
Segmentation of Developing Human Embryo in Time-lapse Microscopy

Aisha Khan1, Stephen Gould1

1College of Engineering and Computer Science
The Australian National University

Canberra, AU
{aisha.khan, stephen.gould}@anu.edu.au

aisha.sj.khan@gmail.com

Mathieu Salzmann1,2

2CVLab
EPFL

Switzerland
mathieu.salzmann@epfl.ch

ABSTRACT
Being able to efficiently segment a developing embryo from
background clutter constitutes an important step in automated
monitoring of human embryonic cells. State-of-the-art auto-
matic segmentation methods remain ill-suited to handle the
complex behavior and morphological variance of non-stained
embryos. By contrast, while effective, manual approaches
are impractically time-consuming. In this paper, we intro-
duce an automated approach to segment human embryo in
early-stage development from a sequence of dark field mi-
croscopy images. In particular, we express segmentation as
an energy minimization problem, which can be solved ef-
ficiently via graph-cuts or dynamic programming. Our ex-
periments on twenty embryo sequences demonstrates that our
method can successfully segment complex and irregular em-
bryo structures in time-lapse microscopy (TLM) sequences.

1. INTRODUCTION

The success of in vitro fertilization (IVF) treatment is rela-
tively poor (depending on the woman’s age, only 10–30% of
implanted embryos result in a successful pregnancy). This
is mainly due to the lack of reliable methods to select viable
embryos. Traditionally, embryo selection relies on manual
morphology analysis and is subject to inter and intra observer
variance [2]. By contrast, in VerMilyea et al. [16], it was
shown that computer-automated time-lapse analysis could
improve embryo selection by providing quantitative and ob-
jective information to supplement manual analysis, and could
therefore increase the success rate of IVF.

Automated analysis involves detection, tracking and clas-
sification of large volumes of cellular image data. A major
requirement for these tasks is an efficient method to segment
embryo images. The segmentation step is critical because
it serves as a basis for all subsequent tasks, such as the ex-
traction of shape features, and ultimately the viability assess-
ment of the embryo. In this paper, we tackle the problem
of fully automated segmentation (i.e., contour extraction) of
non-stained developing human embryos in TLM images.
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The difficulty in extracting the contour of an embryo
arises from various artifacts: irregular embryo shape, weak or
missing embryo boundaries, fragments attached and internal
to the embryo, intensity and texture variations in foreground,
background and fragments, continual contrast variation of the
embryo boundary due to motion and poor image quality.

While cell segmentation has attracted a lot of attention,
these difficulties make most standard techniques inapplica-
ble to the human embryo case. For example, threshold-based
methods [12] cannot cope with strong background variations,
and fail as soon as one gray-value can belong to both fore-
ground and background. The complex appearance of the em-
bryonic cells limits the success of region-based techniques,
such as watersheds-based methods [19]. Other techniques
such as active contours [18] and level sets [20] are more suit-
able, but the large amount of clutter and artifacts in the image
cause them to easily get trapped in local minima. This also
hinders the use of simple edge-based algorithms [17], since
many spurious contours are detected. To overcome these is-
sues, most of the above-mentioned methods work with fluo-
rescent stained cells. For human embryonic cells, however,
such a staining procedure cannot be used.

Human embryonic cell segmentation involves noisier data
and more complex structures to segment, such as multiple
highly-overlapping cells. Several directions have nonethe-
less been investigated to address these challenges, such as
using different image modalities (e.g., Hoffman Modulation
Contrast [4]), alternative acquisition procedures (e.g., mul-
tiple focus planes [5]) and simpler assumptions (e.g., zona
pellucida segmentation [6]). The resulting methods, how-
ever, rely on non-standard acquisition procedures which are
not widely available. Furthermore, most techniques are semi-
automated [3]. Recently, Markov random field based meth-
ods [7, 9, 13] were proposed to detect and localize individual
cells. While these methods make use of more standard im-
ages, and would thus generalize more easily, they rely on an
initial embryo segmentation to generate cell hypotheses. Im-
proving this initial step would therefore be highly beneficial.

Currently, one of the most effective methods to segment
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Fig. 1. Image pre-processing. (a) Microscopy image of a four-cell
embryo. (b) Centroid and bounding-box. (c) Polar transformation.

a human embryo from microscopy images was introduced
in Giusti et al. [4] and relies on the graph-cuts algorithm [1].
This method, however, was designed to segment zygotes
(i.e., one-cell embryos), and thus relies on fairly simple shape
priors. By contrast, here, we address the problem of seg-
menting multi-cell human embryos. As an embryo grows
beyond the one-cell stage, its shape becomes very irregular.
Furthermore, the individual cells form a complex 3D struc-
ture, which, in a 2D projection, overlap immensely. As a
consequence, in an image, the cell membranes may cross
and cause bright contours within the embryo. Similarly, the
interior of the embryo can be greatly non-homogeneous and
contain intensities similar to those of the background. Fi-
nally, fragments with texture and intensity similar to that of
the embryo often attach to the embryo boundary.

In this paper, we introduce shape priors and contextual
cues specifically designed to address the challenges of multi-
cell human embryo segmentation. We then incorporate these
priors as soft and hard constraints both in a graph-cut and
Markov chain inference framework. We demonstrate the ef-
fectiveness of our approach and compare it against the state-
of-the-art work of Giusti et al. [4] on a set of twenty sequences
of developing embryos.

2. IMAGE PRE-PROCESSING

Given a dark field microscopy image depicting a human em-
bryo in early-stage development, we perform the following
pre-processing steps. First, we automatically find a bound-
ing box that roughly encloses the embryo. To this end, we
convert the gray-scale image into a binary image using Otsu’s
threshold [14]. Since pixels inside the embryo can have in-
tensities similar to those of background, the resulting binary
image can contain holes within the foreground region. We fill
these holes by using the flood-fill technique of [15], which
connects the nearby disconnected components. We then take
the largest connected region to be the embryo, since each im-
age only contains one embryo, and compute its centroid as
the point within the component with maximum shortest dis-
tance to the region boundary. We also extract a bounding-box
around the region, which excludes a large part of the back-
ground, as well as many debris and fragments, from further
segmentation (see Fig. 1(a)–(b)).

Within this bounding-box, we reduce noise by applying
a median filter, which smoothes the image while preserving
the edges. The dark field modality of our images and the na-
ture of embryo growth (i.e., compactness of the cells) results
in the additional challenge that the interior of the embryo can
have both very low intensities and very high ones due to some

cell membranes projecting within the embryo via the imaging
process. This makes it difficult to differentiate the true em-
bryo contour from these high-intensity interior membranes.
To reduce this problem we apply non-linear intensity map-
ping. Specifically, we use the power law (s = cIγ , where
I is the intensity image, and c and γ are positive constants).
A fractional value of gamma (γ = 0.04 in our experiments)
maps a narrow range of dark input values to a wide range of
output values, and conversely for high input values.

Following the observation of previous mask-generating
methods [4, 10, 11] that images with radial symmetry should
be converted into non-Cartesian representations before image
processing, we transform the image to polar coordinates (see
Fig. 1(c)). Below, given this image representation, we intro-
duce our approach to segmentation and our shape priors.

3. EMBRYO SEGMENTATION

Segmentation can be formulated as a pixel labeling or contour
drawing problem. Here, we study both approaches under a
Markov random field (MRF) formalism.

Pixel Labeling Formulation: First we formulate embryo
segmentation as a binary labeling problem. For each pixel i in
a given image in polar coordinates (after the pre-processing
of Section 2), we define a random variable yi taking value
from the label space L = {0, 1}. We then construct a graph
G = 〈V,E〉 with vertices V representing the pixels and edges
E connecting the neighboring vertices. In contrast to Giusti
et al. [4], our graph defines bidirectional edges with an eight-
neighborhood structure (see Fig. 2). Additional edges are de-
fined between the first and last column of the polar image to
ensure smoothness when the segmented image is converted
back to Cartesian coordinates.

Given this graph, the distribution over the joint assign-
ment of all random variables Y is defined by an MRF, whose
energy function can be written as

E(Y ) =
∑
i∈V

ψi(yi) + λ
∑
i,j∈E

ψi,j(yi, yj), (1)

where the unary (i.e., local) term ψi is a prior encoding the
cost of assigning pixel i to label yi, the pairwise (edge) term
maps joint variable assignments to a cost (in our work this as-
signs a contrast dependent penalty whenever the pair of vari-
ables disagree), and λ is a weighting factor determined using
a validation set. A pixel labeling, and thus embryo segmenta-
tion, is achieved by finding an assignment to Y that minimizes
the energy (Eqn. 1). Here, we design potentials that allow us
to rely on graph-cuts to perform this minimization efficiently.

In particular, we obtain the prior ψi from training data
by computing the histogram of occurrence of a pixel being
foreground in frame t. In other words, this prior penalizes
the assignments too far away from the training ground-truth.
Furthermore, we also design hard-constraints for seed pix-
els strongly believed to be either foreground or background.
These constraints can be expressed in a unary potential as

ψi(yi = 1) =

{
−∞, for i = foreground seed
+∞, for i = background seed.

(2)



To automatically choose the seeds, we rely on the following
observations, illustrated in Fig. 2. First, in polar coordinates,
the top row of the image (i.e., the Cartesian image boundary)
is always background. Second, the lower part of the image
(i.e., a disk around the centroid in the Cartesian image) al-
ways belongs to the embryo and should thus be foreground.
Note that the latter observation also allows us to be robust to
the bright contours that, as mentioned before, appear within
the embryo because of the projection of the 3D embryonic
structure to a 2D image plane, or because of the presence of
fragments and pronuclei inside the embryo (see Fig. 3 (b)–
(h)). The width of the band that we force to be assigned to
foreground is computed from the training data as follow. We
first mark the pixels that belong to foreground at time t for
the complete training data and select the band width as the
location of the marked pixel closest to the centroid.

For the pairwise term ψi,j , we rely on the fact that con-
tours in dark field images are most likely to coincide with
large changes of intensity. To capture this, we define the edge
cost as

ψi,j(yi, yj) =

 1
wij

e
−‖xi−xj‖

2

2ζ2 , if yi 6= yj

0, otherwise,
(3)

where xi is the intensity of pixel i and ζ is the mean intensity
difference between adjacent pixels. In other words, our edge
cost penalizes neighboring vertices to take on different labels
if they have similar intensity. In Eqn. 3, wij accounts for the
spatial (Cartesian) distance between neighboring pixels, such
that closer pixels have more influence. In polar coordinates,
this weight can be computed as

wij =
√
(ρ2i + ρ2j − 2ρiρj cos(θj − θi)) , (4)

where ρ is the distance from the origin to the point and θ is
the counterclockwise angle relative to the x-axis.

With the definitions of our potential given above (in par-
ticular the pairwise potential), it can easily be verified that
the energy of Eq. 1 can be minimized with graph-cuts. In
practice, we use the efficient max-flow implementation of [1],
which gives us the optimal labeling in polynomial time.

While our data consists of sequences, the previous poten-
tials work on individual images. Applying this technique in-
dependently to each frame may result in inconsistencies be-
cause, even though embryos in consecutive frames have sim-
ilar appearance, motion makes the contrast between the cell
boundary and background vary. To overcome this, when seg-
menting one frame, we combine shape and intensity informa-
tion from its neighboring frames. To this end, we first register
the neighboring frames to the current frame using the Matlab
functions (imregtform(), imwarp()). We then com-
pute the average image after registration, and perform seg-
mentation on this average image. As evidenced by our re-
sults, this strategy has proven robust to overcome temporal
inconsistencies.

Contour Extraction Formulation: Embryo segmenta-
tion can also be framed as a contour extraction problem and

Fig. 2. Graph neighborhood structure, unary prior heatmap
and topological constraints in Cartesian (left) and polar (right)
coordinates.

can be formulated as inference in a Markov chain by dynamic
programming. A simple change of variables from the above
formalism allows us to achieve this. More specifically, instead
of defining one binary random variable for each pixel, we can
make use of one discrete (but non-binary) random variable
per column in the polar image. Such random variables take
labels from the set L = {1, . . . , R}, where R represents the
number of rows in the polar image. In other words, and con-
sidering the meaning of the columns and rows in the polar im-
age, for each angle, we search for the distance to the embryo
boundary. In this formulation, we define the unary term ψi
as the absolute intensity difference between neighboring pix-
els in column i, which captures the evidence of a pixel being
part of the contour. The pairwise term ψi,j encourages spatial
smoothness of the contour by penalizing sudden changes in
the contour location (i.e., ψi,j = |yi − yj |). The seed con-
straints and temporal image averaging defined above easily
transfer to this formulation.

4. EXPERIMENTAL RESULTS
We evaluated the proposed approach on twenty time-lapse
image sequences of developing embryos consisting of a to-
tal of 7,000 frames. The images were captured with the in-
tegrated time-lapse imaging System EevaTM developed by
Auxogyn, Inc. The system fits into an incubator and includes
a dish that holds the embryos. The image acquisition soft-
ware captures a single-plane image once every five minutes.
The sequences capture the embryos of six different patients
and show a certain degree of variation, such as fragments and
missing boundaries. To obtain the ground-truth masks, we
manually segmented all 7,000 frames.

We report results obtained using the following variants of
our method: i) graph-cuts with (topological) band constraints
(GC) (Eqn. 2), ii) GC with band and unary term (GC+U),
and iii) GC with band, unary and temporal smoothness
(GC+U+S). We compare these variants against the following
methods: i) Giusti et al. [4], ii) Giusti et al. [4] with Eqn. 3
as edge cost (Giusti et al. [4]+Enr), iii) Giusti et al. [4] with
topological band constraints (Giusti et al. [4]+Band), iv) our
chain MRF formulation (Chain), and (v) GC with image and
constraints in Cartesian coordinates (GC+U+S(C)) .

To compare these methods, we report the following er-
ror metrics. Area of overlap (AoL): intersection over union
with ground-truth; True positive rate (TPR): intersection with
ground-truth over ground-truth; False negative rate (FNR):
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Fig. 3. Embryo segmentation results: Giusti et al. [4] (red contour), GC + U+ S (green contour) and ground-truth (blue contour).

Methods AoL FPR FNR ME Pred.N
GC 0.9494 0.0022 0.0273 0.0148 83.10

GC+U 0.9502 0.0026 0.0226 0.0126 82.18
GC+U+S 0.9500 0.0027 0.0219 0.0123 84.85

Chain 0.9481 0.0024 0.0273 0.0148 83.33
GC+U+S(C) 0.9504 0.0024 0.0245 0.0135 81.36

Giusti et al. [4] 0.9063 0.0006 0.0877 0.0441 71.00

Table 1. Methods evaluation: Average AoL, average mean error
(mean of avergae FPR and average FNR) and prediction on num-
ber of the cells [8] (overall %). Polar image size is 52 × 210 and
Cartesian image size is 100× 100.

excluded foreground over ground-truth; and False positive
rate (FPR): included background over background. Further-
more, to evaluate the impact of segmentation on further em-
bryo analysis, we use the segmentation results of the differ-
ent algorithms as input to our previous work Khan et al. [8],
which predicts the number of cells in each frame. We then
report the cell stage prediction accuracy, i.e., the percentage
of frames where the correct number of cells was predicted
(Pred.N).

Table 1 compares the results of all the algorithms. We
can see that, with the exception of FPR, all variants of our
approach perform better than the method of Giusti et al. [4].
In many applications, however, and in human embryo analy-
sis in particular, FNR is typically more important than FPR.
Indeed, if a cell is removed by the segmentation process, it
will be excluded from further analysis, which would affect the
embryo selection. In Fig. 4(a), we focus more specifically on
these two measures. Note that the method of Giusti et al. [4]
yields a high FNR, which visual inspection revealed was due
to the method’s sensitivity to high intensity contours appear-
ing within the embryo. While introducing band constraints
and the edge cost of Eq. 3 in the method of Giusti et al. [4]
reduces this error, it remains higher than that of our approach.
In Fig. 4(b), the analysis of the TPR shows that both our ap-
proach and Chain also outperform Giusti et al. [4] using this
metric. In particular, Giusti et al. [4] failed to correctly seg-
ment several embryos (TPR < 0.8), which visual inspection
revealed was also due to the presence of contours within the
embryo, or of bright spots and pronuclei. Fig. 3 shows some
of these cases.

(a) FPR vs. FNR (b) TPR cumulative distribution
Fig. 4. Quantitative evaluation.

Among the different variants of our method, we can see
that the error is reduced by adding a unary term and using
temporal smoothness (GC+U+S). The alternative formula-
tion, Chain, however, yields results similar to our basic GC.
Furthermore, performing graph-cuts in Cartesian coordinates
also yields slightly higher errors than our polar-coordinate
approach. We conjecture that this is due to the different
neighborhood structures induced by these two approaches.
We leave a more thorough analysis of the effect of neighbor-
hood structure on segmentation for future work.

Finally, and importantly, the last column of Table 1 shows
the importance of having good segmentations for further em-
bryo analysis. This result clearly evidences that our approach
leads to much better prediction of the number of cells that
of Giusti et al. [4], with an improvement of 13.8%.

5. CONCLUSION

Embryo segmentation is crucial for further image analysis,
and, ultimately, to be able to select viable embryos in IVF. In
this work, we have introduced a graph-cuts based approach
to segmenting a developing human embryo in time-lapse mi-
croscopic images. In particular, we have introduced a shape
prior that lets us overcome the noise and artifacts of dark field
embryo images. Our results have shown that good segmenta-
tion can only be achieved if sufficient prior knowledge about
the shape of the embryo is taken into account. We have also
demonstrated that better segmentation results could improve
subsequent analysis, such as cell number prediction. In the
future, we intend to study the impact of our results on other
tasks, such as cell localization and tracking, as well as cell
lineage extraction.
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