
=

d

dAij

(
ATA

)−1
AT b ∈ Rn

We could also compute derivatives with respect to elements of b (but not here).

Stephen Gould, RVSS 2024 23/69

Differentiable Least Squares

Consider our old friend, the least-squares problem,

minimize ∥Ax− b∥22

parameterized by A and b and with closed-form solution x⋆ =
(
ATA

)−1
AT b.

We are interested in derivatives of the solution with respect to the elements of A,

dx⋆

dAij
=

d

dAij

(
ATA

)−1
AT b ∈ Rn

We could also compute derivatives with respect to elements of b (but not here).

Stephen Gould, RVSS 2024 23/69

Least Squares Backward Pass

The backward pass combines dx⋆

dAij
with vT = dL

dx⋆ via the vector-Jacobian product.

After some algebraic manipulation we get(
dL

dA

)T

= wrT − x⋆(Aw)T ∈ Rm×n

where wT = vT (ATA)−1 and r = b−Ax⋆.

▶
(
ATA

)−1
is used in both the forward and backward pass

▶ factored once to solve for x, e.g., into A = QR

▶ cache R and re-use when computing gradients
derivation

Stephen Gould, RVSS 2024 24/69

Least Squares Backward Pass

The backward pass combines dx⋆

dAij
with vT = dL

dx⋆ via the vector-Jacobian product.

After some algebraic manipulation we get(
dL

dA

)T

= wrT − x⋆(Aw)T ∈ Rm×n

where wT = vT (ATA)−1 and r = b−Ax⋆.

▶
(
ATA

)−1
is used in both the forward and backward pass

▶ factored once to solve for x, e.g., into A = QR

▶ cache R and re-use when computing gradients
derivation

Stephen Gould, RVSS 2024 24/69

PyTorch Implementation: Forward Pass

1 class LeastSquaresFcn(torch.autograd.Function):

2 """ PyTorch autograd function for least squares."""

3
4 @staticmethod

5 def forward(ctx , A, b):

6 B, M, N = A.shape

7 assert b.shape == (B, M, 1)

8
9 with torch.no_grad ():

10 Q, R = torch.linalg.qr(A, mode=’reduced ’)

11 x = torch.linalg.solve_triangular(R,

12 torch.bmm(b.view(B, 1, M), Q).view(B, N, 1), upper=True)

13
14 # save state for backward pass

15 ctx.save_for_backward(A, b, x, R)

16
17 # return solution

18 return x

A = QR

x = R−1
(
QT b

)
(solves Rx = QT b)

Stephen Gould, RVSS 2024 25/69

PyTorch Implementation: Backward Pass

1 @staticmethod

2 def backward(ctx , dx):

3 # check for None tensors

4 if dx is None:

5 return None , None

6
7 # unpack cached tensors

8 A, b, x, R = ctx.saved_tensors

9 B, M, N = A.shape

10
11 dA, db = None , None

12
13 w = torch.linalg.solve_triangular(R,

14 torch.linalg.solve_triangular(torch.transpose(R, 2, 1),

15 dx, upper=False), upper=True)

16 Aw = torch.bmm(A, w)

17
18 if ctx.needs_input_grad [0]:

19 r = b - torch.bmm(A, x)

20 dA = torch.bmm(r.view(B,M,1), w.view(B,1,N)) - \

21 torch.bmm(Aw.view(B,M,1), x.view(B,1,N))

22 if ctx.needs_input_grad [1]:

23 db = Aw

24
25 # return gradients

26 return dA, db

w =
(
ATA

)−1
v

= R−1
(
R−T v

)
r = b−Ax(

dL

dA

)T

= rwT − (Aw)xT

(
dL

db

)T

= Aw

Stephen Gould, RVSS 2024 26/69

Imperative vs Declarative Nodes

y = f̃(x; θ) yx

θ

d
dyL

d
dxL

d
dθL

▶ imperative node

▶ input-output relationship explicit,

y = f̃(x; θ)

y ∈ argmin
u∈C(x)

f(x, u; θ) yx

θ

d
dyL

d
dxL

d
dθL

▶ declarative node

▶ input-output relationship specified as
solution to an optimisation problem,

y ∈ argmin
u∈C(x)

f(x, u; θ)

can co-exist in the same computation graph (network)

Stephen Gould, RVSS 2024 27/69

Imperative vs Declarative Nodes

y = f̃(x; θ) yx

θ

d
dyL

d
dxL

d
dθL

▶ imperative node

▶ input-output relationship explicit,

y = f̃(x; θ)

y ∈ argmin
u∈C(x)

f(x, u; θ) yx

θ

d
dyL

d
dxL

d
dθL

▶ declarative node

▶ input-output relationship specified as
solution to an optimisation problem,

y ∈ argmin
u∈C(x)

f(x, u; θ)

can co-exist in the same computation graph (network)

Stephen Gould, RVSS 2024 27/69

Imperative vs Declarative Nodes

y = f̃(x; θ) yx

θ

d
dyL

d
dxL

d
dθL

▶ imperative node

▶ input-output relationship explicit,

y = f̃(x; θ)

y ∈ argmin
u∈C(x)

f(x, u; θ) yx

θ

d
dyL

d
dxL

d
dθL

▶ declarative node

▶ input-output relationship specified as
solution to an optimisation problem,

y ∈ argmin
u∈C(x)

f(x, u; θ)

can co-exist in the same computation graph (network)

Stephen Gould, RVSS 2024 27/69

Average Pooling Example

{xi ∈ Rm | i = 1, . . . , n} → Rm

▶ imperative specification

y =
1

n

n∑
i=1

xi

▶ declarative specification

y = argminu∈Rm

n∑
i=1

∥u− xi∥2

▶ can be easily varied, e.g., made robust

y = argminu∈Rm

n∑
i=1

ϕ(u− xi)

for some penalty function ϕ

Stephen Gould, RVSS 2024 28/69

Average Pooling Example

{xi ∈ Rm | i = 1, . . . , n} → Rm

▶ imperative specification

y =
1

n

n∑
i=1

xi

▶ declarative specification

y = argminu∈Rm

n∑
i=1

∥u− xi∥2

▶ can be easily varied, e.g., made robust

y = argminu∈Rm

n∑
i=1

ϕ(u− xi)

for some penalty function ϕ
Stephen Gould, RVSS 2024 28/69

Average Pooling Example

{xi ∈ Rm | i = 1, . . . , n} → Rm

z = ∥u− xi∥

ϕ(z) ▶ declarative specification

y = argminu∈Rm

n∑
i=1

∥u− xi∥2

▶ can be easily varied, e.g., made robust

y = argminu∈Rm

n∑
i=1

ϕ(u− xi)

for some penalty function ϕ
Stephen Gould, RVSS 2024 28/69

Parametrized Optimisation Re-cap
Think of y and an implicit function of x (wlog we’ll ignore θ from here on),

y(x) = argminu∈C(x) f(x, u)

Main question: How do we compute d
dx argminu∈C(x) f(x, u)?

Stephen Gould, RVSS 2024 29/69

Parametrized Optimisation Re-cap
Think of y and an implicit function of x (wlog we’ll ignore θ from here on),

y(x) = argminu∈C(x) f(x, u)

Main question: How do we compute d
dx argminu∈C(x) f(x, u)?

Stephen Gould, RVSS 2024 29/69

Computing d
dxargminu∈C(x) f(x, u)

▶ explicit from closed-form solution
▶ e.g., least-squares

▶ automatic differentiation of forward pass code
▶ e.g., unrolling gradient descent (next)

▶ implicit differentiation of optimality conditions (later)
▶ allows non-differentiable steps in the forward pass
▶ no need to store intermediate calculations

Stephen Gould, RVSS 2024 30/69

Computing d
dxargminu∈C(x) f(x, u)

▶ explicit from closed-form solution
▶ e.g., least-squares

▶ automatic differentiation of forward pass code
▶ e.g., unrolling gradient descent (next)

▶ implicit differentiation of optimality conditions (later)
▶ allows non-differentiable steps in the forward pass
▶ no need to store intermediate calculations

Stephen Gould, RVSS 2024 30/69

Computing d
dxargminu∈C(x) f(x, u)

▶ explicit from closed-form solution
▶ e.g., least-squares

▶ automatic differentiation of forward pass code
▶ e.g., unrolling gradient descent (next)

▶ implicit differentiation of optimality conditions (later)
▶ allows non-differentiable steps in the forward pass
▶ no need to store intermediate calculations

Stephen Gould, RVSS 2024 30/69

Unrolling Gradient Descent

repeat until convergence:

yt ← yt−1 − η
∂f

∂y
(x, yt−1)

x

0 · − η ∂f
∂y (x, ·) · · · · − η ∂f

∂y (x, ·)y0 y1 yT−1
yT

dyt
dx

=
∂yt
∂x

+
∂yt
∂yt−1

dyt−1
dx

= −η ∂2f

∂x∂y
(x, yt−1) +

(
I − η

∂2f

∂y2
(x, yt−1)

)
dyt−1
dx

Stephen Gould, RVSS 2024 31/69

Unrolling Gradient Descent

repeat until convergence:

yt ← yt−1 − η
∂f

∂y
(x, yt−1)

x

0 · − η ∂f
∂y (x, ·) · · · · − η ∂f

∂y (x, ·)y0 y1 yT−1
yT

dyt
dx

=
∂yt
∂x

+
∂yt
∂yt−1

dyt−1
dx

= −η ∂2f

∂x∂y
(x, yt−1) +

(
I − η

∂2f

∂y2
(x, yt−1)

)
dyt−1
dx

Stephen Gould, RVSS 2024 31/69

Dini’s Implicit Function Theorem

Consider the solution mapping associated with the equation f(x, u) = 0,

Y : x 7→ {u ∈ Rm | f(x, u) = 0} for x ∈ Rn.

We are interested in how elements of Y (x) change as a function of x.

Theorem
Let f : Rn × Rm → Rm be differentiable in a neighbourhood of (x, u) and such that
f(x, u) = 0, and let ∂

∂uf(x, u) be nonsingular. Then the solution mapping Y has a
single-valued localization y around x for u which is differentiable in a neighbourhood
X of x with Jacobian satisfying

dy(x)

dx
= −

(
∂f(x, y(x))

∂y

)−1 ∂f(x, y(x))
∂x

for every x ∈ X .

Stephen Gould, RVSS 2024 32/69

Dini’s Implicit Function Theorem

Consider the solution mapping associated with the equation f(x, u) = 0,

Y : x 7→ {u ∈ Rm | f(x, u) = 0} for x ∈ Rn.

We are interested in how elements of Y (x) change as a function of x.

Theorem
Let f : Rn × Rm → Rm be differentiable in a neighbourhood of (x, u) and such that
f(x, u) = 0, and let ∂

∂uf(x, u) be nonsingular. Then the solution mapping Y has a
single-valued localization y around x for u which is differentiable in a neighbourhood
X of x with Jacobian satisfying

dy(x)

dx
= −

(
∂f(x, y(x))

∂y

)−1 ∂f(x, y(x))
∂x

for every x ∈ X .

Stephen Gould, RVSS 2024 32/69

Unit Circle Example

(x, y1)

(x, y2)

(x, y1)

(x, y2)

X

y = ±
√

1− x2

dy

dx
=

∓2x
2
√
1− x2

= −
x

y

f(x, y) = x2 + y2 − 1

dy

dx
= −

(
∂f

∂y

)−1(∂f

∂x

)
= −

(
1

2y

)
(2x) = −

x

y

Stephen Gould, RVSS 2024 33/69

Differentiating Unconstrained Optimisation Problems
Let f : R× R→ R be twice differentiable and let

y(x) ∈ argminuf(x, u)

then for non-zero Hessian

dy(x)

dx
= −

(
∂2f

∂y2

)−1
∂2f

∂x∂y
.

y u

f(x, u)

Proof. The derivative of f vanishes at (x, y), i.e., y ∈ argminuf(x, u) =⇒ ∂f(x,y)
∂y

= 0.

LHS :
d

dx

∂f(x, y)

∂y
=

∂2f(x, y)

∂x∂y
+

∂2f(x, y)

∂y2
dy

dx

RHS :
d

dx
0 = 0

Equating and rearranging gives the result. Or directly from Dini’s implicit function theorem on ∂f(x,y)
∂y

= 0.

Stephen Gould, RVSS 2024 34/69

Differentiating Unconstrained Optimisation Problems
Let f : R× R→ R be twice differentiable and let

y(x) ∈ argminuf(x, u)

then for non-zero Hessian

dy(x)

dx
= −

(
∂2f

∂y2

)−1
∂2f

∂x∂y
. y u

f(x, u)

Proof. The derivative of f vanishes at (x, y), i.e., y ∈ argminuf(x, u) =⇒ ∂f(x,y)
∂y

= 0.

LHS :
d

dx

∂f(x, y)

∂y
=

∂2f(x, y)

∂x∂y
+

∂2f(x, y)

∂y2
dy

dx

RHS :
d

dx
0 = 0

Equating and rearranging gives the result. Or directly from Dini’s implicit function theorem on ∂f(x,y)
∂y

= 0.

Stephen Gould, RVSS 2024 34/69

Differentiable Optimisation: Big Picture Idea

∇L(x, y) = 0

Rm

y
y + dy

min. f0(x, u)
s.t. u ∈ C(x)

min. f0(x+ dx, u)
s.t. u ∈ C(x+ dx)

Stephen Gould, RVSS 2024 35/69

Differentiating (Unconstrained) Optimisation Problems
Consider functions f : Rn × Rm → R. Let

y(x) ∈ argmin
u∈Rm

f(x, u)

Assume that y(x) exists and that f is twice differentiable in the neighbourhood of
(x, y(x)). Then for H non-singular

dy(x)

dx
= −H−1B

where

B = ∂2f(x,y)
∂x∂y ∈ Rm×n H = ∂2f(x,y)

∂y2 ∈ Rm×m

This result can be extended to constrained optimisation problems by differentiating
optimality conditions, e.g., ∇L = 0.

result

Stephen Gould, RVSS 2024 36/69

Differentiating (Unconstrained) Optimisation Problems
Consider functions f : Rn × Rm → R. Let

y(x) ∈ argmin
u∈Rm

f(x, u)

Assume that y(x) exists and that f is twice differentiable in the neighbourhood of
(x, y(x)). Then for H non-singular

dy(x)

dx
= −H−1B

where

B = ∂2f(x,y)
∂x∂y ∈ Rm×n H = ∂2f(x,y)

∂y2 ∈ Rm×m

This result can be extended to constrained optimisation problems by differentiating
optimality conditions, e.g., ∇L = 0.

result

Stephen Gould, RVSS 2024 36/69

Automatic Differentiation for Differentiable Optimisation

(assuming a closed-form optimal solutions does not exist)

▶ At one extreme we can try back propagate through the optimisation algorithm
(i.e., unrolling the optimisation procedure using automatic differentiation)

▶ At the other extreme we can use the implicit differentiation result to hand-craft
efficient backward pass code

▶ There are also options in between, e.g.,
▶ use automatic differentiation to obtain quantities in expression for dy(x)

dx from
software implementations of the objective and (active) constraint functions

▶ implement the optimality condition ∇L = 0 in software and automatically
differentiate that

Stephen Gould, RVSS 2024 37/69

Vector-Jacobian Product

For brevity consider the unconstrained optimisation case. The backward pass computes

dL

dx
=

dL

dy

dy

dx

=
(
vT

)︸︷︷︸
R1×m

(
−H−1B

)︸ ︷︷ ︸
Rm×n

evaluation order: −vT
(
H−1B

) (
−vTH−1

)
B

cost†: O(m2n+mn) O(m2 +mn)

† assumes H−1 is already factored (in O(m3) if unstructured, less if structured)

Stephen Gould, RVSS 2024 38/69

Summary and Open Questions

▶ optimisation problems can be embedded inside deep learning models
▶ back-propagation by either unrolling the optimisation algorithm or implicit

differentiation of the optimality conditions
▶ the former is easy to implement using automatic differentiation but memory intensive
▶ the latter requires that solution be strongly convex locally (i.e., invertible H)
▶ but does not need to know how the problem was solved, nor store intermediate

forward-pass calculations
▶ computing H−1 may be costly

▶ active area of research and many open questions
▶ Are declarative nodes slower?
▶ Do declarative nodes give theoretical guarantees?
▶ How best to handle non-smooth or discrete optimization problems?
▶ What about problems with multiple solutions?
▶ What if the forward pass solution is suboptimal?
▶ Can problems become infeasible during learning?
▶ . . .

Stephen Gould, RVSS 2024 39/69

Summary and Open Questions

▶ optimisation problems can be embedded inside deep learning models
▶ back-propagation by either unrolling the optimisation algorithm or implicit

differentiation of the optimality conditions
▶ the former is easy to implement using automatic differentiation but memory intensive
▶ the latter requires that solution be strongly convex locally (i.e., invertible H)
▶ but does not need to know how the problem was solved, nor store intermediate

forward-pass calculations
▶ computing H−1 may be costly

▶ active area of research and many open questions
▶ Are declarative nodes slower?
▶ Do declarative nodes give theoretical guarantees?
▶ How best to handle non-smooth or discrete optimization problems?
▶ What about problems with multiple solutions?
▶ What if the forward pass solution is suboptimal?
▶ Can problems become infeasible during learning?
▶ . . .

Stephen Gould, RVSS 2024 39/69

Part III. Applications

Stephen Gould, RVSS 2024 40/69

Optimal Transport

One view of optimal transport is as a matching problem

▶ from an m-by-n cost matrix M

▶ to an m-by-n probability matrix P ,

often formulated with an entropic regularisation term,

minimize ⟨M,P ⟩+ 1
γ ⟨P, logP ⟩

subject to P1 = r
P T1 = c

with 1T r = 1T c = 1.

The row and column sum constraints ensure that P is a
doubly stochastic matrix (lies within the convex hull of
permutation matrices).

1 0 0
0 1 0
0 0 1


0 1 0
1 0 0
0 0 1


0 1 0
0 0 1
1 0 0


0 0 1
0 1 0
1 0 0



0 0 1
1 0 0
0 1 0



1 0 0
0 0 1
0 1 0



Stephen Gould, RVSS 2024 41/69

Solving Entropic Optimal Transport

Solution takes the form

Pij = αiβje
−γMij

and can be found using the Sinkhorn algorithm,

▶ Set Kij = e−γMij and α, β ∈ Rn
++

▶ Iterate until convergence,

α← r ⊘Kβ

β ← c⊘KTα

where ⊘ denotes componentwise division

▶ Return P = diag(α)Kdiag(β)

Stephen Gould, RVSS 2024 42/69

Differentiable Optimal Transport

▶ Option 1: back-propagate through Sinkhorn algorithm

▶ Option 2: use the implicit differentiation result

Stephen Gould, RVSS 2024 43/69

Differentiable Optimal Transport

▶ Option 1: back-propagate through Sinkhorn algorithm

▶ Option 2: use the implicit differentiation result

dL

dM︸︷︷︸
m-by-n

=
dL

dP︸︷︷︸
m-by-n

m-by-n-by-m-by-n︷︸︸︷
dP

dM

Stephen Gould, RVSS 2024 43/69

Differentiable Optimal Transport

▶ Option 1: back-propagate through Sinkhorn algorithm

▶ Option 2: use the implicit differentiation result

dL

dM︸︷︷︸
1-by-mn

=
dL

dP︸︷︷︸
1-by-mn

mn-by-mn︷︸︸︷
dP

dM
(think of vectorising M and P)

Stephen Gould, RVSS 2024 43/69

Optimal Transport Gradient

Derivation of the optimal transport gradient is quite tedious (see notes). The result:

dL

dM
=

dL

dP

(
H−1AT

(
AH−1AT

)−1
AH−1 −H−1

)
B

= γ
dL

dP
diag(P)

[
A1

A2

]T[
Λ11 Λ12

ΛT
12 Λ22

][
A1

A2

]
diag(P)− γ

dL

dP
diag(P)

where

[
A1

A2

]
=


0Tn 1Tn . . . 0Tn
...

...
. . .

...
0Tn 0Tn . . . 1Tn

In×n In×n . . . In×n


(
AH−1AT

)−1
=

1

γ

[
Λ11 Λ12

ΛT
12 Λ22

]
=

1

γ

[
diag(r2:m) P2:m,1:n

PT
2:m,1:n diag(c)

]−1

Stephen Gould, RVSS 2024 44/69

Implementation

1 @staticmethod

2 def backward(ctx , dJdP)

3 # unpacked cached tensors

4 M, r, c, P = ctx.saved_tensors

5 batches , m, n = P.shape

6
7 # initialize backward gradients (-v^T H^{-1} B)

8 dLdM = -1.0 * gamma * P * dLdP

9
10 # compute [vHAt1 , vHAt2] = -v^T H^{-1} A^T

11 vHAt1 , vHAt2 = sum(dJdM[:, 1:m, 0:n], dim=2), sum(dJdM , dim =1)

12
13 # compute [v1, v2] = -v^T H^{-1} A^T (A H^{-1] A^T)^{-1}

14 P_over_c = P[:, 1:m, 0:n] / c.view(batches , 1, n)

15 lmd_11 = cholesky(diag_embed(r[:, 1:m]) - bmm(P[:,1:m,0:n], P_over_c.transpose(1, 2)))

16 lmd_12 = cholesky_solve(P_over_c , lmd_11)

17 lmd_22 = diag_embed (1.0 / c) + bmm(lmd_12.transpose(1, 2), P_over_c)

18
19 v1 = torch.cholesky_solve(vHAt1 , lmd_11) - torch.bmm(lmd_12 , vHAt2)

20 v2 = torch.bmm(lmd_22 , vHAt2) - torch.bmm(lmd_12.transpose (1, 2), vHAt1)

21
22 # compute v^T H^{-1} A^T (A H^{-1] A^T)^{-1} A H^{-1} B - v^T H^{-1} B

23 dLdM[:, 1:m, 0:n] -= v1.view(batches , m-1, 1) * P[:, 1:m, 0:n]

24 dJdM -= v2.view(batches , 1, n) * P

25
26 # return gradients

27 return dJdM

Stephen Gould, RVSS 2024 45/69

Running Time

Stephen Gould, RVSS 2024 46/69

Memory Usage

Stephen Gould, RVSS 2024 47/69

Application to Blind Perspective-n-Point
(Campbell et al., ECCV 2020)

find the location where the photograph was taken

Stephen Gould, RVSS 2024 48/69

Coupled Problem

▶ if we knew correspondences then
determining camera pose would
be easy

▶ if we knew camera pose then
determining correspondences
would be easy

Stephen Gould, RVSS 2024 49/69

Blind Perspective-n-Point Network Architecture

perception reasoning

M

argmin ⟨M,P ⟩+ 1
γ
⟨P, logP ⟩

subj. to P1 = 1
n
1

PT 1 = 1
m
1

argmin
∑m

i=1

∑n
j=1 Pij ·(

1− fT
i

Rpj+t

∥Rpj+t∥

)
f̃2d

f̃3d

{fi}

{pj}

θ2d

θ3d

R, t

Stephen Gould, RVSS 2024 50/69

Blind Perspective-n-Point Results

more examples

Stephen Gould, RVSS 2024 51/69

resources/blind_pnp.mp4

Further Resources
Diving deeper from here?

▶ background reading

▶ Deep declarative networks (http://deepdeclarativenetworks.com)
▶ lots of small code examples and tutorials

▶ CVXPyLayers (https://github.com/cvxgrp/cvxpylayers)

▶ Theseus (https://sites.google.com/view/theseus-ai)

▶ JAXopt (https://github.com/google/jaxopt)

lecture notes available at https://users.cecs.anu.edu.au/~sgould

Stephen Gould, RVSS 2024 52/69

http://deepdeclarativenetworks.com
https://github.com/cvxgrp/cvxpylayers
https://sites.google.com/view/theseus-ai
https://github.com/google/jaxopt
https://users.cecs.anu.edu.au/~sgould

break-out slides

Stephen Gould, RVSS 2024 53/69

automatic differentiation

Stephen Gould, RVSS 2024 54/69

Toy Example: Babylonian Algorithm back

Consider the following implementation for
a forward operation:

1: procedure FwdFcn(x)
2: y0 ← 1

2
x

3: for t = 1, . . . , T do

4: yt ← 1
2

(
yt−1 + x

yt−1

)
5: end for
6: return yT
7: end procedure

▶ computes y =
√
x

▶ derivative computed directly is
dy
dx = 1

2
√
x
= 1

2y

Automatic differentiation algorithmically
generates the backward code:

1: procedure BckFcn(x, yT , dL
dyT

)

2:
dL
dx
← 0

3: for t = T, . . . , 1 do

4:
dL
dx
← dL

dx
+ dL

dyt

∂yt/∂x︷ ︸︸ ︷(
1

2yt−1

)
5:

dL
dyt−1

← dL
dyt

(
1
2
− x

2y2
t−1

)
︸ ︷︷ ︸

∂yt/∂yt−1

6: end for
7:

dL
dx
← dL

dx
+ dL

dy0

1
2

8: return dL
dx

9: end procedure

Stephen Gould, RVSS 2024 55/69

Toy Example: Babylonian Algorithm back

Consider the following implementation for
a forward operation:

1: procedure FwdFcn(x)
2: y0 ← 1

2
x

3: for t = 1, . . . , T do

4: yt ← 1
2

(
yt−1 + x

yt−1

)
5: end for
6: return yT
7: end procedure

▶ computes y =
√
x

▶ derivative computed directly is
dy
dx = 1

2
√
x
= 1

2y

Automatic differentiation algorithmically
generates the backward code:

1: procedure BckFcn(x, yT , dL
dyT

)

2:
dL
dx
← 0

3: for t = T, . . . , 1 do

4:
dL
dx
← dL

dx
+ dL

dyt

∂yt/∂x︷ ︸︸ ︷(
1

2yt−1

)
5:

dL
dyt−1

← dL
dyt

(
1
2
− x

2y2
t−1

)
︸ ︷︷ ︸

∂yt/∂yt−1

6: end for
7:

dL
dx
← dL

dx
+ dL

dy0

1
2

8: return dL
dx

9: end procedure

Stephen Gould, RVSS 2024 55/69

Toy Example: Babylonian Algorithm back

Consider the following implementation for
a forward operation:

1: procedure FwdFcn(x)
2: y0 ← 1

2
x

3: for t = 1, . . . , T do

4: yt ← 1
2

(
yt−1 + x

yt−1

)
5: end for
6: return yT
7: end procedure

▶ computes y =
√
x

▶ derivative computed directly is
dy
dx = 1

2
√
x
= 1

2y

Automatic differentiation algorithmically
generates the backward code:

1: procedure BckFcn(x, yT , dL
dyT

)

2:
dL
dx
← 0

3: for t = T, . . . , 1 do

4:
dL
dx
← dL

dx
+ dL

dyt

∂yt/∂x︷ ︸︸ ︷(
1

2yt−1

)
5:

dL
dyt−1

← dL
dyt

(
1
2
− x

2y2
t−1

)
︸ ︷︷ ︸

∂yt/∂yt−1

6: end for
7:

dL
dx
← dL

dx
+ dL

dy0

1
2

8: return dL
dx

9: end procedure

Stephen Gould, RVSS 2024 55/69

Computation Graph for Babylonian Algorithm back

x

1
2x

1
2

(
·+ x

·
)

· · · 1
2

(
·+ x

·
)

y0 y1 yT−1
yT

yT = f(x, f(x, f(x, . . . f(x, 12x)))) with f(x, y) = 1
2

(
y + x

y

)

dL

dx
=

dL

dyT

(
∂yT
∂x

+
∂yT
∂yT−1

(
∂yT−1
∂x

+
∂yT−1
∂yT−2

(
. . .+

∂y0
∂x

)))

Stephen Gould, RVSS 2024 56/69

Computation Graph for Babylonian Algorithm back

x

1
2x

1
2

(
·+ x

·
)

· · · 1
2

(
·+ x

·
)

y0 y1 yT−1
yT

yT = f(x, f(x, f(x, . . . f(x, 12x)))) with f(x, y) = 1
2

(
y + x

y

)

dL

dx
=

dL

dyT

(
∂yT
∂x

+
∂yT
∂yT−1

(
∂yT−1
∂x

+
∂yT−1
∂yT−2

(
. . .+

∂y0
∂x

)))

Stephen Gould, RVSS 2024 56/69

least squares

Stephen Gould, RVSS 2024 57/69

Least Squares Backward Pass Derivation back

Differentiating x⋆ with respect to single element Aij , we have

d

dAij
x⋆ =

d

dAij

(
ATA

)−1
AT b

=

(
d

dAij

(
ATA

)−1)
AT b+

(
ATA

)−1(d

dAij
AT b

)
Using the identity d

dzZ
−1 = −Z−1

(
d
dzZ

)
Z−1 we get, for the first term,

d

dAij

(
ATA

)−1
= −

(
ATA

)−1(d

dAij

(
ATA

)) (
ATA

)−1
= −

(
ATA

)−1(
ET

ijA+ATEij

) (
ATA

)−1
where Eij is a matrix with one in the (i, j)-th element and zeros elsewhere.
Furthermore, for the second term,

d

dAij
AT b = ET

ijb

Stephen Gould, RVSS 2024 58/69

Least Squares Backward Pass Derivation (cont.) back

Plugging these back into parent equation we have

d

dAij
x⋆ = −

(
ATA

)−1(
ET

ijA+ATEij

) (
ATA

)−1
AT b+

(
ATA

)−1
ET

ijb

= −
(
ATA

)−1(
ET

ijA+ATEij

)
x⋆ +

(
ATA

)−1
ET

ijb

= −
(
ATA

)−1 (
ET

ij(Ax
⋆ − b) +ATEijx

⋆
)

= −
(
ATA

)−1 (
(aTi x

⋆ − bi)ej + x⋆jai
)

where ej = (0, 0, . . . , 1, 0, . . .) ∈ Rn is the j-th canonical vector, i.e., vector with a one
in the j-th component and zeros everywhere else, and aTi ∈ R1×n is the i-th row of
matrix A.

Stephen Gould, RVSS 2024 59/69

Least Squares Backward Pass Derivation (cont.) back

Let r = b−Ax⋆ and let vT denote the backward coming gradient d
dx⋆L. Then

dL

dAij
= vT

dx⋆

dAij

= vT
(
ATA

)−1 (
riej − x⋆jai

)
= wT

(
riej − x⋆jai

)
= riwj − wTaix

⋆
j

where w =
(
ATA

)−1
v. We can compute the entire matrix of m× n derivatives

efficiently as the sum of outer products(
dL

dA

)T

=

[
dL

dAij

]
i=1,...,m
j=1,...,n

= wrT − x⋆(Aw)T

Stephen Gould, RVSS 2024 60/69

differentiating equality constrained problems

Stephen Gould, RVSS 2024 61/69

Differentiating Equality Constrained Optimisation Problems back

Consider functions f : Rn × Rm → R and h : Rn × Rm → Rq. Let

y(x) ∈ argminu∈Rm f(x, u)
subject to h(x, u) = 0q

Assume that y(x) exists, that f and h are twice differentiable in the neighbourhood of

(x, y(x)), and that rank(∂h(x,y)∂y) = q.

Then for H non-singular

dy(x)

dx
= H−1AT

(
AH−1AT

)−1(
AH−1B − C

)
−H−1B

where

A = ∂h(x,y)
∂y ∈ Rq×m B = ∂2f(x,y)

∂x∂y −
∑q

i=1 νi
∂2hi(x,y)

∂x∂y ∈ Rm×n

C = ∂h(x,y)
∂x ∈ Rq×n H = ∂2f(x,y)

∂y2 −
∑q

i=1 νi
∂2hi(x,y)

∂y2 ∈ Rm×m

and ν ∈ Rq satisfies νTA = ∂f(x,y)
∂y .

Stephen Gould, RVSS 2024 62/69

Differentiating Equality Constrained Optimisation Problems back

Consider functions f : Rn × Rm → R and h : Rn × Rm → Rq. Let

y(x) ∈ argminu∈Rm f(x, u)
subject to h(x, u) = 0q

Assume that y(x) exists, that f and h are twice differentiable in the neighbourhood of

(x, y(x)), and that rank(∂h(x,y)∂y) = q. Then for H non-singular

dy(x)

dx
= H−1AT

(
AH−1AT

)−1(
AH−1B − C

)
−H−1B

where

A = ∂h(x,y)
∂y ∈ Rq×m B = ∂2f(x,y)

∂x∂y −
∑q

i=1 νi
∂2hi(x,y)

∂x∂y ∈ Rm×n

C = ∂h(x,y)
∂x ∈ Rq×n H = ∂2f(x,y)

∂y2 −
∑q

i=1 νi
∂2hi(x,y)

∂y2 ∈ Rm×m

and ν ∈ Rq satisfies νTA = ∂f(x,y)
∂y .

Stephen Gould, RVSS 2024 62/69

Dealing with Inequality Constraints back

y(x) ∈ argminu∈Rm f0(x, u)
subject to hi(x, u) = 0, i = 1, . . . , q

fi(x, u) ≤ 0, i = 1, . . . , p.

▶ Replace inequality constraints with log-barrier
approximation

▶ Treat as equality constraints if active (y2 or y3)
and ignore otherwise (y1 or y3)
▶ may lead to one-sided gradients since ν ⪰ 0

fi(x, u) < 0

y1

y2

y3

Stephen Gould, RVSS 2024 63/69

eigen decomposition

Stephen Gould, RVSS 2024 64/69

Deriving the Gradient for Eigen Decomposition back

Implicit differentiation of the optimality conditions with respect to Xij gives,

d

dXij
(Xy − λmaxy) =

1

2
(Eij + Eji)y −

dλmax

dXij
y + (X − λmaxI)

dy

dXij
= 0 (1)

d

dXij
(yT y − 1) = 2yT

dy

dXij
= 0 (2)

Pre-multiplying (1) by yT , and using (2) and yT y = 1, we get

dλmax

dXij
=

1

2
yT (Eij + Eji)y

Pre-multiplying (1) by (X − λmaxI)†, we get

1

2
(X − λmaxI)

†(Eij + Eji)y − (X − λmaxI)
† dλmax

dXij
y +

dy

dXij
= 0

∴
dy

dXij
= −

1

2
(X − λmaxI)

†(Eij + Eji)y

since (X − λmaxI)†
dλmax
dXij

y = dλmax
dXij

(X − λmaxI)†y = 0 since if Az = 0, then A†z = 0.

Stephen Gould, RVSS 2024 65/69

additional examples

Stephen Gould, RVSS 2024 66/69

Differentiable Eigen Decomposition
Finding the eigenvector corresponding to the maximum eigenvalue of a real symmetric
matrix X ∈ Rm×m can be formulated as

maximize (over u ∈ Rm) uTXu
subject to uTu = 1

which has applications in, for example, back propagating through normalized cuts.

Optimality conditions (for solution y) are

Xy = λmaxy and yT y = 1.

Taking derivatives with respect to components of X we get,

dy

dXij
= −1

2
(X − λmaxI)

†(Eij + Eji)y ∈ Rm

derivation

Stephen Gould, RVSS 2024 67/69

Differentiable Eigen Decomposition
Finding the eigenvector corresponding to the maximum eigenvalue of a real symmetric
matrix X ∈ Rm×m can be formulated as

maximize (over u ∈ Rm) uTXu
subject to uTu = 1

which has applications in, for example, back propagating through normalized cuts.
Optimality conditions (for solution y) are

Xy = λmaxy and yT y = 1.

Taking derivatives with respect to components of X we get,

dy

dXij
= −1

2
(X − λmaxI)

†(Eij + Eji)y ∈ Rm

derivation

Stephen Gould, RVSS 2024 67/69

Differentiable Eigen Decomposition
Finding the eigenvector corresponding to the maximum eigenvalue of a real symmetric
matrix X ∈ Rm×m can be formulated as

maximize (over u ∈ Rm) uTXu
subject to uTu = 1

which has applications in, for example, back propagating through normalized cuts.
Optimality conditions (for solution y) are

Xy = λmaxy and yT y = 1.

Taking derivatives with respect to components of X we get,

dy

dXij
= −1

2
(X − λmaxI)

†(Eij + Eji)y ∈ Rm

derivation

Stephen Gould, RVSS 2024 67/69

PyTorch Implementation

1 class EigenDecompositionFcn(torch.autograd.Function):

2 """ PyTorch autograd function for eigen decomposition."""

3
4 @staticmethod

5 def forward(ctx , X):

6 B, M, N = X.shape

7
8 # use torch ’s eigh function to find the eigenvalues and eigenvectors of a symmetric matrix

9 with torch.no_grad ():

10 lmd , Y = torch.linalg.eigh (0.5 * (X + X.transpose (1, 2)))

11
12 ctx.save_for_backward(lmd , Y)

13 return Y

14
15 @staticmethod

16 def backward(ctx , dJdY):

17 lmd , Y = ctx.saved_tensors

18 B, M, N = Y.shape

19
20 # compute all pseudo -inverses simultaneously

21 L = lmd.view(B, 1, M) - lmd.view(B, M, 1)

22 L = torch.where(torch.abs(L) < eps , 0.0, 1.0 / L)

23
24 # compute full gradient over all eigenvectors

25 dJdX = torch.bmm(torch.bmm(Y, L * torch.bmm(Y.transpose(1, 2), dJdY)), Y.transpose (1, 2))

26 dJdX = 0.5 * (dJdX + dJdX.transpose(1, 2))

27
28 return dJdX

Stephen Gould, RVSS 2024 68/69

Experiment back

Stephen Gould, RVSS 2024 69/69

