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Abstract— High-resolution 3D scanning can improve the
performance of object detection and door opening, two tasks
critical to the operation of mobile manipulators in cluttered
homes and workplaces. We discuss how high-resolution depth
information can be combined with visual imagery to improve
the performance of object detection beyond what is (currently)
achievable with 2D images alone, and we present door-opening
and inventory-taking experiments.

I. INTRODUCTION
In this paper, we propose employing high-resolution 3D

sensing on mobile manipulators. Just as the change from
sonar-based sensing to laser-based sensing enabled drastic
improvement of SLAM in mobile robotics, we propose that
dramatically improving the quality of depth estimation on
mobile manipulators can enable new classes of algorithms
and higher levels of performance (Figure 1). In support of
this idea, we present two scenarios where high-accuracy 3D
data proves useful to large mobile manipulators operating in
cluttered environments.

The first scenario involves object detection. In many tasks,
a mobile manipulator needs to search for an object class in
a cluttered environment. This problem is challenging when
only visual information is given to the system: variations in
background, lighting, scene structure, and object orientation
exacerbate an already-difficult problem. We demonstrate that
augmenting state-of-the-art computer vision techniques with
high-resolution 3D information results in higher precision
and recall than is currently achievable by either modality
alone.

The second scenario involves manipulator trajectory plan-
ning. We demonstrate closed-loop perception and manipula-
tion of door handles using information from both visual im-
ages and the 3D scanner. The high-resolution 3D information
helps ensure that the trajectory planner keeps the manipulator
clear of the door while still contacting the door handle.

We then present an application experiment which com-
bines these capabilities to perform a simple inventory-control
task. The mobile manipulator enters several offices and
searches for an object class, recording the detected locations.

II. MOTIVATION AND RELATED WORK
Augmenting vision algorithms with 3D sensing has the

potential to reduce some of the difficulties inherent in image-
only object recognition. Prior work has shown that low-
resolution depth information can improve object detection by

Fig. 1. Several off-axis views of a raw scan of a coffee mug obtained by
our scanner from 1.2 meters away. The 5mm-thick handle is prominently
visible. Approximately 1000 points of the scan are on the surface of the
coffee mug, despite the fact that it comprises only 5% of the horizontal
field-of-view of scan.

removing object classifications which are inconsistent with
training data (e.g., objects are usually not floating in the air,
and some object classes are unlikely to be on the floor) [1].

However, if a depth sensor’s noise is comparable to the
size of the target object classes, it will be hard-pressed to
provide more than contextual cues. The difference between
a stapler and a coffee mug, for example, is only several
centimeters in each dimension. Indeed, many objects de-
signed for manipulation by human hands tend to be similarly
sized and placed; thus, using depth information to distinguish



Fig. 2. Clutter makes scene understanding from only 2D visual images
difficult, even in a relatively simple office environment, as many of the
strong edges are not those which suggest the 3D structure of the scene.

among them requires sub-centimeter accuracy.
Unfortunately, many current sensing technologies have

noise figures on the centimeter level when measuring from
1-2 meters away. Ranging devices based on time-of-flight,
for example, tend to have centimeter-level noise due to
the extremely short timescales involved [16]. Additionally,
time-of-flight ranging systems can introduce depth artifacts
correlated with the reflectance or surface normal of the target
object [15].

In contrast, the accuracy of passive stereo cameras is lim-
ited by the ability to find precise feature matches. Stereo vi-
sion can be significantly improved using global-optimization
techniques[14], but the fundamental problem remains: many
surfaces, particularly in artifical environments, do not possess
sufficient texture to permit robust feature matching (e.g., a
blank piece of paper). Efforts have recently been made to
combine passive stereo with time-of-flight cameras [13], but
the resulting noise figures still tend to be larger than what is
achievable using a laser line scanner.

Active vision techniques use yet another approach: they
project large patterns onto the scene using a video projector,
and observe deformations of the patterns in a camera to infer
depth [17]. Besides the difficulties inherent in overcoming
ambient light simultaneously over a large area, the projected
image must be at least roughly focused, and thus depth of
field is limited by the optical geometry. However, this is a
field of active research and great strides have been made in
recent years.

This brief summary of the limitations of alternative 3D
sensing modalities is bound to change with the continual
progress being made in each of the respective areas of
inquiry. In this paper, we seek to explore the potential
benefits of highly accurate 3D data for mobile manipulators.
As other 3D modalities continue to improve, their data could
be used by the algorithms described in this paper. For the
purposes of this study, we have built several 3D laser line
triangulation systems to explore how high-quality 3D data
can improve the performance of mobile manipulation.

We selected laser line triangulation because millimeter-
level accuracy is readily achievable. This is on the order
of accuracy we have been able to achieve in sensor-to-
manipulator calibration; further increases in sensing accuracy
would thus not necessarily improve manipulation perfor-
mance.

Laser line scanners have proven useful in manufacturing,
as is well documented both in the research literature [7]
and in the marketplace [8]. They have been often used in
fixed installations, where objects are placed on a rotary table
in front of the scanner [9] or flow by on conveyor belts.
Low-cost implementations have been designed which rely on
a known background pattern instead of precision hardware
[10]. Triangulation-based laser scanners have also been used
on planetary rovers to model rough terrain [12], to find curbs
for autonomous vehicles [2] and to model archaelogical sites
and works of art [3].

Out-of-the-box triangulation systems are commercially
available for imaging small objects [4]. However, many of
these systems emphasize high accuracy (< 0.1mm), often
sacrificing depth of field. To be of most use to a mobile
manipulator, the sensor needs to cover the entire workspace
of the manipulator, and “extra” sensing range is helpful in
determining how to move the platform so that a nearby object
will enter the workspace of the manipulator.

Although triangulation-based laser scanners have been
proposed for mobile manipulators in the past [11], at time
of writing, we are not aware of implemented systems similar
to what we describe in this paper.

III. LASER LINE SCANNING FOR ROBOTICS

Our scanner is intended to complement computer vision
systems on mobile manipulators. As such, we aim to produce
a depth estimate for each pixel in the scene. The resulting
images can be considered as having an “extra” channel
representing each pixel’s depth, in addition to the usual RGB-
or monochrome-intensity channels.

A. Fundamentals

The geometry of the laser-line triangulation scheme is
well-studied and only repeated here for completeness. Many
variants of the underlying concepts are possible. In our
scanners, a rotating vertical laser line is directed into the
scene. An image formed on a rigid, horizontally-offset cam-
era shows a line which is deformed by the depth variations of
the scene (Figures 3 and 4). On each scanline of the image,
the centroid of the laser is detected and used to define a
ray from the camera origin through the image plane and
into the scene. This ray is intersected with the plane of
laser light defined by the angle of the laser stage, its axis
of rotation, and 3D translation from the laser stage to the
camera origin. The intersection of the plane and pixel ray
produces a single 3D point directly in the image frame, thus
avoiding the depthmap-to-image registration problem.

The vertical angular resolution of the point cloud is limited
by the vertical resolution of the camera. The horizontal
resolution is determined by the the laser’s rotation speed, the



Fig. 3. A vertical (green) laser line projected by the robot at left is deformed
as it strikes objects in the scene.

camera’s frame rate, and the field of view. Depth resolution
is determined by a variety of factors: the ratio between the
horizontal resolution of the camera and the field of view, the
precision of the shaft encoder on the laser stage, the ability
to achieve horizontal sub-pixel interpolation, the horizontal
offset between the camera and the laser, and the distance of
the object from the camera.

B. Hardware Considerations

We acquire roughly 600 images during each scan. The
camera’s field of view is approximately 70 degrees, and
we overscan by 10 degrees to accomodate for the depth
variations of the scene. As a result, the laser line moves
approximately 0.15 degrees per frame.

Our scanner currently requires 6 seconds to gather the
images, which are buffered in RAM on a computer onboard
the robot. Subsequent image processing and triangulation
steps require an additional 4 seconds. Such a slow rate of
acquisition means that the scanner cannot be used in fast-
moving scenes. This is a fundamental limitation of line
scanning; however, additional implementation effort could
result in dramatic speedups, e.g., moving to (very) high-
speed cameras and/or performing the image processing on
a graphics processor (GPU).

C. Calibration

We used the automatic checkerboard-finding algorithm and
nonlinear solver implemented in OpenCV [20] to estimate
the camera intrinsics. To estimate the camera-laser extrinsics,
we start by roughly measuring the translation and rotation
by hand. We then scan a flat board marked with several
points whose relative planar distances have been carefully
measured. The locations of these points in the camera image
are found and recorded. We can then quantify the calibration
error: the projected 3D points should be coplanar as well as
exhibit the measured distances. We image this test board
from several angles to better cover the workspace of the
scanner. A numerical optimization routine is used to mini-
mize the sum of the errors while perturbing the parameters,

Fig. 4. The scanning hardware on the STAIR 1 robot: the laser and rotary
stage are mounted in the upper-right. Images are captured by the camera in
the lower-left.

randomly restarting many times to explore many different
local minima.

The resulting calibration holds true except at the extreme
edges of the camera view. We assume this is due to effects
of the lens not captured in the standard radial and tangential
distortion models. Away from the edges of the image, the
scanner shows errors in the 1mm range when imaging flat
surfaces such as doors, desks, and walls.

To calibrate the manipulator to the scanner, we need to
define the 6D transform between the manipulator’s base
frame and the camera frame. To accomplish this, we touch
the manipulator’s end effector to several points on a test
board which are identifiable in the camera frame, logging
the manipulator’s forward-kinematics position each time. We
then employ a numerical optimization routine to improve our
hand-measured estimate of the 6D transform. The resulting
calibration accuracy is approximately 5mm throughout the
workspace of the manipulator.

IV. OBJECT DETECTION

Once the scanner has been calibrated, it can be employed
to improve the performance of object detection. For many
robotics applications, this is a critical subgoal of a larger task:
for example, in order to grasp an object it is first necessary
to detect the presence (or absence) of the target object and
localize it in the workspace.

As previously mentioned, the scanner aims to produce
a depth estimate for every pixel. Although the geometry
results in the depth being estimated in the image plane, the
information does not lie on a regular grid due to sub-pixel
horizontal interpolation used to estimate the center of the
laser stripe. Furthermore, some regions of the depth image



Fig. 5. Image channels considered by the patch-selection algorithm, along
with the typical appearance of a coffee mug. A typical patch selected
by the system is boxed on right. The larger dashed box indicates the
typical 7-pixel window used when finding the maximum patch response.
Top (red): intensity image. Middle (green): gradient image. Bottom (blue):
depth image.

will be more dense than others, depending on the direction
of the surface normal and the distance to the surface. We
thus resample the depthmap using bilinear interpolation to
match the raster of the camera. At this point, the depthmap
can be viewed as another channel in the image.

A. Sliding Windows

Sliding-window methods attempt to probabilistically
match a rectanglar window of the image with a collection of
features local to the window. In our system, these features
are very small “patches” of the window.

This classifier can be viewed as a black-box which returns
a high probability if the window tightly bounds an instance
of the target object class, and a low probability otherwise. To
perform object detection across an entire image, the window
is shifted through all possible locations in the image at
several spatial scales.

We use an extention of the sliding-window approach to
combine information from the visual and depth channels.
Similar to the state-of-the-art approach of Torralba et al. [5],
the features used by the probabilistic classifier are derived
from a learned “patch dictionary.” Each patch is a very
small rectangular subregion randomly selected from a set
of hand-labeled training examples. The channels considered
are the original (intensity) image, the gradient image (a

transformation of the original image: edges become bright,
flat regions become dark), and the depth map discussed
in the previous section. The patches are drawn separately
from these three channels, and probabilistically represent the
visual appearance (intensity or edge pattern) or shape (depth
profile) of a small region of the object class (Figure 5).

Combined, the patches give a generalized representation of
the entire object class that is robust to occlusion and appear-
ance or shape variation. When constructing the dictionary, we
record the patch g, its location within the window containing
the positive example w, and the channel from which it was
drawn c (intensity, gradient, or depth). A patch response for
a particular window is computed by measuring the similarity
of the corresponding region within the window to the stored
patch.

More formally, let the image window be represented
by three channels {Ii, Ig, Id} corresponding to intensity,
gradient and depth, respectively. Then the patch response
for patch p = 〈g, w, c〉 is

max
w′

dc(Ic, g)

where dc() is a similarity metric defined for each channel.
To improve robustness to minor spatial variations, w′ is a
7× 7 pixel grid centered around the original patch location
in the training set. This allows the patches to “slide” slightly
within the window being tested.

We compute similarity between patches using normalized
cross-correlation. For the intensity and gradient channels we
normalize by subtracting the average (mean) from within the
window; for the depth channel we normalize by subtracting
the median depth.

B. Learning the Classifers

The preceeding discussion assumed that the classifier was
already known. In this section, we discuss how the classifier
is built from training data.

For each object class, we learn a binary gentle-boost
classifier [6] over two-split decision stumps in these steps:
• Construct a training set by cropping positive examples

and random negative windows from our training images.
• Build an initial patch dictionary by randomly sampling

regions from our positive training images, and compute
patch responses over our training set.

• Learn a gentle-boost classifier given these responses.
• Trim the dictionary to remove all patches that were not

selected by boosting.
• Run the classifier over our training images and augment

our set of negative examples with any false-positives
found.

• Repeat the training process with these new negative
examples to obtain the final classifier.

Since we are learning two-split decision stumps, our clas-
sifiers are able to learn correlations between visual features
(intensity patterns and edges) and object shape (depth).
Example patches from a coffee-mug classifier for the three
image channels are shown in Figure 6. This figure is a typical



Fig. 6. Examples of localized patches from the coffee-mug dictionary. Left: Intensity patches. Middle: Gradient patches. Rigth: Depthmap patches.

Fig. 7. Precision-recall curves for mugs (left), disposable cups (middle), and staplers (right). Blue solid curve is for our method; red dashed curve is for
vision only detectors. Scores are computed at each threshold by first removing overlapping detections. A true-positive is counted if any detection overlaps
with our hand-labeled groundtruth by more than 50%. Any detection that does not overlap with a groundtruth object of the correct class is considered a
false-positive. Average Precision measures 11-point interpolated area under the recall vs. precision curve. Greater area under the curve is better.

representation of 12 of the approximately 50 patches selected
by the algorithm.

We performed five-fold cross-validation to evaluate the
performance of our detectors and compare them against state-
of-the-art detectors that do not use depth information. The
dataset consisted of 150 images of cluttered office scenes,
with several objects in each scene. We used the same training
procedure (as outlined above) for each detector and report
the average performance over the hold-out sets. Results for
coffee mugs, disposable cups, and staplers are shown in
Figure 7 and the following table:

Mug Cup Stapler
3D 2D 3D 2D 3D 2D

Max. F-1 Score 0.932 0.798 0.922 0.919 0.662 0.371
Average Precision 0.885 0.801 0.879 0.855 0.689 0.299

In general, the 3D information appears to help eliminate
false positives. The 2D detectors seldom miss instances of
their trained object class; their typical problem is instead that
they can collect a variety of disparate cues from shadows
or unrelated objects that together match enough of the
localized patches that the sliding-window detector considers
it a high-probability detection. The 3D information can help
in this regard: we observe that the training process often

selects relatively large, uniform depth patches. Effectively,
this associates higher probabilities to windows which tightly
bound a single object rather than a collection of several
disparate objects. Since we do not normalize for the depth
variation inside a patch, only for its median, the depth
patches also encode a measure of the absolute size of an
object. These depth cues are not explicitly expressed in the
visual-light image, and as is common in machine learning
systems, presenting a richer set of features to the classifier
helps boost performance.

V. DOOR OPENING

For many tasks, mobile manipulators operating in home
and office environments need to open and pass through doors.
For example, at the end of a workday a typical office building
will have tens or hundreds of closed doors that must be
opened if the robot is to clean the building or search for
an item. The ability to open a door thus needs to be another
primitive in the robot’s navigation toolbox, alongside path
planning and localization. We summarize our door-opening
system to emphasize the utility of high-resolution 3D sensing
for mobile manipulation.

Door opening requires manipulating the door handle with-



Fig. 8. After localizing the door handle in the 3D point cloud, the robot
can plan a path to the handle and open the door.

out colliding with the door. The operation does not allow
more than a centimeter or two of positioning error, as the
end effector is continually in close proximity to the (rigid)
door. Thus the door-opening task, like any grasping task
where target objects are identified in a camera, tests not only
sensing accuracy but also the calibration between the sensing
system and the manipulator.

Our system uses a hand-annotated map which marks the
locations of doors. If the robot needs to pass through one of
the marked doorways, it uses the triangulation-based laser
scanner described in this paper to scan the door. From this
scan, it uses a classifier trained on hundreds of door handles
to localize the handle and classify the door as right-handed
or left-handed. The robot then drives to within manipulator
reach of the door handle, plans a path to the edge of the
handle, and presses on the handle to unlatch it (Figure 8).
Once the door is unlatched and partially opened, the robot is
able to drive through the door by pushing it fully open as its
chassis (slowly) comes into contact with the now-unlatched
door.

High-resolution point clouds assist in planning collision-
free manipulator paths to the door handle. Some sensing
modalities effectively “low-pass” the depth map as part of the
sensing process. In contrast, the active triangulation process
does not smooth out depth discontinuities, such as those
between the door handle and the door immediately behind
it. As a result, the door handle stands out sharply in the 3D
data, making path planning and recognition easier.

VI. INVENTORY-CONTROL EXPERIMENT

To evaluate the utility of these two uses of the laser-line
triangulation scanner on our mobile manipulator, we com-
bined the object-detection and door-opening algorithms to
form an inventory-taking experiment. Such a system could be
envisioned in a future home, perhaps cataloging the locations
of every object in the house at night so that the robot could
instantly respond to human queries about the location of
commonly-misplaced objects. Workplace applications could

Fig. 9. Detecting coffee mugs in cluttered environments. The detector
correctly ignored the paper cup to the right of the coffee mug.

include inventory-taking in retail stores, safety inspections
in industry, or location verification of movable equipment
in, e.g., hospitals.

In our system, a high-level planner sequences a stan-
dard 2D navigation stack, the door-opening system, and the
object-detection system, which together allow the robot to
take an inventory of an object class in a cluttered office
building with closed (but unlocked) doors. Our system runs
on the ROS software framework [18]. A world map was built
offline using the GMapping SLAM toolkit [19] and logged
data from the robot’s SICK LIDAR and Segway odometry.
The resulting map was hand-annotated to mark the locations
of doors and desks. The runtime navigation stack is de-
scended from the Player localization and planning modules,
which perform particle-filter localization and unified object-
avoidance and goal-seeking path planning.

When necessary, control switches to the door-opening
system discussed in the previous section, after which motor
control is returned to the 2D navigation stack.

A sample run of the inventory-gathering system is shown
in Figure 10. During this run, there were 25 coffee mugs
spread in the search area. The 3D-enhanced object detector
found 24 of them, without any false positives. Our image-
only detector was only able to find 15 of them, and it found
19 false positives. During the experiment, we also searched
the scans for disposable paper cups. The mug-inventory
results and the cup-inventory results are compared against
ground truth in the following tables for both the integrated
3D detectors and the 2D-only detectors.

3D-Enhanced Detectors
OBJECT COUNT HIT ERROR RECALL PREC.
Mug 25 24 0 0.96 1.00
Cup 10 8 2 0.8 0.8

2D-Only Detectors
OBJECT COUNT HIT ERROR RECALL PREC.
Mug 25 15 19 0.6 0.441
Cup 10 8 4 0.8 0.67



Fig. 10. The inventory-gathering experiment required autonomous navigation (green track), autonomous door opening, and 20 laser scans of desks in
the four offices shown above. The robot position at each scan is shown by the red circles, and the field-of-view of each scan is indicated by the yellow
triangles. The locations of the detected coffee mugs are indicated by the orange circles. This figure was entirely automatically generated, using the SLAM
output for the map and the localization log for the robot track and sensing positions, which allow the coffee-mug detections to be transformed into the
global map frame.

VII. CONCLUSIONS AND FUTURE WORK

As shown by the PR curves obtained when using the 3D
information versus 2D alone, incorporating high-quality 3D
information into the sensing scheme of a mobile manipulator
can increase its robustness when operating in a cluttered
environment. The door-opening task shows that high-quality
3D data can help accomplish motion planning by accurately
sensing the immediate vicinity of the robot.

We intend to continue increasing the speed of our 3D
triangulation system by moving to ever-faster camera frame
rates. We also intend to explore other modalities of obtain-
ing high-accuracy 3D data, and quantify the performance
improvement provided by various depth sensors.
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