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Abstract. The goal of this paper is to provide an accurate pixel-level
segmentation of a deformable foreground object in an image. We com-
bine state-of-the-art local image segmentation techniques with a global
object-specific contour model to form a coherent energy function over
the outline of the object and the pixels inside it. The energy function
includes terms from a variant of the TextonBoost method, which labels
each pixel as either foreground or background. It also includes terms
over landmark points from a LOOPS model [I], which combines global
object shape with landmark-specific detectors. We allow the pixel-level
segmentation and object outline to inform each other through energy
potentials so that they form a coherent object segmentation with glob-
ally consistent shape and appearance. We introduce an inference method
to optimize this energy that proposes moves within the complex energy
space based on multiple initial oversegmentations of the entire image.
We show that this method achieves state-of-the-art results in precisely
segmenting articulated objects in cluttered natural scenes.

1 Introduction

The task of figure-ground segmentation is well established in the computer vision
literature. There have generally been two types of approaches to this problem:
outline-based methods (e.g., [2BJ45]) that denote the foreground by the inte-
rior of an object outline; and pixel-level foreground annotation (e.g., [67U8])
that label each pixel directly as either foreground or background. In this paper
we combine these two approaches to achieve a superior and more refined ob-
ject segmentation. Our method provides both an object contour, which exploits
object-level information (such as shape), and a pixel annotation, which exploits
pixel-level feature information (such as color and texture). We leverage this com-
plementary relationship to improve the performance of each of these elements
over using them in isolation.

We do so through two main contributions: The first, presented in Section [
is the combination of the elements from two standard models for localization
(contour) and segmentation into a unified energy model that can be precisely
registered to a foreground object in a scene. Our model combines existing energy
terms for each separate task ([1l4]) with an interaction term that encourages
the contour and pixel-level segmentation to agree. Specifically, we introduce
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(d)

Fig. 1. Contour and Segmentation. (a) Independent LOOPS outline. (b) Independent
TextonBoost segmentation. (c) Joint model outline. (d) Joint model segmentation.

landmark-segment masks that capture the local shape of the foreground object in
the vicinity of a single landmark or pair of landmarks along the object’s outline.
Importantly, the masks are oriented and scaled to be consistent with the full
object contour. This allows for a refined segmentation based on the articulated
contour, which is not possible using a single global mask for the entire object. We
also use the contour to construct an image-specific appearance model, which has
been used successfully in other settings, further tying the two models. Example
output for standard independent contour and segmentation models are shown
in Figure[Il(a) and (b), respectively. While each task produces reasonable initial
results, our unified model leads to much improved figure-ground segmentation
results, as shown in Figure [I(c) and (d).

Our second main contribution, presented in Section [G] is a method for opti-
mizing the complex joint energy by proposing sets of moves within the entire
search space, which is intractable to navigate in full. We build on the techniques
of Gould et al. [9] by iteratively using the novel properties of our model to
restrict the search space and efficiently finding a good solution within that sub-
space. Furthermore, this procedure lends itself to model-aware dynamic updates
of the image-specific appearance model, which provides strong boosts in perfor-
mance. In Section [, we present experimental results to validate our approach,
and show that we achieve both localized outlines and pixel-level segmentations
that outperform state-of-the-art methods.

2 Related Work

Among successful object-specific, contour-based methods for object outlining
are Ferrari et al. [5] (kAS) and Heitz et al. [I] (LOOPS). Our experimental
results outperform both of these methods, and indeed we build on the latter
to produce more accurate outlines. Among pixel annotation methods, the OBJ
CUT method of Kumar et al. [7] and the method of Levin and Weiss [§] are
two examples that, like our method, exploit both high-level shape cues and low-
level features. They use these cues, however, in a strictly feed-forward manner to
produce a segmentation. Our method propagates information both ways between
the shape and pixel models, which results in a superior result for each one. Leibe
et al. [6] do include a backprojection step that refines initial hypotheses. They
do not, however, utilize a global model of object shape, nor do they produce a
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single coherent result — their soft output allows cows to have more or less than
four legs, for example.

Image-specific appearance models for object recognition have been used by
Winn and Jojic [10], Kumar et al. [7], and Ramanan [11], among others. Our
implementation learns this appearance with the help of a LOOPS model. This
not only provides a particularly strong cue for using the correct pixels, but also
allows us to use the properties of LOOPS to select those pixels carefully. As we
describe in Section Fl we use the contour model to rate our uncertainty over
different locations in the image, which allows us to learn the appearance only
over pixels about which we are confident.

Our work is most similar to Bray et al. [I2] and Chen et al. [I3], which both
combine a CRF-based segmentation model with an object model, as we do. The
differences between our approach and theirs highlight our contributions. Bray
et al. [I2] use a single distance function to relate the object skeleton to the
background segmentation. This is roughly equivalent to using masks as we do,
but in their case these masks are the same for each part of the object and are
restricted to the form of a distance function that does not capture outline detail.
Chen et al. [I3] use a single mask for the entire object, which is problematic
for articulated objects since it cannot account for multiple configurations. In-
deed, they report results on classes from Caltech 101 [I4] that have rigid shapes
and for which segmentation is easier than in cluttered scenes. In constrast, our
landmark-specific masks are different for each part of the object, have a general
form that can capture outline detail, and are learned from data to capture this
detail. This allows us to learn and preserve particular shapes in the segmentation
over different object parts such as the outline (and ears) of the head, even in the
presence of articulated skeletons such as those found in the Mammals dataset
[15], for which we report results. Furthermore, both [12] and [13] alternate be-
tween optimizing over the object and segmentation using coordinate ascent. We
present an efficient method for joint inference, which can avoid local minima
found in each task separately.

3 Localization and Segmentation Models

Our aim is to build a model that encompasses both the localization and the
segmentation task, and that incorporates the interactions between the two in
order to improve performance on each task. This model is specified by an energy
function ¥ that is an aggregation of individual energy terms over various compo-
nents of the model. In this section, we describe two approaches from the vision
literature for solving the two separate tasks, each of which yields individual en-
ergy terms. We describe how these tasks can be solved separately as baseline
methods, and in later sections we use these energy terms in our joint model. In
Section M we introduce an interaction from the localization component to the
segmentation component through image-specific features. In Section [l we in-
troduce landmark-segmentation masks that tie the two main model components
together in a bidirectional manner.
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3.1 Outline Localization

The recent LOOPS model of Heitz et al. [I] treats object localization as a land-
mark correspondence problem, the solution to which defines a piecewise-linear
contour around the object in an image. We describe this model throughout this
section. Formally, the task is to assign each landmark L; to the appropriate pixel
on the object’s outline. We denote the full assignment to all landmarks by L.

Registering the landmarks to a test image requires optimizing an energy func-
tion (L) over the landmark assignments. This energy function is composed
of two types of terms over the landmark assignments. The first is a singleton
feature-based term that predicts the location of a specific landmark from a set
of image features. We let wZL = <QZL , gbiL ), where gbiL is the response vector of a
boosted detector [I6] for landmark 4, and (-, -) denotes the dot-product between
the model parameters 87 and the landmark features ¢r.

The second term in ¥” is a global shape term that gives preference to the
landmarks forming a likely object shape. This term is a multivariate Gaussian
over all landmarks, which decomposes into pairwise terms:

1
L
055 =~

Q(Li — ) 25 Ly — ), (1)

where y; is the mean location of landmark ¢ and X is the covariance matrix that
relates the positions of all landmarks.

Figure [[(a) shows an example result of finding the optimal assignment over
the landmark variables of the entire landmark energy:

wH(L) = wy ZwiL—’_wQZ(sil:ja (2)
i i

where the weights w; and we determine the relative influence of each term. The
parameters and weights can all be learned from supervised data, and the energy
can be optimized approximately in isolation using max-product message passing
algorithms (see Section [d]).

3.2 Foreground Segmentation

We now turn to a standard technique for foreground-background segmentation.
This task amounts to assigning a variable Si for each image pixel k to be either
foreground (S; = 1) or background (S = 0). The full assignment to all pixels
is denoted by S. We use a variant of the TextonBoost algorithm [I7] to per-
form this task. Since the datasets we consider in Section [0 generally consist of a
single foreground object on a background that is comprised of several common
categories (such as grass, sky, and trees), we train a separate binary boosted
classifier for each of these classes. The outputs of these classifiers are used as
features for a logistic classifier that predicts whether each pixel is foreground.
We use a pairwise binary conditional Markov random field (CRF) over the pix-
els in the image, where the singleton potentials are represented by the logistic
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classifier and the pairwise potentials encourage neighboring pixels with a similar
appearance to have the same label.

The CRF for foreground segmentation represents an energy ¥*(S) over the
pixel assignments that consists of a singleton term wk and a pairwise term (5k I-
Given the outputs of the various boosted classifiers for each pixel k in feature
vectors ¢y, the first term takes the form ¢ = (65 ,¢7), where 5 is the set
of logistic regression weights (shared between all pixels) absoc1ated with the
assignment S = si. The pairwise term takes the form

_ lex—all3
5,5’[ = {SXP ( 2. ) , for (k,1) € N(Z) and Sy # S )

. b
otherwise

where A/(Z) is the set of neighboring pixels in image Z (in our implementation we
use 4-connected neighbors), ¢y is the vector of Lab color values at pixel &, || - ||3
is the Ly distance between such vectors, and ¢ is the mean such distance across
all neighboring pixels in the image. Note that the pairwise term is only non-
zero when neighboring labels that are not equal (i.e., at the boundary between
foreground and background), and thus penalizes neighboring pixels when their
labels are different and the contrast between them is low. The full segmentation
energy over S is given by

5 S)=w32w5+w425;§,1, (4)
% kol

where w3 and w4 weight the two terms. As with the landmark model, the clas-
sifiers and weights are learned from the labeled training set. The energy can be
optimized exactly in isolation using a graph cut [18] (see Section [@). Figure [i(b)
shows an example result for the image in Figure [Ii(a).

4 Image-Specific Appearance

Building an image-specific appearance model helps combat the fact that the vari-
ation across images in the appearance of both the object class and background
make it difficult or impossible to reliably separate the two. While the segmenta-
tion CRF models the fact that an object should have consistent appearance (at
least in neighboring pixels) through its pairwise terms, the singleton terms nev-
ertheless adhere to a single appearance model across the entire object class. We
therefore use the initial localized outline of the LOOPS model to construct an
image-specific appearance model to augment the class-level appearance model
within the segmentation CRF at test time.

Specifically, we build a naive Bayes classifier based on pixel color values that
will distinguish between the object in the image and the background particular
to the image. To estimate the parameters of the classifier, we split the image
pixels, each of which carries a class label of either foreground or background
based on the contour estimate, into three mutually-exclusive sets: E (excluded),
C (certain pixels), and U (uncertain pixels). Background pixels that are far
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Fig. 2. Local appearance features. (a,d) Response maps of class-level boosted classifiers
for deer. (b,e) Initial LOOPS outlines. Highlighted pixels are those chosen as “confi-
dent” training examples for the local appearance. (c,f) Response maps of the resulting
appearance model.

away from the border of the localized contour are neither useful for training
nor important to consider relabeling, and hence belong in E. Certain pixels, C,
are non-excluded pixels (either foreground or background) for which the contour
model is sufficiently confident about their label (see below). The remaining pixels
belong in U. We train the naive Bayes model over only the pixels in C and U as
follows: (1) we seed the class labels for the pixels in C based on whether the pixel
is inside or outside the contour, (2) leave the class labels for U hidden, and (3) use
the EM algorithm [T9] both to learn an appearance model for the foreground and
background, and to reinfer the class labels. The log of the posterior probability
of each pixel being the foreground is then used as a feature — alongside the
boosted classifier outputs (see Section ) — for the logistic classifier component
of the segmentation CRF, which is retrained.

To determine which pixels belong in C, we note that we may be more confi-
dent about certain parts of the object than others; for example, the localization
method may be certain that it has localized the torso of the deer, but less cer-
tain about the particular placement of the legs. We determine the reliability of
each landmark separately by measuring how likely the localization method is to
have properly assigned that landmark. Let o; be the standard deviation of the
distance of the localized landmark L; to the true outline on the training data.
We compute a signed distance Dist(k) (also used in Section [ of each pixel in
the test image to the localized outline, where the sign is positive if the pixel is
inside the contour and negative otherwise. Pixel k belongs to C if |Dist(k)| > o;
for the closest landmark i. Note that computing this score, as well as retraining
the CRF’s logistic classifier, requires running the localization method on the
training data. Figure [2 shows the responses of this naive Bayes classifier on a
test image. In the top row, despite the imperfect LOOPS outline, the learned
appearance model is still strong. However, as shown in the bottom row, even
with a good LOOPS outline, the local appearance is not always a perfect fea-
ture. In Section [7, we analyze the results of augmenting the segmentation task
in this way, which we refer to as ImgSpec.
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5 The Contour-Pixel Model

We now present a unification of the contour and pixel models in which we incor-
porate more information than pixel appearance. Importantly, this information
flows both ways. There is a natural agreement between localization and segmen-
tation in that the pixels inside the contour outlined by the landmarks L should
be labeled as foreground, and those outside should be labeled as background.

A naive way to combine the two signals is simply to merge the segmentation
CRF’s probability over each Sj with that pixel’s signed distance to the localized
contour. Let Py(Sk) be the posterior probability over Sy according to the CRF.
We define our new probability P;(Sg) to be the product of Py(Sk) and the
sigmoid of the signed distance Dist(k) (defined in Section []), normalized to sum
to one.

As we show in Section [l combining the models in this way (which we call
Product) does not lead to an improvement in performance. To fully exploit
these parallel signals, rather than post-processing their outputs, we would prefer
to allow each method to reoptimize its own variables in light of information
propagated from the other. We now describe a model that unifies the two tasks
in a single coherent model.

We introduce a new energy term ¥ (L,S) that encourages agreement be-
tween landmarks L and segmentation S. Since a LOOPS landmark is a consis-
tently located element of the object’s shape, the nearby pixel annotations should
follow a pattern particular to that part of the object. For example, the pixels
above the landmark corresponding to the stomach will generally belong to the
foreground, while those below it will generally be part of the background. For
each landmark L;, we build an “annotation mask” M; of size N; x Nj that is
a grid whose (a, b)-th entry indicates the probability that a pixel offset by (a, )
from the location of L; is a foreground pixel. Each mask is learned from training
images by aggregating masks of size N7 around the groundtruth landmark loca-
tion in each training image, and the learned mask is simply the average of each
of these masks. Examples of landmark masks near the nose and leg of a deer are
shown in Figure Bl The energy term associated with this pairwise mask is

ple = Silog Mi(a,b) + (1 — Si)log(1 — Mi(a,b)). (5)

If the offset (a,b) between landmark ¢ and pixel k extends beyond the size of
the mask (1\271 ), then there is no pairwise energy term that relates L; to Si. This
potential allows information to propagate between the contour model and the
segmentation model. A landmark L; with a high probability of appearing at a
given location will encourage the surrounding pixels to be annotated according
to the mask. This information can then propagate to the rest of the image pixels
via WS, Conversely, a pattern fitting the mask appearing in the pixel labels
encourages the landmark to assign itself in the appropriate nearby location, and
this can influence the rest of the landmarks via ¥’.

In addition to masks that capture the relationship between single landmarks
and their surrounding pixels, we introduce masks MZ’ ; that tie neighboring pairs



A Unified Contour-Pixel Model for Figure-Ground Segmentation 345

Fig. 3. Landmark-segment masks. The green arrows indicate the mask associated with
various landmarks, which are marked as blue dots. The upper two masks are pairwise
masks between neighboring landmarks, and are reoriented and rescaled appropriately
— the red arrow indicates the “inside” direction of the mask.

of landmarks L; and L; jointly to their surrounding pixels. These masks are
similar to M, but account for different orientations of consecutive landmarks.
Each adjacent pair of landmarks L;, L; is associated with an oriented and scaled
mask MZ’j whose (a,b)-th entry is the foreground probability of the pixel offset
by (¢, d) from the midpoint between L; and L;, where (c, d) is found by rotating
the vector (a,b) by the angle of the segment L; — L; and dividing by the length
of that segment. We learn these pairwise masks from training data similar to the
singleton masks above. The energy term associated with this mask is
wZLJSZ = Sy log Mj ;(a,b) + (1 — Sg)log(1 — Mj ;(a,b)). (6)

Figure [B] shows an example of a such a mask for consecutive landmarks along
one of the deer’s hind legs. It clearly indicates that, regardless of the orientation
of the leg, pixels that are on the “inside” of the line segment on the neck are
more likely to be foreground.

Now that we have created the energy terms that tie together the variables of
our model, we define the energy of a full variable assignment (S,L) given the
image as

W= w - V'(S,L), (7)

where t ranges over the types of energy terms. While weight ratios learned for
each model are kept fixed, the relative weights for all terms are learned using
cross-validation on the training set. Note that ¥ is composed of at most triple-
wise terms between the variables S and L. Having defined this CRF over S, L,
and input image Z, we seek the single joint assignment to S and L that minimizes
the energy. That is, the MAP solution is (S*,L*) = argming p, 3, ws - ¥*(S, L).

6 Superpixel-Based Inference

6.1 Inference Challenges

We now consider the properties of our coherent energy function in deciding how
to optimize it. The pixel annotation terms (¥“) can be optimized exactly using



346 B. Packer, S. Gould, and D. Koller

a graph cut [18] if considered independently, since there are regular pairwise
terms between binary-valued variables. However, the landmark location terms
(W%) cannot be optimized exactly even if considered independently, and in fact
performing inference with these terms proves to be a challenge. To complicate
matters, we have pairwise terms between pixels and landmarks (which can take
many values) and triplewise terms between pixels and pairs of landmarks. A
model with 50 landmarks in a 300 x 200 pixel image, for example, would have
3 million pairwise terms and 150 million triplewise terms. Thus, there is a great
deal of interconnectivity between the variables, and even constructing a graph
to represent the full joint energy may be intractable.

Coordinate Descent Baseline

One straightforward approach to inference would be to simply perform coordi-
nate descent on the full energy. This can be done by first optimizing ¥% over
L, then folding the potentials in ¥ evaluated at the fixed L into the sin-
gleton terms 1/);3 , then optimizing ¥* separately over S (which, again, may be
done exactly and efficiently), then folding &% evaluated at the fixed S into the
singleton potentials of W', and iterating back and forth in this manner. As we
show in Section [7 this approach (which we call Coord) succeeds in sharing the
signals between the two energies, but is susceptible to local minima and does
not allow the exploration of the full variable space.

6.2 Joint Inference

To overcome these inference issues, we develop a search strategy for dealing with
MAP inference in the face of such a complex and large search space by exploring
dynamically constructed discrete subspaces. We then use a final refined stage,
intialized from the result of the discrete stage, that uses the full search space.

Our joint inference algorithm proceeds as follows. We begin with an initial
assignment to all of the variables, and then find a naturally defined and much
smaller subspace through which we can explore the energy function. This sub-
space is defined by a set of proposal moves from the current assignment to
new assignments to the variables. After performing inference within the simpler
subspace, if the new assignment achieves an improved energy (note that since
inference is not exact, we cannot guarantee that we have found the optimal as-
signment within the subspace), we keep the new assignment, and otherwise revert
to the previous assignment. We then construct a new subspace and repeat.

Constructing Search Subspaces

We choose a subspace for each iteration in two ways. The first stems from the
observation that groups of nearby pixels tend to have the same label, and the
relationship between landmarks and nearby pixels tends to be the same for entire
groups of pixels. We therefore divide the image into superpixels (using the mean-
shift segmentation algorithm [20]) and define our proposal moves over superpixel
regions. Specifically, given a starting assignment, the proposal moves assign all
pixels within a superpixel to either background, foreground, or their current
assignment. This approach is similar to the search strategy proposed by Gould
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et al. [9]. The inference problem can thus be recast in terms of region variables
R that can take on one of three values rather than individual pixel variables S
that can take on two values (foreground or background).

To avoid committing to any single oversegmentation of image, we use a differ-
ent oversegmentation (by varying the paramaters of the mean-shift algorithm)
in each iteration. Each oversegmentation proposes a different set of moves within
the space of pixel assignments. For example, an oversegmentation with a small
number of large superpixels might propose assigning every pixel in the torso of
the deer to the foreground, while a finer-grained oversegmentation might propose
refining the pixel assignments around the edge of the torso.

The second simplification of the search space is a restriction on the values
of the landmarks, and corresponds to the pruning proposed in Heitz et al. [I]:
Rather than consider all pixels as possible assignments for the contour land-
marks, we choose a small subset (of size K = 25) of likely pixels as candidates
in each round. Performing multiple rounds of inference, however, allows for the
flexibility of choosing candidates for each round in a more dynamic and so-
phisticated way. In each round, we choose the landmark candidates to be the
most likely pixels according to the singleton feature energy terms, subject to
two restrictions that vary by round. First, we require that the candidates lie
on a superpixel border (recall that the oversegmentations change each round).
Second, we restrict each landmark to fall within two standard deviations of its
mean location given the location of all other landmarks from the previous round
of inference. Since the joint model over all landmarks is a Gaussian, computing
the conditional Gaussian is straightforward. This restriction allows us to take
advantage of the global shape information as well as cues from previous rounds.
By restricting the search space in these two ways, for a 50-landmark model in
a 300 x 200 image that is split into 300 superpixels, the landmark search space
is reduced from 509990 to 50X and the segmentation task is reduced from a
binary problem over 60,000 variables to a ternary problem over 300 variables.

Inference Over Multiple Subspaces

Note that, although we construct a different inference model in each round, the
algorithm always optimizes a single, consistent energy function. What differs in
each round is the way in which the energy terms are combined and the set of
moves that may be taken.

Once we have constructed the simplified inference model over the search sub-
space, we use residual belief propagation (RBP) [21] to perform MAP inference.
The ability to do so efficiently depends on the important property of ¥ that
it is composed of at most triple-wise terms between the component variables
(the regions R and the landmarks L). Specifically, the decomposition of ¥’
presented in Section [B] uses only singleton and pairwise terms between the land-
marks L, and similarly the decomposition of ¥ uses only singleton and pairwise
terms between the pixel labels S, which translates into the same property over
the smaller set of region labels R. Finally, the landmark-pixel masks M result
in pairwise terms between a single landmark L; and a single region Ry, and
the oriented masks M’ result in triplewise terms between a pair of neighboring



348 B. Packer, S. Gould, and D. Koller

landmarks and a single region. Consequently, RBP is able to converge quickly to
a joint solution over all variables L and R. We experimented with other inference
algorithms, such as dual decomposition [22], which generally achieved the same
energy solutions as RBP.

Final Refined Stage

Once this iterative process has converged, we reintroduce the full landmark do-
main and perform a final refined inference step as in LOOPS, allowing the con-
tour landmarks to lie anywhere in the image. As a post-processing step, since
our model defines a closed contour over the foreground object, we set all pix-
els outside the contour (with a buffer of size 6 = 5 pixels) to be background.
Though this post-processing step operates outside of the framework of the uni-
fied energy, it is not a deficiency of the energy construction itself. It is necessary
to set pixels that are beyond the reach of the landmark masks to be part of the
background. In principle, if the mask sizes were large enough, this step would not
be necessary. However, the mask sizes must be kept reasonably small to avoid an
overly dense connectivity among the variables. As a result, there is no term in
the energy to discourage these faraway pixels from being set to the foreground.

7 Experimental Results

To validate our approach, we ran our method on several classes from the Mam-
mals [I5] and Caltech [14] datasets. For each class, we average over five random
folds of the data with 20 images for training and the remaining (20-50) for test-
ing. We obtained groundtruth segmentation labels using Amazon’s Mechanical
Turk to augment existing contour labels for these datasets.

Because our task involves both locating the object landmark points and the
annotated foreground-background segmentation, we present several metrics to
evaluate the success of our method. The first is the simple pixel accuracy of
the segmentation (percent of total pixels accurately labeled as foreground or
background compared to the groundtruth segmentation). The second measures
the accuracy of the precise contour implied by the annotated segmentation. We
take the gradient of both the assigned segmentation and the groundtruth seg-
mentation, dilate each by 5 pixels, and then compute the Jaccard similarity
(intersection divided by union) between the two. The third metric is the sym-
metric outline-to-outline root-mean-squared (RMS) distance between the outline
created by the assigned landmarks and the groundtruth outline.

The first baseline for comparison with our model is the Independent model
that separately considers the landmark points and the annotated segmentation.
That is, this baseline uses the implementations of TextonBoost and LOOPS in
isolation as described in Section[3] utilizing neither the image-specific appearance
features nor the landmark-segmentation masks in %5, We are thus comparing
to a standard method for segmentation as well as a state-of-the-art method
for landmark localization. For the ImgSpec baseline, specified in Section [ the
contour is used to learn the image-specific appearance, and the probability over S
according to the segmentation model is simply multiplied by a similar probability
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Table 1. Outlining and Segmentation Results. Best performance is in bold; multiple
results are in bold when the differences are statistically insignificant.

Pixel Accuracy Jaccard Similarity =~ RMS Distance

Indep ImgSpec Joint Indep ImgSpec Joint Indep Joint
bison 96.6 96.3 96.4 78.6 79.0 81.2 4.0 3.9
elephant 90.5 92.2 93.3 717 70.8 76.1 4.7 4.7
llama  89.7 89.4 93.0 61.8 64.1 73.4 6.4 5.3
rhino  91.0 94.0 95.1 64.5 73.3 75.7 4.7 4.4
deer 88.7 89.5 92.1 56.9 54.8 61.6 8.9 7.0
giraffe  89.9 92.0 92.6 62.0 64.9 65.8 6.4 6.7
airplane 92.3 96.3 96.6 60.8 74.7  74.6 4.2 4.0
bass 92.5 92.5 93.5 584 60.1 60.5 10.7 9.5
buddha 84.4 86.0 91.9 422 44.7 56.8 10.8 10.6
rooster 91.3 92.1 95.5 57.9 61.1 63.6 10.8 9.4

according to the landmark contour. We refer to our method of optimizing the full
energy ¥ jointly over all variables, as well as using the image-specific appearance,
as Joint in the results that follow. Though we do not show the results here, the
Product baseline from Section Bl did not outperform Independent.

The results for the classes considered are presented in Table [l Our Joint
method achieves a marked improvement over the Independent methods. It
achieves higher pixel accuracy than the baseline segmentation on all classes ex-
cept “bison,” for which the accuracy is statistically the same. All other differences
are statistically significant according to a paired t-test: the least significant dif-
ference was the “bass” class with a mean difference of 1.0% and p-value of 0.003.
For the outline similarity metric, out method was better on all classes, with
the least significant difference being the “bison” class with a mean difference of
2.6% and a p-value of 107%. For the landmark-based RMS distance, our model
is statistically similar to the independent LOOPS on the “elephant” class, worse
on “giraffe,” and better on all other classes despite small differences for some
of them. The mean difference for the “bison” class is 0.1 pixels, but the paired
t-test yields a p-value of 0.028. All other classes had significant differences, with
the least significant p-value being 1075,

Note that simply using the image-specific features (ImgSpec) gives a boost in
segmentation over the baseline, but does not achieve the same level of results as
using our full energy and inference. The full model’s pixel accuracy is superior on
7 out of the 10 classes, with all differences being statistically significant, while
there is no statistical difference between the other 3 classes. For the outline
similarity metric, the full model is superior on all classes except for “airplane,”
for which the instances have relatively uniform appearance so that our outline-
aided image-specific features account for all of the improvement in our method.

We also compared to the OBJ CUT method of Kumar et al. [7] and the kAS
Detector method of Ferrari et al. [5], using downloaded code to run on these
datasets. On the pixel accuracy, outline Jaccard similarity, and outline RMS
scores, our Joint model outperforms the kAS Detector by macro-averages
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Fig. 4. Three representative model segmentations. Each panel in the left column is
produced separately by the Independent methods and the right column is produced
by our Joint method.

over all classes of 3.2%, 1.5%, and 2.3 pixels, respectively. It outperforms OBJ
CUT by macro-averages of 4.7%, 3.2%, and 4.2, respectively. In addition, we
ran our Joint model on a single random fold of the Weizmann horses dataset [0]
and achieved 95% pixel accuracy (compared to 89% for Independent). This is
consistent with the performance of Levin and Weiss [§] and likely near the limit
of what methods of this type can achieve.

The results of the Coordinate approach described in Section [(] isolate the
contribution of the joint inference method that we introduced. This approach
was worse than Joint by macro-averages of 1%, 1%, and 0.2, demonstrating that
the inference routine does in fact contribute to the performance.

8 Discussion

This paper presented a new model that fuses methods for object localization
and segmentation into a coherent energy model in order to produce more accu-
rate foreground segmentations. The utility of the combined model lies in the use
of its outline model in learning the image-specific appearance for the segmen-
tation model, and the terms that encourage agreement between the two while
still allowing each the flexibility to reoptimize its own variables. We demon-
strated that this model is able to achieve both outlines and segmentations that
are superior to several state-of-the-art methods. One promising direction for fu-
ture work is integration with more sophisticated segmentation algorithms. For
example, the use of a robust multi-class segmentation method would allow for
class-aware landmark-segment masks that could capture that the giraffe head
is often surrounded by sky or trees, while the legs are often found in the grass.
Our modular energy function and novel optimization procedure would facilitate
such an extension while keeping inference tractable.

Acknowledgements. This material is based upon work supported by the Na-
tional Science Foundation under Grant No. RI-0917151.



A Unified Contour-Pixel Model for Figure-Ground Segmentation 351

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Heitz, G., Elidan, G., Packer, B., Koller, D.: Shape-based object localization for
descriptive classification. In: NIPS (2008)

Cootes, T., Edwards, G., Taylor, C.: Active appearance models. In: Burkhardt, H.,
Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, p. 484. Springer, Heidelberg (1998)
Thayananthan, A., Stenger, B., Torr, P., Cipolla, R.: Shape context and chamfer
matching in cluttered scenes. In: CVPR (2003)

. Shotton, J., Blake, A., Cipolla, R.: Contour-based learning for object detection.

In: ICCV (2005)

. Ferrari, V., Jurie, F., Schmid, C.: Accurate object detection with deformable shape

models learnt from images. In: CVPR (2007)

. Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and segmen-

tation with an implicit shape model. In: ECCV Workshop on Statistical Learning
in Computer Vision (2004)

. Kumar, M.P., Torr, P., Zisserman, A.: OBJ CUT. In: CVPR (2005)
. Levin, A., Weiss, Y.: Learning to combine bottom-up and top-down segmentation.

In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp.
581-594. Springer, Heidelberg (2006)

. Gould, S., Fulton, R., Koller, D.: Decomposing a scene into geometric and seman-

tically consistent regions. In: ICCV (2009)

Winn, J., Jojic, N.: Locus: Learning object classes with unsupervised segmentation.
In: ICCV (2005)

Ramanan, D.: Learning to parse images of articulated objects. In: NIPS (2006)
Bray, M., Kohli, P., Torr, P.H.S.: Posecut: Simultaneous segmentation and 3d pose
estimation of humans using dynamic graph-cuts. In: Leonardis, A., Bischof, H., Pinz,
A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 642-655. Springer, Heidelberg (2006)
Chen, Y., Zhu, L., Yuille, A.L., Zhang, H.: Unsupervised learning of probabilistic
object models (poms) for object classification, segmentation and recognition using
knowledge propagation. PAMI (2009)

Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few
training examples: an incremental bayesian approach tested on 101 object cate-
gories. In: CVPR (2004)

Fink, M., Ullman, S.: From aardvark to zorro: A benchmark of mammal images.
In: IJCV (2008)

Torralba, A., Murphy, K., Freeman, W.: Contextual models for object detection
using boosted random fields. In: NIPS (2005)

Shotton, J., Winn, J., Rother, C., Criminisi, A.: Textonboost: Joint appearance,
shape and context modeling for mulit-class object recognition and segmentation.
In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp.
1-15. Springer, Heidelberg (2006)

Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact maximum a posteriori estimation
for binary images. In: Royal Stats. Society (1989)

Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the em algorithm. In: Royal Stats. Society (1977)

Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space
analysis. PAMI (2002)

Elidan, G., McGraw, L., Koller, D.: Residual belief propagation: Informed schedul-
ing for async. message passing. In: UAI (2006)

Komodakis, N., Paragios, N., Tziritas, G.: Mrf optimization via dual decomposi-
tion: Message-passing revisited. In: ICCV (2007)



	A Unified Contour-Pixel Model for Figure-Ground Segmentation
	Introduction
	Related Work
	Localization and Segmentation Models
	Outline Localization
	Foreground Segmentation

	Image-Specific Appearance
	The Contour-Pixel Model
	Superpixel-Based Inference
	Inference Challenges
	Joint Inference

	Experimental Results
	Discussion
	References


