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Pixel Labeling

Label every pixel in an image with a class label from some
pre-defined set, i.e., yp ∈ L.
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Surface context (Hoiem
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Digital Photo Montage

(Agarwala et al., 2004)
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Digital Photo Montage

demonstration
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Tutorial Overview

Part 1. Pairwise conditional Markov random fields for the
pixel labeling problem (45 minutes)

Part 2. Pseudo-boolean functions and graph-cuts (1 hour)

Part 3. Higher-order terms and inference as integer
programming (30 minutes)

please ask lots of questions
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Probability Review

Bayes Rule

P (y | x)
︸ ︷︷ ︸

posterior

=

likelihood
︷ ︸︸ ︷

P (x | y) ·

prior
︷ ︸︸ ︷

P (y)

P (x)

Maximum a Posteriori (MAP) inference: y⋆ = argmaxy P (y | x).
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Probability Review

Bayes Rule

P (y | x)
︸ ︷︷ ︸

posterior

=

likelihood
︷ ︸︸ ︷

P (x | y) ·

prior
︷ ︸︸ ︷

P (y)

P (x)

Maximum a Posteriori (MAP) inference: y⋆ = argmaxy P (y | x).

Conditional Independence

Random variables y and x are conditionally independent given z if
P (y, x | z) = P (y | z)P (x | z).
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Graphical Models

We can exploit conditional independence assumptions to represent
probability distributions in a way that is both compact and efficient

for inference.

This tutorial is all about one particular representation, called
a Markov Random Field (MRF), and the associated inference
algorithms that are used in computer vision.

A B

C D

a ⊥⊥ d | b, c

A � B

� �

C � D

1

Z
Ψ(a, b)Ψ(b, d)Ψ(d , c)Ψ(c , a)
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Graphical Models

A � B

� �

C � D

P (a, b, c , d) =
1

Z
Ψ(a, b)Ψ(b, d)Ψ(d , c)Ψ(c , a)

=
1

Z
exp {−ψ(a, b)− ψ(b, d) − ψ(d , c) − ψ(c , a)}

where ψ = − log Ψ.
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Energy Functions

Let x be some observations (i.e., features from the image) and let
y = (y1, . . . , yn) be a vector of random variables. Then we can
write the conditional probability of y given x as

P (y | x) =
1

Z (x)
exp {−E (y; x)}

where Z (x) =
∑

y∈Ln

exp {−E (y; x)} is called the partition function.
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Let x be some observations (i.e., features from the image) and let
y = (y1, . . . , yn) be a vector of random variables. Then we can
write the conditional probability of y given x as

P (y | x) =
1

Z (x)
exp {−E (y; x)}

where Z (x) =
∑

y∈Ln

exp {−E (y; x)} is called the partition function.

The energy function E (y; x) usually has some structured form:

E (y; x) =
∑

c

ψc(yc ; x)

where ψc (yc ; x) are clique potentials defined over a subset of
random variables yc ⊆ y.
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Conditional Markov Random Fields

E (y; x) =
∑

c

ψc(yc ; x)

=
∑

i∈V

ψU
i (yi ; x)

︸ ︷︷ ︸

unary

+
∑

ij∈E

ψP
ij (yi , yj ; x)

︸ ︷︷ ︸

pairwise

+
∑

c∈C

ψH
c (yc ; x).

︸ ︷︷ ︸

higher-order

x1 x2 x3

y1 y2 y3

x4 x5 x6

y4 y5 y6

x7 x8 x9

y7 y8 y9
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Pixel Neighbourhoods

y1 y2 y3

y4 y5 y6

y7 y8 y9

4-connected, N4

y1 y2 y3

y4 y5 y6

y7 y8 y9

8-connected, N8
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Binary MRF Example

Consider the following energy function for
two binary random variables, y1 and y2.

0
1

5

2

0
1

1

3

0
1

0 1

0 3

4 0

E (y1, y2) = ψ1(y1) + ψ2(y2) + ψ12(y1, y2)

Stephen Gould 12/23



Binary MRF Example

Consider the following energy function for
two binary random variables, y1 and y2.

0
1
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2

0
1

1

3

0
1

0 1

0 3

4 0

E (y1, y2) = ψ1(y1) + ψ2(y2) + ψ12(y1, y2)
= 5ȳ1 + 2y1

︸ ︷︷ ︸

ψ1

+ ȳ2 + 3y2
︸ ︷︷ ︸

ψ2

+ 3ȳ1y2 + 4y1ȳ2
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Stephen Gould 12/23



Binary MRF Example

Consider the following energy function for
two binary random variables, y1 and y2.
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E (y1, y2) = ψ1(y1) + ψ2(y2) + ψ12(y1, y2)
= 5ȳ1 + 2y1

︸ ︷︷ ︸

ψ1

+ ȳ2 + 3y2
︸ ︷︷ ︸

ψ2

+ 3ȳ1y2 + 4y1ȳ2
︸ ︷︷ ︸

ψ12

where ȳ1 = 1− y1 and ȳ2 = 1− y2.

Graphical Model

y1 y2

Probability Table

y1 y2 E P

0 0 6 0.244

0 1 11 0.002

1 0 7 0.090

1 1 5 0.664
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Compactness of Representation

Consider a 1 mega-pixel image, e.g., 1000 × 1000 pixels. We want
to annotate each pixel with a label from L. Let L = |L|.

There are L10
6
possible ways to label such an image.

A naive encoding—i.e., one big table—would require L10
6
− 1

parameters.

A pairwise MRF over N4 requires 106L parameters for the
unary terms and 2× 1000 × (1000 − 1)L2 parameters for the
pairwise terms, i.e., O(106L2). Even less are required if we
share parameters.
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Inference and Energy Minimization

We are usually interested in finding the most probable labeling,

y⋆ = argmax
y

P (y | x) = argmin
y

E (y; x) .

This is known as maximum a posteriori (MAP) inference or energy
minimization.
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Inference and Energy Minimization

We are usually interested in finding the most probable labeling,

y⋆ = argmax
y

P (y | x) = argmin
y

E (y; x) .

This is known as maximum a posteriori (MAP) inference or energy
minimization.

A number of techniques can be used to find y⋆, including:

message-passing (dynamic programming)

integer programming (part 3)

graph-cuts (part 2)

However, in general, inference is NP-hard.
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Characterizing Markov Random Fields

Markov random fields can be categorized via a number of different
dimensions:

Label space: binary vs. multi-label; homogeneous vs.
heterogeneous.

Order: unary vs. pairwise vs. higher-order.

Structure: chain vs. tree vs. grid vs. general graph;
neighbourhood size.

Potentials: submodular, convex, compressible.

These all affect tractability of inference.
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Markov Random Fields for Pixel Labeling

P (y | x) ∝ P (x | y)P (y) = exp {−E (y; x)}
energy
︷ ︸︸ ︷

E (y; x) =
∑

i∈V

ψU
i (yi ; x)

︸ ︷︷ ︸

unary

+ λ
∑

ij∈N8

ψP
ij (yi , yj ; x)

︸ ︷︷ ︸

pairwise

ψU
i (yi ; x) =

likelihood
︷ ︸︸ ︷

−
∑

ℓ∈L

[[yi = ℓ]] logP (xi | ℓ)

ψP
ij (yi , yj ; x) = [[yi 6= yj ]]

︸ ︷︷ ︸

Potts prior

Here the prior acts to “smooth” predictions (independent of x).
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Prior Strength

λ = 1 λ = 4 λ = 16 λ = 128 λ = 1024
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Interactive Segmentation Model

Label space: foreground or background

L = {0, 1}

Unary term: Gaussian mixture models for foreground and
background

ψU
i (yi ; x) =

∑

k

1
2
|Σk |+ 1

2
(xi − µk)

T Σ−1
k

(xi − µk)− log λk

Pairwise term: contrast-dependent smoothness prior

ψP
ij (yi , yj ; x) =

{

λ0 + λ1 exp
(

−
‖xi−xj‖

2

2β

)

, if yi 6= yj

0, otherwise

Stephen Gould 18/23



Geometric/Semantic Labeling Model

Label space: pre-defined label set, e.g.,

L = {sky, tree, grass, . . .}

Unary term: Boosted decision-tree classifiers over
“texton-layout” features [Shotton et al., 2006]

ψU
i (yi = ℓ; x) = θℓ logP (φi(x) | ℓ)

Pairwise term: contrast-dependent smoothness prior

ψP
ij (yi , yj ; x) =

{

λ0 + λ1 exp
(

−
‖xi−xj‖2

2β

)

, if yi 6= yj

0, otherwise
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Stereo Matching Model

Label space: pixel disparity

L = {0, 1, . . . , 127}

Unary term: sum of absolute differences (SAD) or
normalized cross-correlation (NCC)

ψU
i (yi ; x) =

∑

(u,v)∈W

|xleft(u, v)− xright(u − yi , v)|

Pairwise term: “discontinuity preserving” prior

ψP
ij (yi , yj ) = max {|yi − yj |, dmax}
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Image Denoising Model

Label space: pixel intensity or colour

L = {0, 1, . . . , 255}

Unary term: square distance

ψU
i (yi ; x) = ‖yi − xi‖

2

Pairwise term: truncated L2 distance

ψP
ij (yi , yj) = max

{
‖yi − yj‖

2, d2
max

}
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Digital Photo Montage Model

Label space: image index

L = {1, 2, . . . ,K}

Unary term: none!

Pairwise term: seem penalty

ψP
ij (yi , yj ; x) = ‖xyi (i)− xyj (i)‖+ ‖xyi (j) − xyj (j)‖

(or edge-normalized variant)
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end of part 1
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