Decomposing a Scene into Geometric and Semantically Consistent Regions

Stephen Gould sgould@stanford.edu Richard Fulton rafulton@cs.stanford.edu

Daphne Koller koller@cs.stanford.edu

IEEE International Conference on Computer Vision September 2009

- Decompose the scene into regions with
 - semantic region labels (e.g., road, sky, building, etc.)
 - coherent geometric placement (orientation and location with respect to the horizon)

Energy Function $E(\mathbf{R}, \mathbf{A}, \mathbf{S}, \mathbf{G}, v^{hz}, K | I, \theta)$

+

=

Boundary Term e.g., difference in color/texture between regions

e.g., foreground

on road

Horizon Term e.g., vanishing lines

Region Term e.g., consistent appearance and location

$E(\mathbf{R}, \mathbf{A}, \mathbf{S}, \mathbf{G}, v^{hz}, K \mid I, \theta)$

=

image

Segment) Proposal Moves

- Positive examples: all coherent regions and segments
- Negative examples: exponentially many
 - Most of them are ridiculously easy
- Closed-loop learning
 - Learn simple region and context models
 - Run inference (on training set) sampling errors
 - Re-train with augmented training set

Results: 21-class MSRC

- Validate against state-ofthe-art approaches
- Region/pixel class only
- Ground truth labels are approximate
- No geometry information

21 CLASS	Mean
Shotton et al.	72.2
Gould et al.	76.5
Pixel CRF	75.3
Region-based	76.4

High Quality Dataset

- MSRC dataset is limited
 - poorly labeled boundaries
 - many missing pixels (void)
 - no geometry information
- Collected images from MSRC, Hoiem et al., Pascal VOC
- 715 outdoor scenes with high-quality labels
 - region boundaries
 - region class and geometry
 - horizon
- Used Amazon's Mechanical Turk for labeling
- Available for download from: http://www.stanford.edu/~sgould

Amazon Mechanical Turk (AMT)

- \$0.10 per task (regions, classes, surface types)
- 5-10 minutes per task
- 24-48 hour turn-around time (for 715 images)
- Less than 10% of tasks needed rework
- Total cost for labels: under \$250 (includes \$40 textbook on Adobe Flash)
- Saving me from having to label image: priceless.

You don't always get what you want Typical quality (hand labeled)

Comparison with MSRC labels

				pixelw region	ise -based
0.9 ਨੇ					
accruac accruac 8.0	 				· -
0.8	2	3	4	Ę	5

CLASS	Mean	Std
Pixel CRF	74.3	0.80
Region-based	76.4	1.22

Region Classes: sky, tree, road, grass, water, building, mountain, fg. object

GEOMETRY	Mean	Std
Pixel CRF	89.1	0.73
Region-based	91.0	0.56

Region Geometry: sky, vertical, horizontal (support)

Horizon error: 6.9% (17 pixels)

vert.

- Estimate camera tilt from location of horizon
- Predict region 3d position using ray projected through camera plane

Related work: [Saxena et al., PAMI 08], [Hoiem et al., IJCV 07], [Russell and Torralba, CVPR 09]

NIPS 2009 Sneak Peak

[Gould, Gao, Koller NIPS 09]

Horizon Term e.g., vanishing lines

 $\Psi^{\text{horizon}}(V^{\text{hz}})$

Region Term

e.g., consistent

appearance and

location

 $\psi^{\text{region}}(S_r, G_r, V^{\text{hz}}) \quad \psi^{\text{boundary}}(A_r, A_s)$

+

=

Boundary Term

e.g., difference

in color/texture

between regions

╋

Object Term

e.g. wheel-like

appearance in

bottom corner

 $\psi^{\text{context}}(C_o, S_r)$

Context Term e.g., cars on road

$E(\mathbf{R}, \mathbf{A}, \mathbf{S}, \mathbf{G}, \mathbf{O}, \mathbf{C}, v^{hz}, K \mid I, \theta)$

[Gould, Gao, Koller NIPS 09]

[Gould, Gao, Koller NIPS 09]

[Gould, Gao, Koller NIPS 09]

Sliding-window detector's top two detections per image

Our joint region-based segmentation and object detection

- Our model decomposes a scene into geometric and semantically consistent regions using a unified energy function over pixels and regions
- By classifying large regions rather than individual pixels we can compute more **robust features** and reduce inference complexity
- Multiple over-segmentations allow us to refine region boundaries and make large moves in energy space
- Context can be easily captured using a pairwise term between adjacent regions
- Our model provides a base for integrating many other vision tasks (e.g., 3D reconstruction and object detection)

