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Abstract. Pixel-level annotations are expensive and time consuming
to obtain. Hence, weak supervision using only image tags could have a
significant impact in semantic segmentation. Recently, CNN-based meth-
ods have proposed to fine-tune pre-trained networks using image tags.
Without additional information, this leads to poor localization accu-
racy. This problem, however, was alleviated by making use of objectness
priors to generate foreground/background masks. Unfortunately these
priors either require training pixel-level annotations/bounding boxes, or
still yield inaccurate object boundaries. Here, we propose a novel method
to extract markedly more accurate masks from the pre-trained network
itself, forgoing external objectness modules. This is accomplished using
the activations of the higher-level convolutional layers, smoothed by a
dense CRF. We demonstrate that our method, based on these masks
and a weakly-supervised loss, outperforms the state-of-the-art tag-based
weakly-supervised semantic segmentation techniques. Furthermore, we
introduce a new form of inexpensive weak supervision yielding an addi-
tional accuracy boost.

Keywords: semantic segmentation, weak annotation, convolutional neu-
ral networks, weakly-supervised segmentation.

1 Introduction

Semantic scene segmentation, i.e., assigning a class label to every pixel in an
input image, has received growing attention in the computer vision commu-
nity, with accuracy greatly increasing over the years [1–6]. In particular, fully-
supervised approaches based on Convolutional Neural Networks (CNNs) have
recently achieved impressive results [7, 1, 3, 2, 4]. Unfortunately, these methods
require large amounts of training images with pixel-level annotations, which are
expensive and time-consuming to obtain. Weakly-supervised techniques have
therefore emerged as a solution to address this limitation [8–15]. These tech-
niques rely on a weaker form of training annotations, such as, from weaker to
stronger levels of supervision, image tags [14, 12, 16, 17], information about ob-
ject sizes [17], labeled points or squiggles [12] and labeled bounding boxes [13,
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18]. In the current Deep Learning era, existing weakly-supervised methods typ-
ically start from a network pre-trained on an object recognition dataset (e.g.,
ImageNet [19]) and fine-tune it using segmentation losses defined according to
the weak annotations at hand [16, 17, 13, 12, 14].

In this paper, we are particularly interested in exploiting one of the weakest
levels of supervision, i.e., image tags, which is a rather inexpensive attribute
to annotate and thus more common in practice (e.g., Flickr [20]). Image tags
simply determine which classes are present in the image without specifying any
other information, such as the location of the objects. In this extreme setting,
a naive weakly-supervised segmentation algorithm will typically yield poor lo-
calization accuracy. Therefore, recent works [16, 12, 21] have proposed to make
use of objectness priors [22–25], which provide each pixel with a probability
of being an object. In particular, these methods have exploited existing ob-
jectness algorithms, such as [22–24], with the drawback of introducing external
sources of potential error. Furthermore, [22] typically only yields a rough fore-
ground/background estimate, and [23, 24] rely on additional training data with
pixel-level annotations.

Here, by contrast, we introduce a Deep Learning approach to weakly-supervised
semantic segmentation where the localization information is directly extracted
from the network itself. Our approach relies on the following intuition: One can
expect that a network trained for the task of object recognition extracts features
that focus on the objects themselves, and thus has hidden layers with units firing
up on foreground objects, but not on background regions. A similar intuition was
also recently explored for other tasks, such as object localization [26] and detec-
tion [27]. Starting from a fully-convolutional network pre-trained on ImageNet,
we therefore propose to extract a foreground/background mask by directly ex-
ploiting the unit activations of some of the hidden layers in the network.

In particular, we focus on the fourth and fifth convolution layers of the VGG-
16 pre-trained network [28], which provide higher-level information than the first
three layers, such as highlighting complete objects or object parts. We then make
use of a fully-connected Conditional Random Field (CRF) to smooth out this
information and generate a foreground/background mask. We finally incorporate
the resulting masks in our network via a weakly-supervised loss. The resulting
masks can also be thought of as a form of objectness measure. While several
CNN-based approaches have proposed to learn objectness, or saliency measures
from annotations [29–31], to the best of our knowledge, our approach is the
first extract this information directly from the hidden layer activations of a
segmentation network, and employ the resulting masks as localization cues for
weakly-supervised semantic segmentation. Ultimately, our model, illustrated by
Fig. 1, can therefore be thought of as a weakly-supervised segmentation network
with built-in foreground/background prior.

We demonstrate the benefits of our approach on two datasets (Pascal VOC
2012 [32] and a subset of Flickr (MIRFLICKR-1M) [20]). Our experiments show
that our approach outperforms the state-of-the-art methods that use image tags
only, and even some methods that leverage additional supervision, such as object
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Fig. 1. Our weakly-supervised network with built-in foreground/background prior.

size information [17] and point supervision [12]. Furthermore, we extend our
framework to incorporate some additional, yet cheap, supervision, taking the
form of asking the user to select the best foreground/background mask among
several automatically generated candidates. Our experiments reveal that this
additional supervision only costs the user roughly 2-3 seconds per image and
yields another significant accuracy boost over our tags-only results.

2 Related work

Weakly-supervised semantic segmentation has attracted a lot of attention, be-
cause it alleviates the painstaking process of manually generating pixel-level
training annotations. Over the years, great progress has been made [9–14, 16–
18, 33]. In particular, recently, Convolutional Neural Networks have been applied
to the task of weakly-supervised segmentation with great success. In this section,
we discuss these CNN-based approaches, which are the ones most related to our
work.

The work of [14] constitutes the first method to consider fine-tuning a pre-
trained CNN using image-level tags only within a weakly-supervised segmenta-
tion context. This approach relies on a simple Multiple Instance Learning (MIL)
loss to account for image tags during training. While this loss improves segmen-
tation accuracy over a naive baseline, this accuracy remains relatively low, due to
the fact that no other prior than image tags is employed. By contrast, [13] incor-
porates an additional prior in the MIL framework in the form of an adaptive fore-
ground/background bias. This bias significantly increases accuracy, which [13]
shows can be further improved by introducing stronger supervision, such as la-
beled bounding boxes. Importantly, however, this bias is data-dependent and
not trivial to re-compute for a new dataset. Furthermore, the results remain
inaccurate in terms of object localization. In [17], weakly-supervised segmen-
tation is formulated as a constrained optimization problem, and an additional
prior modeling the size of objects is introduced. This prior relies on thresholds
determining the percentage of the image area that certain classes of objects can
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occupy, which again is problem-dependent. More importantly, and as in [13], the
resulting method does not exploit any information about the location of objects,
and thus yields poor localization accuracy.

To overcome this weakness, some approaches [16, 12, 21] have proposed to
exploit the notion of objectness. In particular, [16] makes use of a post-processing
step that smoothes their initial segmentation results using the object proposals
obtained by BING [23] or MCG [24]. While it improves localization, being a
post-processing step, this procedure is unable to recover from some mistakes
made by the initial segmentation. By contrast, [12, 21] directly incorporate an
objectness score [22, 24] in their loss function. While accounting for objectness
when training the network indeed improves segmentation accuracy, the whole
framework depends on the success of the external objectness module, which, in
practice, only produces a coarse heat map and does not accurately determine the
location and shape of the objects (as evidenced by our results in supplementary
materials).

Note that BING and MCG have been trained from PASCAL train images
with full pixel-level annotations or bounding boxes, and thus [16, 21] inherently
makes use of stronger supervision than our approach. Here, instead of relying on
an external objectness method, we leverage the intuition that, within its hidden
layers, a network pre-trained for object recognition should already have learned
to focus on the object themselves. This lets us develop a foreground/background
mask directly from the information built into the network, which we empirically
show provides a more accurate object localization prior. A relevant idea is also
presented in an arxiv paper [34] which is further evidencing the popularity and
importance of this research trend.

3 Our Approach

In this section, we introduce our approach to weakly-supervised semantic seg-
mentation. After briefly discussing the CNN architecture that we use, we present
our approach to extracting a foreground/background mask directly from the
network itself. We then introduce our weakly-supervised learning algorithm that
leverages this foreground/background information, and finally discuss our novel
way to introduce additional weak supervision in the process.

3.1 Network Architecture

As most recent weakly-supervised semantic segmentation algorithms [12–14, 16,
17], and as shown in Fig. 2, our architecture is based on the VGG-16-layer
network [28], whose weights were trained on ImageNet for the task of object
recognition. Following the fully-convolutional approach [1], all fully-connected
layers are converted to convolutional layers, and the final classifier replaced with
a 1 × 1 convolution layer with N channels, where N represents the number of
classes of the problem. As a modification to this fully convolutional network
which has a stride of 32, inspired from [3], we use a stride of 8 and also a
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Fig. 2. Network Architecture: Fully convolutional neural network, derived from the
VGG-16 network. We employ a receptive field of 128 pixels and a stride of 8.

smaller receptive field (128 pixels), which has proven to be effective in practice
in weakly-supervised semantic segmentation [13]. At the end of the network, we
add a deconvolution layer to up-sample the output of the network to the size of
the input image. In short, the network takes an image of size W ×H as input
and generates an N×W ×H output encoding a score for each pixel and for each
class.

3.2 Built-in Foreground/Background Model

We now introduce our approach to extracting a foreground/background mask di-
rectly from our network. In Section 3.3, we show how this mask can be employed
for weakly-supervised semantic segmentation.

Intuitively, we expect that a network trained for an object recognition task
has learned to focus on the objects themselves, and their parts, rather than on
background regions. In other words, it should produce high activation values
on objects and their parts. To evaluate this, we studied the activation of the
different hidden layers of our initial network pre-trained on ImageNet. To this
end, we forward each image through the network and visualize each activation by
computing the mean over the channels after resizing the activation map to the
input image size. Perhaps unsurprisingly, this lead to the following observations,
illustrated in Fig. 3. The first two convolutional layers of the VGG network
extract image edges. As we move deeper in the network, the convolutional layers
extract higher-level features. In particular, the third convolutional layer fires up
on prototypical object shapes. The fourth layer indicates the location of complete
objects, and the fifth one fires up on the most discriminative object parts [35].

Based on these observations, we propose to make use of the fourth and fifth
layers to produce an initial foreground/background mask estimate. To this end,
we first convert these two layers from 3D tensors (512×W ×H) to 2D matrices
(W×H) via an average pooling operation over the 512 channels. We then fuse the
two resulting matrices by simple elementwise sum, and scale the resulting values
between 0 and 1. The resulting W × H map can be thought of as a pixelwise
foreground probability. Fig. 3 illustrates the results of this method on a few
images from PASCAL VOC 2012. While the resulting scores indeed accurately
indicate the location of the foreground objects, this initial mask remains noisy.



6 Saleh, Ali Akbarian, Salzmann, Petersson, Gould, and Alvarez

To overcome this, we therefore propose to exploit these foreground probabil-
ities as unary potentials in a fully-connected CRF. Let x = {xi}W ·Hi=1 be the set
of random variables, where xi encodes the label of pixel i, i.e., either foreground
or background. We encode the joint distribution over all pixels with a Gibbs
energy of the form

E(x = X) = −
∑
i

logPf (xi = Xi) +
∑
i

∑
j>i

θij(xi = Xi, xj = Xj) , (1)

where Pf (xi = Xi) is the probability of pixel i taking label assignment Xi,
obtained directly from the foreground probability of our initial fusion strategy.
Following [36], we define the pairwise term θij as a contrast-sensitive Potts model
using two Gaussian kernels encoding color similarity and spatial smoothness.
This form lets us make use of the filtering-based mean-field strategy of [36] to
perform inference efficiently. Some resulting masks are shown in the last column
of Fig. 3.

Note that our foreground/background masks can be thought of as a form
of objectness measure. While objectness has been used previously for weakly-
supervised semantic segmentation (MCG and BING in [16], and the generic ob-
jectness [22] in [12]), the benefits of our approach are twofold. First, we extract
this information directly from the same network that will be used for semantic
segmentation, which prevents us from having to rely on an external method. Sec-
ond, as opposed to BING and MCG, we require neither object bounding boxes,
nor object segments to train our method. While [22] predicts objectness after
training on a set of images, as shown in our experiments in the supplementary
materials, our method yields much more accurate object localization than this
technique.To further evidence the benefits of our approach, in supplementary
material, we evaluate the masks obtained using the probabilities of [24] and [22]
as unary potentials in the same dense CRF.

3.3 Weakly-Supervised Learning

We now introduce our learning algorithm for weakly-supervised semantic seg-
mentation. We first introduce a simple loss based on image tags only, and then
show how we can incorporate our foreground/background masks in our frame-
work.

Intuitively, given image tags, one would like to encourage the image pixels
to be labeled as one of the classes that are observed in the image, while pre-
venting them to be assigned to unobserved classes. Note that this assumes that
the tags cover all the classes depicted in the image. This assumption, however,
is commonly employed in weakly-supervised semantic segmentation [12, 14, 16].
Formally, given an input image I, let L be the set of classes that are present
in the image (including background) and L̄ the set of classes that are absent.
Furthermore, let us denote by ski,j(θ) the score produced by our network with
parameters θ for the pixel at location (i, j) and for class k, 0 ≤ k < N . Note
that, in general, we will omit the explicit dependency of the variables on the
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Image 1st Conv. 2nd Conv. 3rd Conv. 4th Conv. 5th Conv. Fusion Our mask G.T

Fig. 3. Built-in foreground/background mask. From left to right, there is the
image, the activations of 1st, 2nd,3rd ,4th, and 5th Conv. layers, the results of our
fusion strategy, and the final mask after CRF smoothing followed by G.T. Note that
”Fusion” constitutes the unary potential of the dense CRF used to obtain ”Our mask”.

network parameters. Finally, let Sk
i,j be the probability of class k obtained after

a softmax layer, i.e.,

Sk
i,j =

exp(ski,j)∑N
c=1 exp(sci,j)

. (2)

Encoding the above-mentioned intuition can then simply be achieved by de-
signing a loss of the form

Lweak = − 1

|L|
∑
k∈L

logSk − 1

|L̄|
∑
k∈L̄

log(1− Sk) , (3)

where Sk represents a candidate score for each class in the image. In short, the
first term in Eq. 3 expresses the fact that the present classes should be in the
image, while the second term penalizes the pixels that have high probabilities
for the absent classes. In practice, instead of computing Sk as the maximum
probability (as previously used in [14, 12]) for class k over all pixels in the image,
we make use of the convex Log-Sum-Exp (LSE) approximation of the maximum
(as previously used in [16]), which can be written as

S̃k =
1

r
log

 1

|I|
∑
i,j∈I

exp(rSk
i,j)

 , (4)

where |I| denotes the total number of pixels in the image and r is a parame-
ter allowing this function to behave in a range between the maximum and the
average. In practice, following [16], we set r to 5.
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The loss in Eq. 3 does not rely on any notion of foreground and background.
As a consequence, minimizing it will typically yield poor object localization
accuracy. To overcome this issue, we propose to make use of our built-in fore-
ground/background mask introduced in Section 3.2. Let Mi,j denote the mask
value at pixel (i, j), i.e., Mi,j = 1 if pixel (i, j) belongs to the foreground and 0
otherwise. We can then re-write our loss as

Lmask = − 1

|L| − 1

∑
k∈L,k 6=0

log(Sk
f )−log(S0)− 1

|L̄|.|I|
∑

i,j∈I, k∈L̄

log(1−Sk
i,j) , (5)

where

Sk
f =

1

r
log

 1

|M |
∑

i,j|Mi,j=1

exp(rSk
i,j)

 , (6)

and

S0 =
1

r
log

 1

|M̄ |
∑

i,j|Mi,j=0

exp(rS0
i,j)

 . (7)

where |M | and |M̄ | denote the number of foreground and background pixels,
respectively, and Sk

f computes an approximate maximum probability for the

present class k over all pixels in the foreground mask. Similarly, S0 denotes
an approximate maximum probability for the background class over all pixels
outside the foreground mask. In short, the loss of Eq. 5 favors present classes to
appear in the foreground mask, while pixels predicted as background should be
assigned to the background class and no pixels should take on an absent label.

To learn the parameters of our network, we follow a standard back-propagation
strategy to search for the parameters θ that minimize the loss in Eq. 10. In par-
ticular, the network is fine-tuned using stochastic gradient descent (SGD) with
momentum µ to update the weights by a linear combination of the negative gra-
dient and the previous weight update. At inference time, given the test image,
the network performs a dense prediction. We optionally apply a fully connected
CRF to smooth the segmentation using the default parameters of [3].

Remark. Although our loss function performs well, an alternative to this loss
function can be expressed as

Lweak = − 1

|I|
∑
i,j∈I

log(Si,j)−
1

|I|
∑

i,j∈I, k∈L̄

log(1− Sk
i,j) , (8)

where Si,j represents the approximation of the maximum by using the LSE over
the observed classes for each pixel as

Si,j =
1

r
log

[
1

|L|
∑
k∈L

exp(rSk
i,j)

]
. (9)
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Such a formulation can also be extended to incorporate our mask, which
yields

Lmask = − 1

|M |
∑

i,j|Mi,j=1

log(Sf
i,j)−

1

|M̄ |
∑

i,j|Mi,j=0

log(S0
i,j)−

1

|I|
∑

i,j∈I, k∈L̄

log(1−Sk
i,j) ,

(10)
where S0

i,j denotes the probability for the background class and

Sf
i,j =

1

r
log

 1

|L| − 1

∑
k∈L, k 6=0

exp(rSk
i,j)

 (11)

computes an approximate maximum probability over the observed foreground
classes.

We found that, while the two approaches starting from the losses in Eq. 3
and Eq. 8 differ from each other, incorporating our masks in both of them using
Eq. 5 and Eq. 10 improves the segmentation quality considerably. Empirically,
however, we found that this second formulation was slightly less effective than
the one in Eq. 5. This will be further discussed in the experiments.

3.4 A Novel Weak Supervision: The CheckMask Procedure

The masks obtained with the approach introduced in Section 3.2 are not always
perfect. This is due to the fact that the information obtained by fusing the
activations of the fourth and fifth layers is noisy, and thus the solution found by
inference in the CRF is not always the desired one. As a matter of fact, many
other solutions also have a low energy (Eq. 1). Rather than relying on a single
mask prediction, we propose to generate multiple such predictions, and provide
them to a user who decides which one is the best one.

The problem of generating several predictions in a given CRF is known as the
M -best problem. Here, in particular, we are interested in generating solutions
that all have low energy, but are diverse, and thus follow the approach of [37].
In essence, this approach iteratively generates solutions, and, at each iteration,
modifies the energy of Eq. 1 to encourage the next solution to be different from
the ones generated previously. In practice, we make use of the Hamming distance
as a diversity measure. This diversity measure can be encoded as an additional
unary potential in Eq. 1, and thus comes at virtually no additional cost in the
inference procedure. For more details about the diverse M -best strategy, we refer
the reader to [37].

Ultimately, we generate several masks with this procedure, and ask the user
to click on the one that best matches the input image. Such a selection can be
achieved very quickly. In practice, we found that a user takes roughly 2-3 seconds
per image to select the best mask. As a consequence, this new source of weak
supervision remains very cheap, while, as evidenced by our experiments, allows
us to achieve a significant improvement over our tags-only formulation.
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(a) (b)

Fig. 4. (a) Mask candidates generated with our approach. From left to right, we show
the input image, the 1st, 5th, 10th, 15th, 20th, 25th and 30th solutions. (b) Our new
level of supervision: The annotator selects a mask which he/she thinks contains all
foreground object(s) and the minimum amount of background.

4 Experiments

In this section, we first describe the datasets used for our experiments, and give
some details about our learning and inference procedures. We then compare our
approach to the state-of-the-art methods that use the same level of supervi-
sion as us. We provide an evaluation of our foreground/background masks in
supplementary material.

4.1 Datasets

In our experiments, we first made use of the standard Pascal VOC 2012 dataset [32],
which serves as a benchmark in most weakly-supervised semantic segmentation
papers [12–14, 16, 17]. Similar to the dataset used in [12, 17, 13], this dataset con-
tains N = 21 classes, and 10,582 training images (the VOC 2012 training set
and the additional data annotated by [38]), 1,449 validation images and 1,456
test images. The image tags were obtained from the pixel-level annotations by
simply listing the classes observed in each image. As in [12, 13, 16, 17], we report
results on both the validation and the test set.

To further demonstrate the generality of our approach, we applied our method
to a dataset that truly contains only image tags. To this end, we created a new
training dataset from a subset of the MIRFLICKR-1M dataset [20]. In order
to facilitate comparison, this subset was built using images containing the same
classes as Pascal VOC 2012. In total it contains 7238 images, which were used
for training purposes only. This new Flickr-based dataset does not provide any
ground-truth pixel level annotations and, hence, the Pascal VOC validation set
was used as test data. This training data will be made publicly available upon
acceptance of the paper.

For both datasets, we report the mean intersection over union (mIOU), av-
eraged over the 21 classes.
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4.2 Implementation details

Our network architecture is detailed in Section 3.1. The parameters of this net-
work were found by using stochastic gradient descent with a fixed learning rate
of 10−4 for the first 40k iterations, 10−5 for the next 20k iterations, a momentum
of 0.9, a weight decay of 0.0005, and mini-batches of size 1. Similar to recent
weakly-supervised segmentation methods [16, 17, 14, 12, 13], the network weights
were initialized with those of a network pre-trained for a 1000-way classification
task on the ILSVRC 2012 dataset [19]. Hence, for the last convolutional layer,
we used the weights corresponding to the 20 classes shared by Pascal VOC and
ILSVRC. For the background class, we initialized the weights with zero-mean
Gaussian noise with a standard deviation of 0.1. At inference time, given only
the test image, the network generates a dense prediction as a complete semantic
segmentation map. We used C++ and Python (Caffe framework [39]) for our
implementation. As other methods [17, 13], we further optionally apply a dense
CRF to refine this initial segmentation. To this end, we used the same CRF
parameter values as these other approaches, i.e., the same as in [3].

4.3 Semantic Segmentation Results

We now compare our approach with state-of-the-art baselines. We first present
the results obtained with image tags only, and then those with additional weak
supervision. For the sake of completeness, in addition to the state-of-the-art
baselines, we also report the results of our approach without using our fore-
ground/background masks, i.e., by using Eq. 3 as training loss. We also provide
the segmentation results achieved by training a model using the losses intro-
duced in Eq. 8 and 10. In the following, we will refer to our baseline as Ours
(baseline), to our approach with tags only as Ours (tags) and to our approach
with additional weak supervision as Ours (CheckMask). We indicate the addi-
tional use of a dense CRF to further refine our results with + CRF after the
method’s name.

Pascal VOC with image tags. In Table 1, we compare our approach with
our mask-free baseline and state-of-the-art methods on the task of semantic
segmentation given only image tags during training. Note that our approach
outperforms all the baselines by a large margin, whether we use CRF smoothing
or not. Importantly, we outperform the methods based on an objectness prior [12,
16], which clearly shows the benefits of using our built-in foreground/background
masks instead of external objectness algorithms. The importance of our mask is
further evidenced by the fact that we outperform our mask-free baseline by 13.8
mIOU points. Note that the best-performing baseline (MIL w/ILP) [16] uses a
large amount of additional images (roughly 700K) from the ILSVRC2013 dataset
to boost the accuracy of the basic MIL method. Note that we still outperform
this baseline, even without using any such additional data.
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Table 1. Per class IOU on the PASCAL VOC 2012 validation set for methods trained
using image tags.
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Ours (baseline),Eq. 8 65.4 19.1 14.1 19.5 18.8 25.5 36.9 34.6 43.0 9.0 11.9 14.6 33.7 21.1 33.0 35.3 25.2 15.2 10.3 30.2 29.8 26.0
Ours (baseline) 59.2 25.2 14.6 21.9 19.0 28.6 49.5 41.9 42.7 10.1 32.9 25.6 36.8 29.8 34.5 32.5 24.6 31.2 21.6 39.3 29.0 31.0

MIL(Tag) [16] 37.0 10.4 12.4 10.8 5.3 5.7 25.2 21.1 25.15 4.8 21.5 8.6 29.1 25.1 23.6 25.5 12.0 28.4 8.9 22.0 11.6 17.8
MIL(Tag) w/ILP [16] 73.2 25.4 18.2 22.7 21.5 28.6 39.5 44.7 46.6 11.9 40.4 11.8 45.6 40.1 35.5 35.2 20.8 41.7 17.0 34.7 30.4 32.6
MIL(Tag) w/ILP+sspxl [16] 77.2 37.3 18.4 25.4 28.2 31.9 41.6 48.1 50.7 12.7 45.7 14.6 50.9 44.1 39.2 37.9 28.3 44.0 19.6 37.6 35.0 36.6
What’s the point(Tag) W/Obj [12] 78.8 41.6 19.8 38.7 33.0 17.2 33.8 38.8 45.0 10.4 35.2 12.6 42.3 34.3 33.2 22.7 18.6 40.1 14.9 37.7 28.1 32.2
EM-Fixed(Tag)+CRF [13] - - - - - - - - - - - - - - - - - - - - - 20.8
EM-Adapt(Tag)+CRF [13] - - - - - - - - - - - - - - - - - - - - - 38.2
CCNN(Tag) [17] 66.3 24.6 17.2 24.3 19.5 34.4 45.6 44.3 44.7 14.4 33.8 21.4 40.8 31.6 42.8 39.1 28.8 33.2 21.5 37.4 34.4 33.3
CCNN(Tag)+CRF [17] 68.5 25.5 18.0 25.4 20.2 36.3 46.8 47.1 48.0 15.8 37.9 21.0 44.5 34.5 46.2 40.7 30.4 36.3 22.2 38.8 36.9 35.3

Ours (Tags),Eq. 10 79.7 56.4 19.2 54.0 40.9 44.7 62.9 49.9 56.2 12.2 44.5 33.7 55.0 44.1 52.2 46.2 32.3 50.0 26.7 52.9 26.5 44.8
Ours (Tags)+CRF,Eq. 10 81.0 57.6 19.7 45.8 41.5 46.4 62.5 53.2 59.3 14.0 44.4 38.0 55.4 46.5 54.2 49.3 34.2 50.7 27.1 55.3 25.9 45.8

Ours (Tags) 79.7 56.2 19.1 53.8 41.3 44.6 62.8 50.1 56.1 12.1 44.8 33.9 54.9 44.3 52.3 46.1 33.1 49.5 26.9 52.7 26.7 44.8
Ours (Tags)+CRF 79.2 60.1 20.4 50.7 41.2 46.3 62.6 49.2 62.3 13.3 49.7 38.1 58.4 49.0 57.0 48.2 27.8 55.1 29.6 54.6 26.6 46.6

Table 2. Per class IOU on the PASCAL VOC 2012 validation set using additional
supervision during training.
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[16]: MIL(Tag) w/ILP+bbox 78.6 46.9 18.6 27.9 30.7 38.4 44.0 49.6 49.8 11.6 44.7 14.6 50.4 44.7 40.8 38.5 26.0 45.0 20.5 36.9 34.8 37.8
[16]: MIL(Tag) w/ILP+seg 79.6 50.2 21.6 40.6 34.9 40.5 45.9 51.5 60.6 12.6 51.2 11.6 56.8 52.9 44.8 42.7 31.2 55.4 21.5 38.8 36.9 42.0
[21]: SN-B+MCG seg 80.7 54.6 10.7 55.6 37.5 51.8 46.3 42.6 48.0 16.0 46.3 10.0 54.6 45.9 47.5 34.4 24.5 53.7 23.0 47.8 48.6 41.9
[34]: STC+Additional train data 84.5 68.0 19.5 60.5 42.5 44.8 68.4 64.0 64.8 14.5 52.0 22.8 58.0 55.3 57.8 60.5 40.6 56.7 23.0 57.1 31.2 49.8
[12]: Objectness 78.8 41.6 19.8 38.7 33.0 17.2 33.8 38.8 45.0 10.4 35.2 12.6 42.3 34.3 33.2 22.7 18.6 40.1 14.9 37.7 28.1 32.2
[12]: 1Point 56.2 24.5 16.1 21.5 20.0 30.8 53.0 34.2 53.0 7.9 41.4 41.6 42.7 40.1 42.0 45.9 24.0 37.5 28.5 45.6 29.8 35.1
[12]: Objectness+1Point 77.9 48.6 22.6 36.6 36.9 37.4 57.4 50.4 50.9 13.7 40.0 40.9 49.5 38.1 51.1 46.9 31.2 48.2 27.8 48.9 44.9 42.7
[12]: Objectness+AllPoints 78.5 48.5 21.3 39.5 37.9 37.7 49.5 45.3 52.5 17.0 42.7 39.9 46.8 44.0 51.0 50.6 22.0 46.6 28.9 52.3 44.3 42.7
[12]: Objectness+1Point(GT) 79.6 49.4 22.9 38.6 40.9 45.8 60.4 60.9 55.5 17.7 37.8 41.0 54.1 41.7 54.9 56.9 32.2 51.1 26.4 54.5 45.3 46.1
[17]: Random Crops - - - - - - - - - - - - - - - - - - - - - 34.4
[17]: Random Crops+CRF - - - - - - - - - - - - - - - - - - - - - 36.4
[17]: Size Info. - - - - - - - - - - - - - - - - - - - - - 40.5
[17]: Size Info.+CRF - - - - - - - - - - - - - - - - - - - - - 42.4
Ours (CheckMask),Eq. 10 85.2 65.2 21.4 49.7 50.2 48.5 67.3 63.2 58.5 16.1 43.3 36.1 56.1 45.4 53.7 52.3 36.5 47.1 27.0 61.9 37.2 48.7
Ours (CheckMask)+CRF,Eq. 10 86.3 70.4 22.1 48.9 53.4 49.8 71.0 66.0 61.5 17.7 46.4 38.3 59.9 49.1 57.4 55.8 38.5 50.6 28.4 64.3 36.0 51.0
Ours (CheckMask) 85.2 65.2 21.1 52.1 49.9 48.6 67.3 63.6 59.7 15.5 43.2 36.6 56.9 45.9 53.7 52.6 37.0 48.2 27.6 61.7 36.9 49.0
Ours (CheckMask)+CRF 86.4 70.1 21.7 53.1 52.5 50.7 70.9 66.6 63.2 16.9 45.8 39.1 61.1 50.0 56.8 56.2 40.0 51.9 29.3 63.1 05.9 51.5

Pascal VOC with additional weak supervision. We then evaluate our
approach on Pascal VOC with our additional CheckMask weak supervision pro-
cedure. While no other approaches have used this same kind of weak supervision,
we report the results of methods that have used additional weak supervision of
a similar cost to compute. In particular, these includes the point supervision
of [12], the random crops of [13], the size information of [17] and the MCG seg-
ments of [16, 21]. The results of this comparison are provided in Table 2. Note
that our CheckMask procedure yields an improvement of 4.2 mIOU point (and
4.9 mIOU point when a CRF is applied) over our tag-only approach. More im-
portantly, our approach outperforms the baselines by a large margin. Note that
other approaches have proposed to rely on labeled bounding boxes, which require
a user to provide a bounding box for each individual foreground object in an
image and to associate a label to each such bounding box. While this procedure
is clearly more costly than ours, we achieve similar accuracy to these baselines
(52.5% for [13] when using labeled bounding boxes and 54.1% for [13] when us-
ing labeled bounding boxes in an EM process vs 51.49% for our approach). We
believe that this further evidences the benefits of our approach. We also report
the results on the test set of Pascal VOC 2012 and compare our method with
other baselines (see Table 3).



Built-in Fg/Bg Prior for Weakly-Supervised Semantic Segmentation 13

Table 3. Per class IOU on the PASCAL VOC 2012 test set.
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CCNN (tags) [17] - 24.2 19.9 26.3 18.6 38.1 51.7 42.9 48.2 15.6 37.2 18.3 43.0 38.2 52.2 40.0 33.8 - 36.0 21.6 33.4 38.3 35.6
CCNN (tags)+size [17] - 36.7 23.6 47.1 30.2 40.6 59.5 54.3 51.9 15.9 43.3 34.8 48.2 42.5 59.2 43.1 35.5 45.2 31.4 46.2 42.2 43.3
CCNN (tags)+size+CRF [17] 42.3 24.5 56.0 30.6 39.0 58.8 52.7 54.8 14.6 48.4 34.2 52.7 46.9 61.1 44.8 37.4 48.8 30.6 47.7 41.7 45.1
MIL-FCN [16] - - - - - - - - - - - - - - - - - - - - - 25.7
MIL-sppxl [16] 74.7 38.8 19.8 27.5 21.7 32.8 40.0 50.1 47.1 7.2 44.8 15.8 49.4 47.3 36.6 36.4 24.3 44.5 21.0 31.5 41.3 35.8
MIL-obj [16] 76.2 42.8 20.9 29.6 25.9 38.5 40.6 51.7 49.0 9.1 43.5 16.2 50.1 46.0 35.8 38.0 22.1 44.5 22.4 30.8 43.0 37.0
MIL-seg [16] 78.7 48.0 21.2 31.1 28.4 35.1 51.4 55.5 52.8 7.8 56.2 19.9 53.8 50.3 40.0 38.6 27.8 51.8 24.7 33.3 46.3 40.6
WhatsThePnt+Obj+1Point [12] 80.6 50.2 23.9 38.4 33.1 38.5 52.0 50.9 55.4 18.3 38.2 37.7 51.0 46.1 54.7 43.2 35.4 45.1 33.0 49.6 40.0 43.6
EM-Adapt+CRF [13] 76.3 37.1 21.9 41.6 26.1 38.5 50.8 44.9 48.9 16.7 40.8 29.4 47.1 45.8 54.8 28.2 30.0 44.0 29.2 34.3 46.0 39.6
SN-B+MCG seg [21] 82.1 53.6 12.4 53.5 29.5 41.6 46.9 46.3 50.3 16.8 48.7 17.2 60.6 51.8 61.7 36.4 25.2 58.3 19.3 48.5 45.5 43.2

Ours (Tags) 80.6 54.7 22.0 63.2 34.0 44.3 64.5 49.4 53.0 12.5 45.6 38.8 53.9 45.0 61.6 42.5 40.3 51.3 31.0 42.5 32.0 45.8
Ours (Tags)+CRF 80.3 57.5 24.1 66.9 31.7 43.0 67.5 48.6 56.7 12.6 50.9 42.6 59.4 52.9 65.0 44.8 41.3 51.1 33.7 44.4 33.2 48.0
Ours (CheckMask) 86.1 61.8 24.9 60.8 42.8 49.7 68.6 61.7 56.3 15.5 44.2 41.0 56.1 47.2 64.1 50.2 40.9 48.1 33.1 55.6 41.4 50.0
Ours (CheckMask)+CRF 87.4 65.7 26.0 64.2 43.7 53.2 72.6 63.6 59.5 17.1 48.0 43.7 61.2 52.0 69.3 54.8 43.0 50.3 34.6 59.2 42.0 52.9

Table 4. Per class IOU on the PASCAL VOC 2012 validation set for models trained
with a subset of the MIRFLICKR-1M dataset.
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CCNN (tags) [17] 70.8 28.6 16.3 26.8 24.3 33.8 42.4 46.4 41.0 11.7 19.7 0 39.6 31.0 44.2 42.3 24.3 34.0 0 37.8 25.4 30.5
CCNN (tags)+CRF [17] 75.4 32.8 13.1 32.1 27.3 32.9 41.3 45.6 43.3 10.7 16.5 0 44.8 37.3 47.2 46.2 27.1 36.8 0 38.8 26.9 32.2

Ours (baseline) 69.8 28.2 17.2 25.9 20.6 29.2 39.2 45.4 39.2 10.9 16.9 15.0 39.2 30.3 40.8 36.9 25.8 28.6 21.2 34.2 28.6 30.6

Ours (Tags) 75.2 52.8 15.3 46.4 33.1 44.3 51.4 46.1 47.9 15.1 23.1 27.0 53.8 34.5 47.1 40.7 20.3 43.3 18.2 45.6 19.3 38.1
Ours (Tags)+CRF 76.9 57.1 15.6 40.1 35.6 41.0 54.8 49.1 48.8 17.0 21.1 31.2 54.4 35.7 51.6 42.8 21.2 42.7 16.8 47.4 18.2 39.0
Ours (CheckMask) 82.6 63.4 20.5 53.6 43.2 46.4 58.5 57.8 52.8 14.0 27.7 26.9 55.7 41.7 54.2 47.7 25.8 48.6 21.5 54.2 25.6 43.9
Ours (CheckMask)+CRF 83.8 68.2 17.2 57.7 46.4 48.7 62.1 59.4 56.2 14.7 29.3 28.8 59.3 45.6 57.5 50.6 27.4 53.4 23.2 56.5 26.4 46.3

Flickr (MIRFLICKR-1M) with image tags and additional weak su-
pervision. We now evaluate our method by training it using our new dataset
containing a subset of the MIRFLICKR-1M images [20]. Since no other results
have been reported on this dataset, we also computed the results of CCNN [17]
whose code is publicly available, and which has shown to yield good accuracy
in the previous experiments. In Table 4, we compare the results of our approach
with this baseline when trained using tags only, and, as mentioned before, tested
on the Pascal VOC 2012 validation dataset, since no ground-truth pixel level
annotations are available in Flickr. Note that our approach significantly out-
performs both our mask-free baseline and the CCNN by a large margin. It is
worth mentioning that this dataset contains three rare classes, Chair, Dining
Table, and the Sofa which have 1.1%, 0.5%, and 1.3% of the whole dataset re-
spectively. Although these classes have a negligible contribution in constructing
this dataset, our approach performs well in comparison to CCNN in segmenting
these classes (17.0% vs 10.7%, 31.2% vs 0%, and 16.8% vs 0% in these classes
respectively).

We then further used our CheckMask procedure to evaluate how much can
be gained by some cheap additional weak supervision. Note that, here, we were
unable to report the result of the CCNN with additional supervision, since, in
practice, we did not have access to per-image object size information. Our results
in Table 4 evidence the benefits of our CheckMask procedure over our tag-only
approach. Note that selecting the best mask for all 7238 training images took
roughly 5 hours, which corresponds to 2.5 sec per image. This shows that our
additional level of weak supervision remains very cheap to compute.
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Image baseline Tags CheckMask Tags CheckMask GT
Pascal Pascal Pascal Flickr Flickr

Failure cases:

Fig. 5. Qualitative results: From left to right, there is image, the results of the model
trained on Pascal VOC (column 2, 3, and 4), the results of the model trained on Flickr
(column 5 and 6), and the groundtruth. The last two row shows the failure cases.

5 Conclusion

We have introduced a Deep Learning approach to weakly-supervised semantic
segmentation that leverages foreground/background masks directly extracted
from our network pre-trained for the task of object recognition. Our experiments
have shown that our approach outperforms the state-of-the-art methods when
trained on image tags only. Furthermore, we have introduced a new level of weak
supervision, consisting of selecting one mask among a set of candidates. This
procedure can be achieve very easily, taking only roughly 2-3 seconds per image,
and yields a further significant boost in accuracy. In the future, we intend to
study if jointly training the foreground/background mask extraction procedure
and the weakly-supervised segmentation network can further improve our results.
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