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Abstract. We present a fast approximate nearest neighbor algorithm
for semantic segmentation. Our algorithm builds a graph over superpixels
from an annotated set of training images. Edges in the graph represent
approximate nearest neighbors in feature space. At test time we match
superpixels from a novel image to the training images by adding the
novel image to the graph. A move-making search algorithm allows us
to leverage the graph and image structure for finding matches. We then
transfer labels from the training images to the image under test. To pro-
mote good matches between superpixels we propose to learn a distance
metric that weights the edges in our graph. Our approach is evaluated
on four standard semantic segmentation datasets and achieves results
comparable with the state-of-the-art.

1 Introduction

Semantic segmentation, or multi-class pixel labeling, is a fundamental step in
understanding images. In this task every pixel in the image is annotated with a
category label, such as “sky”, “tree”, “water”, “person”, etc. Traditional meth-
ods learn a per-pixel classifier for each category of interest and combine these
together with pairwise and higher-order constraints using a conditional Markov
random field (CRF) [1, 2]. The difficulty with such methods is that they need
re-training whenever new data becomes available or the set of categories of in-
terest is changed. Furthermore, the per-pixel classifier evaluation is an expensive
operation that must be performed for each test image.

The latter problem can be addressed by moving to a superpixel representation
of the image. Here a bottom-up over-segmentation algorithm (e.g., [3, 4]) is used
to divide the image into small contiguous regions of similar appearance. The
number of superpixels is significantly smaller than the number of pixels but
still capture important image characteristics (such as object boundaries). Thus
inference time is dramatically reduced with negligible cost to accuracy.

Recently, nearest neighbor methods have been proposed to address the prob-
lem of growing datasets and changing categories [5–9]. These data driven ap-
proaches work by first matching regions in the image under test to regions from
a large database of hand labelled images. Matches are found based on region
and image-level appearance cues. Since the regions in the database are labelled,
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Fig. 1. Illustration of the idea of label transfer on a Superpixel Graph. The graph is
built by finding good matches for each superpixel. These are represented by directed
edges. Labels are then transferred backwards along the edges.

the target image can be annotated by transferring the labels of the matched re-
gions. Clearly such methods can seamlessly integrate new data but they require
a finely tuned distance function for finding matches—ideally one that correlates
category labels (the thing we want) with appearance (the thing we observe).

In this paper we propose a nearest neighbor method for semantic segmenta-
tion that uses a learned distance function. Our method represents an image by a
set of overlapping superpixels of different sizes. Associated with each superpixel
is a feature vector that summarizes its appearance. By finding superpixels with
similar features in a database of labelled images we can apply label transfer to
annotate a new image. The idea is illustrated in Figure 1. Importantly, nearest
neighbor matching is done per superpixel but annotation is done at the pixel
level allowing pixel labels to be determined from overlapping superpixels.

We present an algorithm for rapidly finding good matches by adaptively
constructing a graph where nodes represent superpixels and edges represent
matches. Our algorithm can be viewed as an approximate nearest neighbor
method, but one where we encourage spatial continuity during matching. This is
in contrast to other methods that rely on matching at two different levels: global
(image) and local (superpixel). To improve the accuracy of the annotation we
learn a distance metric so that superpixels with the same label appear closer in
feature space than those with different labels. Our key contribution is the in-
tegration of metric learning with graph construction. Specifically, we interleave
graph construction and metric learning, and derive the metric learning problem
based on the structure of the graph at hand.

We run extensive experiments on four standard datasets and compare our
method with and without learning the distance metric. We also evaluate the
effect of varying other algorithm parameters such as the number of superpixels
and the database size. Our results show that metric learning helps to improve
accuracy but as expected other factors, such as dataset size, are also important
for achieving good performance.
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2 Related Work

Semantic segmentation is a well studied topic in computer vision with a large
number of methods proposed. Most closely related to our approach are the so-
called label transfer methods. Liu et al. [9] first proposed such an approach
with an innovative algorithm that uses SIFT descriptors to align scenes and
then overlay labels from a subset of training images onto the target image. The
subset of training images is selected by matching global image descriptors.

Zhang et al. [7] use a similar approach. However, instead of aligning scenes by
matching SIFT descriptors they directly match pairs of image regions and use a
Markov random field (MRF) to smooth the matches. Like our method they use a
superpixel representation of the image to reduce complexity and provide spatial
support for computing features. However, our method does not require matching
(and hence label transfer from) an entire image. Moreover, we use multiple sets
of different sized superpixels for representing a single image.

Many works attempt to explain an image by matching parts of it to regions
in other images (e.g., [10, 11]). A label transfer approach along these lines, aimed
at large scale labeling tasks, is the work of Tighe and Lazebnik [6]. This work
also uses a superpixel representation of images but does not enforce spatial
continuity during the matching process. Matches are used to construct pseudo-
probability vectors for each superpixel in the test image and an MRF produces
the final predictions. The approach uses a very large number of features and a
pre-selection phase based on global image descriptors like the previous works to
prune the images considered at test time. Nevertheless, they are able to label
images in under 10s of total processing time.

An extension of this work [5] includes cues derived from per-exemplar object
detectors, which have been shown to work well for the object detection task [12].
This improves performance on less abundant classes but comes at a substantial
cost in features computed and processing time. Our approach, on the other hand,
computes an order of magnitude fewer features and achieves similar results.

Conceptually similar to our work is the PatchMatchGraph method of
Gould and Zhang [8] and the PatchWeb method of Barnes [13]. Like our ap-
proach, they build a graph over matched image regions. However, instead of
using superpixels they use overlapping rectangular image patches. This makes
the method expensive both in terms of memory and running time. Our superpixel
representation provides a much more compact set of regions without compromis-
ing accuracy. To build the graph over image patches, Gould and Zhang [8] and
Barnes [13] employ a search strategy motivated by the PatchMatch algorithm
of Barnes et al. [14, 15]. We use a similar strategy adapted to superpixels, and
also propose a new random projection move.

All of the above methods rely on hand tuned feature vectors for matching
regions (patches or superpixels) across images. While this can give high quality
results in terms of matching similar appearance there is no guarantee that the
features chosen will match regions with similar semantics. Our approach differs
by incorporating a learned distance metric. Specifically, we use a variant of the
large margin nearest neighbor algorithm of Weinberger and Saul [16]. Eigen and
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Fergus [17] also employ a nearest neighbor approach with learned metric but
do so by scaling individual training set descriptors. Our metric is a generalized
distance capable of arbitrary linear transforms in feature space.

3 Superpixel Graphs

In this section we describe our nearest neighbor algorithm for label transfer. We
begin by describing our superpixel-based representation. Next, we introduce a
superpixel graph for quickly finding similar superpixels in other images. Our ap-
proach is akin to the PatchMatchGraph [8] but rather than using rectangular
patches we use superpixels. This gives us a much more compact image represen-
tation. Interleaved with our graph construction is the learning of the distance
metric used to compare superpixels. At the end of the section we show how our
graph can be used for label transfer.

3.1 Superpixel Embedding

We represent an image by a set of superpixels generated by an over-segmentation
algorithm. However, a single over-segmentation of an image may fail to capture
true object boundaries—too coarse a representation will miss small objects while
too fine a representation results in many superpixels that are non-distinctive.
Thus we produce many different over-segmentations resulting in an overlapping
set of superpixels of different sizes. In our work, we use the superpixel algorithm
of Zhang et al. [3] but our approach is not limited to this choice—any other
over-segmentation algorithm can be used (e.g., [4]).

We embed our superpixels in a metric space by encoding the superpixels
as feature vectors in R

n. We denote the feature vector for superpixel u by xu.
In this work we construct the feature vectors by averaging filter responses over
the superpixel region. Our filters include the 17-dimensional “texton” filter [2],
13-dimensional dense HOG [18, 19], and 4-connected LBP histograms [20]. We
also include the x- and y-location of the superpixel and its size to provide spa-
tial context, and the entropy of each RGB color channel to provide a further
measure of texture. To construct xu we combine these features with the mean
and standard deviation of the filter responses from neighboring regions at each
of the four compass directions. This gives 510 features for each superpixel. Note
that this is much smaller than the feature vectors used in other superpixel-based
nearest neighbor methods (e.g., [6]).1

During metric learning and image annotation we require superpixel labels
yu ∈ {1, . . . , C}. These are generated from ground truth pixel labels by com-
puting the proportion of each class label within the superpixel. This gives an
empirical probability estimate P̂u(y). Most superpixels only contain pixels with
the same label but some larger superpixels can have mixed labels. When a single
hard label for superpixel u is required we take it as yu = argmaxy P̂u(y).

1 We provide full source code for our method including superpixel generation, feature
calculation, graph construction, metric learning, and label transfer as part of the
Darwin software package [21].
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3.2 Building the Superpixel Graph

For finding nearest neighbor matches quickly we construct a graph over super-
pixels. Our graph is similar to the PatchMatchGraph proposed by Gould
and Zhang [8], which uses ideas from Barnes et al. [15] for leveraging existing
matches to find better ones. Formally, let G = 〈V, E〉 be a graph with nodes V
and edges E . Each node u ∈ V represents a superpixel and each directed edge
(u, v) ∈ E represents a match from superpixel u to superpixel v. Note that we
do not require superpixel v to also match with u.

A weight associated with each edge (u, v) represents the cost of matching u

to v. We define this cost to be the (generalized) distance between the feature
vectors describing the two superpixels:

dM (u, v) = (xu − xv)
TM(xu − xv) (1)

where xu and xv are the feature vectors associated with superpixels u and v,
respectively, and M = LLT � 0 is a positive semi-definite matrix that param-
eterizes the metric. When M = I the metric is the Euclidean norm, and when
M = Σ̂−1 the metric is the Mahalanobis distance, where Σ̂−1 is the inverse
covariance matrix of the data.

The set of nodes adjacent to node u in the graph are Nu = {v : (u, v) ∈ E}.
If the corresponding superpixels are those closest, in feature space, to u out
of all v ∈ V then Nu is the set of exact nearest neighbors. Thus to find the
set of k nearest neighbors for all superpixels u we need to solve the following
optimization problem over the set of edges in the graph.

minimizeE
∑

(u,v)∈E
dM (u, v)

subject to ∀u ∈ V : deg(u) = k

∀(u, v) ∈ E : img(u) 6= img(v)
∀(u, v), (u,w) ∈ E : img(v) 6= img(w)

(2)

where we constrain the out degree of each node to k and denote such a graph
by Gk. Furthermore, since we are interested in using our graph for label transfer
there is no use in matching a superpixel to another one within the same image.
Thus we add the constraint img(u) 6= img(v), meaning superpixels u and v

cannot come from the same image. Finally, as in Gould and Zhang [8] we would
like to find a diverse set of matches and so restrict each superpixel to matching
at most one superpixel from any single image. Consequently we are guaranteed
that each superpixel matches to superpixels from k different images. This is
encoded by the last constraint.

Equation 2 is a hard optimization problem since we are minimizing over the
discrete set of edges in the graph. Therefore, we perform approximate optimiza-
tion via a move-making algorithm that we describe below. Since finding nearest
neighbors requires many distance computations we can accelerate the search by
first transforming the features as x′ = LT

x so that dM (u, v) = ‖x′
u − x

′
v‖

2.
Our overall algorithm for building a superpixel graph as described above is

summarized in Algorithm 1.
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Algorithm 1 Build Superpixel Graph.

1: input training images (and labels) and k
2: generate superpixels V = {u}
3: compute superpixel features {xu} and labels {yu}
4: define feature transform matrix

L =















I euclidean
diag (1/σi) whitened

Σ−1/2 mahalanobis
LMNNk({xu}, {yu}) learned (see §3.3)

5: transform features ∀u ∈ V, x′
u ← LT

xu

6: initialize superpixel graph Gk = 〈V, E〉 on features x′

7: repeat

8: attempt search moves for each u ∈ V
9: until convergence
10: return graph Gk and feature transform matrix LT

Move Making Optimization Our search moves are motivated by the Patch-
Match algorithm of Barnes et al. [15, 14]. We begin by initializing the graph
with random edges that honor the constraints of Equation 2, i.e., each node has
exactly k outgoing edges and no two edges emanating from a node terminate at
nodes belonging to the same image. We then iterate over a sequence of search
moves to incrementally improve the objective. We terminate after a fixed number
of iterations or when the objective value (i.e., graph structure) does not change
after attempting all moves.

Briefly, each move evaluates a set of candidate matches for one or more super-
pixels. These manifest as changes to the graph structure. Consider a candidate
match v for superpixel u. To decide whether or not to add the edge (u, v) to
the graph we examine the current outgoing edges from u. If one of these edges,
say (u,w), points to a superpixel from the same image as v and if dM (u, v) is
smaller than dM (u,w) we replace (u,w) with (u, v). Now, if none of the current
outgoing edges from u point to a superpixel from the same image as v then we
replace the highest cost outgoing edge with (u, v) if it has a smaller cost. This
local update rule ensures that the objective of Equation 2 is non-increasing and
the constraints are always satisfied.

An key aspect of our moves is that they are context enriched and encourage
spatially coherent matches. That is, they are not simply based on local superpixel
feature similarity. Nevertheless the moves can be computed in parallel for each
superpixel u. This is important for scaling to larger image datasets as we progress
towards solving the scene understanding challenge.

Exhaustive Search. The exhaustive search move is a naive move that finds the
best k matches for a given superpixel u by comparing it to all superpixels in all
other images. This is computationally expensive so we only apply it to a small
number of superpixels per iteration. We randomly choose the superpixels from a
distribution weighted by the cost of the current matches for each superpixels—
that is, we are more likely to sample a superpixel that currently has bad matches
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than a superpixel that already has good ones. Our hope is that this will seed the
graph with some very good edges that other search moves can exploit.

Random Projection. Motivated by locality-sensitive hashing (LSH) [22], the ran-
dom projection move uses the fact that it is much easier to find nearest neighbors
in a one-dimensional space than an n-dimensional space. Moreover, points close
to each other in n dimensions will remain close to each other when projected
onto a line. Of course, points that are distant may also end up close on the
line. Nevertheless, the move is effective for finding some good matches especially
during early move making iterations.

Concretely, we choose a random direction z in the n-dimensional feature
space. We then project the feature vector for each superpixel onto this direction
giving z

T
xu ∈ R. Sorting by these values we can easily find nearby superpixels

in direction z (not from the same image). We compute the distance between the
superpixels in the full n-dimensional space with those within a fixed horizon h

along direction z and perform the update rule described above.

Local Search and Propagate. Local search and propagate moves exploit image
smoothness. For local search we consider candidate matches from the image
neighborhood of the current match—that is, for edge (u, v) ∈ E we consider
all superpixels adjacent to v in the image. For the propagation move we con-
sider candidate matches where both superpixels are image-neighbors of a current
match—that is, given an edge (u, v) ∈ E we consider the match (u′, v′) where u′

and v′ are superpixels adjacent to u and v in their respective images.

Enrichment. The last moves are the forward and inverse enrichment moves,
which leverage properties of our graph Gk. The forward enrichment move takes
pairs of edges (u, v) and (v, w), and considers adding the candidate edge (u,w) to
the graph. The inverse enrichment move takes an edge (u, v) and consider adding
the reverse edge (v, u) to the graph. Both the forward and inverse enrichment
moves tend to rapidly spread good matches across the graph.

3.3 Distance Metric Learning

As discussed above, it is important that our distance metric puts semantically
similar superpixels closer than semantically different ones. However, the distance
metric only has access to the observed superpixel features not their labels. There
is no a priori guarantee that superpixel with similar features have the same cate-
gory label since this is highly dependent on the features chosen and their relative
scaling. Thus we need to learn a metric with the desired property that super-
pixels of the same label are clustered together. We do so using a variant of the
large margin nearest neighbor (LMNN) algorithm of Weinberger and Saul [16].

Formally, let N+
u ⊆ {v ∈ V : yv = yu} with |N+

u | = k be the set of target
superpixels within the neighborhood set of u, and let N−

u = {w ∈ V : yw 6= yu}
be the set of so-called imposter superpixels with label differing from that of u. We
wish to learn a metric so that all v ∈ N+

u are closer to u than any w ∈ N−
u . The



8 S. Gould, J. Zhao, X. He, and Y. Zhang

large margin nearest neighbor algorithm aims to find such a metric by solving
the following convex optimization problem

minimizeM
∑

uv dM (u, v) + C
∑

uvw ξuvw
subject to ∀uvw : dM (u,w)− dM (u, v) ≥ 1− ξuvw

ξuvw ≥ 0
M � 0

(3)

where uv iterates over all u ∈ V and v ∈ N+
u , and uvw iterates over all u ∈ V,

v ∈ N+
u and w ∈ N−

u . Here C > 0 trades off regularization of M with the margin
constraint. The problem is a positive semi-definite program which we solve by
the subgradient method on L (see Appendix A).

Our method differs from the implementation of Weinberger and Saul [16] in
that the target and imposter nearest neighbors are chosen to satisfy the con-
straints of Equation 2. This is important because we wish to rule out adjacent
superpixels in the same image as target nearest neighbors since these are un-
helpful for label transfer. Given an annotated training set and initial distance
metric M we run our graph construction algorithm using the following two label-
augmented distance functions

d+M (u, v) =

{

dM (u, v) if yu = yv
∞ otherwise

and d−M (u, v) =

{

dM (u, v) if yu 6= yv
∞ otherwise

(4)

to find N+
u and N−

u , respectively. Specifically, the edges in the graph constructed
using the first metric contain only target nearest neighbors and the edges in
the graph constructed using the second metric contain only imposter nearest
neighbors. We then iterate between learning the metric and refining the graph
edges based on the newly learned metric, thus giving a principled way of learning
the distance metric in our context-enriched nearest neighbor graph.

3.4 Label Transfer

The superpixel graph provides a simple mechanism for performing label transfer
for semantic segmentation. First we build a superpixel graph on a set of training
images. Then for each novel image, we introduce the image to the graph and
run a small number of move-making iterations (50 in our experiments) with the
existing edges fixed. We then transfer labels in the following way.

For each pixel p in the image we construct a distribution Pp(yp | G) over
labels by considering all superpixels u that contain p. Formally, we have

Pp(y | G) ∝
∑

u∼p

∑

v:(u,v)∈E

λuvP̂v(y) (5)

where u ∼ p indicates the that pixel p is in superpixel u, and P̂v(y) is the
empirical distribution over labels for superpixel v as described in Section 3.1.
Here the term λuv ≥ 0 controls the relative weight for each matching superpixel.
In our work we set λuv to the inverse rank of v in the sorted list of nearest
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neighbors for u. Thus the closest match gets a weight of one, the next closest
match a weight of one-half, etc. The inferred label for pixel p is then computed
as y⋆p = argmaxy Pp(y | G).

4 Experimental Results

We conduct extensive experiments on four different scene understanding datasets:

– The Polo dataset [23] is a 6-class dataset comprising images related to the
sport of polo. The dataset contains 317 unique images divided into a pre-
defined training set of 80 images and test set of 237 images.2

– The MSRC dataset [24, 2] is a 21-class dataset consisting of a large variety
of images.3 The dataset contains 591 total images divided into a pre-defined
training set of 276 images, validation set of 59 images, and evaluation (test)
set of 256 images. We combine training and validation for our experiments.

– The Stanford Background Dataset [25] is an 8-class dataset consisting of 715
images of rural, urban and harbor scenes. Results in the literature report on
a training set of size 572 images and test set of 143 images. However, a
standard split is not provided.

– The SIFT Flow dataset [9] is a very large 33-class dataset. It consists of 2688
images divided into a pre-defined training set of 2488 images and test set of
200 images. While there are many classes only a few of them dominate.

In all experiments we report the average pixelwise accuracy on the set of
test images. We also report the pixelwise accuracy averaged by class. Unless
otherwise stated we set the parameters of our over-segmentation algorithm to
generate five different sets of superpixels ranging in size from approximately 576
down to 16 superpixels per image.

Efficacy of Search Moves. We first examine the effectiveness of our search moves
in constructing a superpixel graph. Figure 2 shows the objective value of Equa-
tion 2 as a function of number of iterations for different search strategies. Here
we use the subset of training images from the MSRC dataset and do not consider
labeling accuracy. The results lead to three interesting observations. First, the
objective drops rapidly in the first few iterations with only small improvements
in the objective occurring after about 5 or so iterations. Second, the exhaustive
search move helps very little in terms of the global objective. This is not surpris-
ing given that this move only affects a small number of superpixels. Nevertheless,
the move is cheap to compute (on a single superpixel) and does provide a small
numerical improvement (barely noticeable in the plots).

The third observation is that propagate, local search, and enrichment moves
when used on their own all converge very quickly to a local optimum. However,

2 We remove the three images from the test set that originally appeared in both
training and test sets in [23].

3 The dataset actually contains 23 classes but standard practice is to remove the
“horse” and “mountain” class due to their low occurrence.
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 all moves on
propagation off
local search off
rand. proj. off
enrichment off
exhaustive off

all moves on
propagation on
local search on
rand. proj. on
enrichment on
exhaustive on

(a) (b) (c) (d)

Fig. 2. Objective value as a function of number of iterations for different search strate-
gies: (a) all-but-one strategies from initialization for 10 iterations; (b) all-but-one strate-
gies, initialization not shown, to 1000 iterations; (c) only-one strategy from initializa-
tion for 10 iterations; (d) only-one strategy, initialization not shown, to 1000 iterations.
Note different vertical scale for (b).

with the other moves they are effective at accelerating the search. Random pro-
jection, propagate, and enrichment are all very powerful moves in reducing the
objective value, and hence rapidly finding good superpixel matches. This is be-
cause these moves exploit the structure of the feature space (random projection),
structure of images (propagate), and structure of the graph (enrichment).

Results on Standard Datasets. Our main interest is semantic segmentation ac-
curacy. In this experiment we construct a superpixel graph Gk over the training
set of images using Euclidean distance, diagonal Mahalanobis distance, and the
distance metric learned by the large margin nearest neighbor algorithm (see
Section 3.3). We then introduce the test images into the graph and evaluate
label transfer on these images. Note that labels are only transferred from the
training set images to the test set images. Figure 3 shows performance on each
dataset as a function of the number of nearest neighbors k. Results for k = 5
are listed in Table 1. We conducted repeated runs of our method with different
random seeds and found the results varied by less than 0.5%. We also include
in the table results obtained by replacing our search method with FLANN [26]
(for the learned distance metric), and a comparison to the conceptually similar
PatchMatchGraph approach [8] as well as current state-of-the-art methods.

The results show some interesting trends. First, the learned distance metric
outperforms the Euclidean norm and Mahalanobis distance, as expected. More-
over, the results are competitive with the state-of-the-art. For example, Ladicky
et al. [27] report 87.0% (78.0%) on the MSRC dataset and Tighe and Lazebnik [5]
achieve 78.6% (39.2%) on the SIFT Flow dataset compared to our 84.5% (73.8%)
and 78.4% (25.7%), respectively. Our class-averaged pixelwise accuracy on the
SIFT Flow dataset is low, which we attribute in part to our equal weighting of
category labels. The state-of-the-art approach employ per-exemplar detectors to
boost performance on less abundant classes, and it would be interesting to see
if such an approach could improve our results too.
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Euclidean Mahal. Learned FLANN [26] PMG [8] S-of-the-A

Polo 86.1 (71.0) 89.4 (80.1) 91.8 (85.9) 91.7 (85.8) 94.2 (91.7) 94.2 (91.7) [8]
MSRC 74.3 (61.4) 79.6 (68.2) 84.5 (73.8) 82.3 (70.4) 79.0 (72.8) 87.0 (78.0) [27]
Stanford 74.8 (64.4) 76.2 (66.0) 79.3 (69.4) 78.8 (69.1) 73.4 (62.0) 82.9 (74.5) [28]
SIFT Flow 74.5 (21.6) 75.9 (22.7) 78.4 (25.7) 77.5 (24.2) 65.2 (14.9) 78.6 (39.2) [5]

Table 1. Quantitative experimental results showing percentage pixelwise accuracy
and percentage class-averaged accuracy in parentheses on test set images for different
datasets at k = 5 nearest neighbors per superpixel. Table includes results from (i)
replacing our search algorithm with FLANN [26] using the learned metric, (ii) the
PatchMatchGraph approach [8], and (iii) state-of-the-art methods.
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Fig. 3. Pixelwise semantic segmentation accuracy as a function of the number of nearest
neighbors. Shown are global averaged (solid lines) and class averaged (dashed lines)
results for different distance metrics.

Second, it is clear from Figure 3 that accuracy saturates at about five nearest
neighbors. Interestingly there is a drop in class-averaged accuracy (dashed line)
for all metrics as we increase the number of nearest neighbors. This is most
pronounced in the Polo dataset. We surmise that the drop is due to the class
imbalance in the datasets—as k increases it is more likely that instances with
abundant class labels appear in the nearest neighbor set adversely affecting the
less abundant classes. The effect can also be seen to a lesser extent for the learned
metric in the global-averaged results (solid line). We attribute this to the fact
that satisfying the margin constraints is more difficult with larger k and that
some classes only appear in a small number of images. For example, only 24
images in the MSRC dataset contain the class “cat”.

A handful of qualitative results are shown in Figure 5. Observe that the
annotations are quite blocky in parts. This is an artifact of using superpixels
as our base representation. Note, however, we have not performed any post
processing on the transferred labels. The application of a Markov random field
(MRF) or bilateral filter to the results should remove many of these artifacts,
but that is not the focus of our investigation here.

Despite the block artifacts, the annotations are generally very good. For
example, the horses in the Polo dataset can be reliably detected at different
scales, and in the SIFT Flow dataset we are able to correctly label quite difficult
categories such as the sidewalk in the bottom right example. Note, however, that
our method uses only local context and sometimes makes mistakes. The park
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Fig. 4. Results on the MSRC dataset showing global and class averaged accuracy
for a single over-segmentation of the image as a function of (approximate) number of
superpixels. Solid and dashed lines show performance from using all over-segmentations
for global and class averaged accuracy, respectively.

bench in the bottom right MSRC example is partially mislabelled as building
due to similarity in appearance. The bottom left SIFT Flow example also shows
confusion in the transferred labels due to the unusual viewpoint of the scene.
We believe that these types of mistakes can be corrected with larger datasets.

Effect of Superpixel Size. Next we evaluate the effect of superpixel size on the
label transfer results. Here we generate six sets of over-segmentations where we
choose the parameters to give between approximately 1024 superpixels to ap-
proximately 16 superpixels per image. We build a superpixel graph with learned
distance metric on each set of over-segmentations and apply label transfer as
described above. Figure 4 shows results on the MSRC dataset. Other datasets
exhibit similar behavior.

The results clearly show that smaller superpixels (more per image) give
better accuracy than larger ones (less per image). However, combining multi-
ple over-segmentations leads to even better performance than any single over-
segmentation. Moreover, beyond about 289 superpixels per image the accuracy
tapers off. Note that in our experiments with combined over-segmentations we
did not include the set of 1024 superpixels.

Effect of Dataset Size. An interesting question for all machine learning ap-
proaches is whether performance at the task is limited by the dataset size. The
nature of our algorithm allows us to go some way in experimentally answering
this question. Here we build a superpixel graph over all images in the dataset
and perform label transfer, one at a time, to each image in the test set. This is
akin to leave-one-out cross-validation, which is expensive to perform on meth-
ods with long training phases but easy to do with our approach. To keep our
analysis compatible with the previous experiments we use the same distance
metric learned on the training set of images with k set to 5 and report average
accuracies only on the test set images. Results are shown in Table 2.

For the SIFT Flow dataset and the Stanford Background dataset the effect
of increased dataset size is negligible. This can be explained by the already
large dataset size in the case of SIFT Flow and the dominance of easy to label
background classes in the Stanford Background dataset. More interesting are
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Standard Large ∆

Polo [23] 91.8 (85.9) 92.5 (87.4) 0.7 (1.5)
MSRC [24, 2] 84.5 (73.8) 86.3 (76.6) 1.8 (2.8)
Stanford [25] 79.3 (69.4) 79.6 (69.4) 0.3 (0.0)
SIFT Flow [9] 78.4 (25.7) 78.4 (25.4) 0.0 (-0.3)

Table 2. Quantitative results showing percentage pixelwise accuracy and percentage
class-averaged accuracy on test set images for k = 5 nearest neighbors with matching
against training set images only (standard) versus matching against entire dataset
(large). The last column shows the improvement. Note that the distance metric is
learned using the training images only.

the results for the other two datasets. The Polo dataset is a relatively easy
dataset with only a small number of categories. However, the training set is
small and accuracy is improved when additional images are available at test
time. The MSRC dataset shows the greatest improvement in accuracy with the
larger dataset, which can be explained by the diversity and difficulty of the
classes in the MSRC dataset and the relatively small training set size. These
results confirm the intuition that, at least for nearest neighbor techniques, larger
datasets are required for recognizing a large and diverse set of classes.

Running Time. Finally, we evaluate the running time of the different steps in our
algorithm. All running times were measured on a 3.4GHz Intel Xeon processor
with eight cores. Most of the steps are very fast. It takes approximately 0.5s per
image to compute the superpixels, 0.3s per image to compute the features, 1.5s
per image to build the superpixel graph on the set of training images (for k = 5),
and 0.4s per image to perform label transfer. Thus at test time it takes around
2.8s to label a novel image. The time depends on the number of superpixels
in the test image but is robust to the size of the graph—only the cost of the
random projection move scales with graph size but its overhead is small as long
as we pre-compute the projections. Our graphs range in size from 320 thousand
nodes for the Polo dataset to 2.6 million for the SIFT Flow dataset. Replacing
our nearest neighbor search with FLANN reduced processing time per image
to 1.2s but accuracy suffers (see Table 1). By far the most expensive step was
the metric learning, taking over an hour. Fortunately, this step only needs to be
done during training and is quick to apply on each test instance.

5 Discussion and Future Work

This paper has presented a novel approach to semantic segmentation by label
transfer. The approach involves two key contribution. The first is the proposal of
a method for rapidly building a graph over superpixels that can be thought of as
an approximate nearest neighbor algorithm that is context enriched. The second
is the inclusion of a learning step to provide a meaningful metric, which relates
observed features to unobservable semantics. We performed extensive experi-
ments on four standard datasets and showed that our approach is competitive
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(a) Polo (b) MSRC

(c) Stanford (d) SIFT Flow

Fig. 5. Example annotation results on four standard semantic segmentation datasets
using our superpixel graph label transfer method. Best viewed in color.

with state-of-the-art. Nevertheless, there is still room for improvement and we
are excited about future opportunities suggested by our work.

For example, we would like to investigate learning a non-linear distance met-
ric, which we believe would lead to even better results. This may be achieved, for
example, via a kernelized metric learning approach or deep feature architecture
(e.g., [29]). More interesting would be combining the metric learning with the
superpixel graph construction, which may improve the efficiency of the metric
learning algorithm and also facilitate adaptive metric learning on a long-lived
and evolving superpixel graph. As dataset sizes grow we believe that nearest
neighbor approaches using techniques such as those discussed in this paper will
become more and more relevant for scene understanding.

A Derivation of Subgradient Update on L

Eliminating ξuvw we write Eqn. 3 as the minimization over M = LLT � 0 of
∑

uv

dM (u, v) + C
∑

uvw

[

1− dM (u,w) + dM (u, v)
]

+

(6)

where [·]
+
= max{·, 0}. Now let A ⊆ V ×V ×V be the set of uvw triplets with violated

margin constraints, i.e., where dM (u,w)−dM (u, v) < 1 for v ∈ N+
u and w ∈ N−

u . Then

g =
∑

uv

∇LdM (u, v) + C
∑

uvw∈A

(

∇LdM (u, v)−∇LdM (u,w)
)

is a subgradient of Equation 6, where ∇LdM (u, v) = 2LT (xu − xv)(xu − xv)
T .
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