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Abstract—Training state-of-the-art deep neural networks is
computationally expensive and time consuming. In this paper we
present a method that can reduce training time while at the same
time maintain nearly the same accuracy as traditional training
approaches. This allows for faster experimentation and better use
of computational resource. Our method extends the well-known
dropout technique by randomly removing entire network layers
instead of individual neurons during training and hence reducing
the number of expensive convolution operations needed per
training iteration. We conduct experiments on object recognition
using the CIFAR10 and ImageNet datasets to demonstrate the
effectiveness of our approach. Our results show that we can train
residual convolutional neural networks (ResNets) 17.5% faster
with only 0.4% decrease in error rate or 34.1% faster with 1.3%
increase in error rate compared to a baseline model. We also
perform analysis on the trade-off between testing accuracy and
training speedup as a function of the drop-out ratio.

I. INTRODUCTION

Since the inception of AlexNet [2] in 2012, convolutional
neural networks (CNNs) have dominated large-scale computer
vision tasks such as ImageNet object classification [6]. More-
over, state-of-the-art accuracy on these large-scale tasks has
improved steadily as the number of layers in CNNs increase,
where a layer typically includes a set of convolutional and
non-linear operations. Examples include the VGG [8] and
GoogLeNet [3] models each having around 20 layers. This
phenomena provides evidence that the expressiveness of CNN
models is strongly correlated with network depth.

The recently introduced residual network model (ResNet) [7],
which forms the basis of our work, distinguishes its architecture
from the previous state-of-the-art models via shortcut connec-
tions between two or three consecutive layers. The shortcut
connections facilitates gradients to be back-propagated from the
very top layer of the network to the very bottom layer, which in
turn helps when training the parameters of the network. Thanks
to this groundbreaking architecture, one is now able to train
ultra deep networks on the scale of hundreds of layers. The
increased network depth also translates into a large boost in
accuracy which has reportedly surpassed human performance
in the object recognition task on the challenging ImageNet
dataset [9]. We refer the reader to the ResNet paper [7] for
technical details.

Despite the impressive performance of deep networks, their
training time is prohibitively slow. The 152-layered residual
network, for example, takes approximately two weeks to train

on eight nVidia Titan X GPUs. With a two-week turnaround
time on experiments, researchers can run less than 26 trials
per year, which is very limiting when tuning hyper-parameters
(over multiple runs) is still an important ingredient in getting
optimal performance out of these models.

The contribution of this paper is to speed up the training by
performing dropout along the depth of a ResNet model. Specif-
ically, during training we randomly bypass layers altogether
on an image by image basis, thereby reducing the amount of
computation needed per training example. Our experiments on
two standard computer vision datasets demonstrate that our
method can achieve 34.1% speedup with a dropout ratio of 0.5
while still maintaining nearly same level of accuracy as the
baseline model. This effectively gives researchers the ability
to run additional experiments when their compute resources
are constrained (i.e., limited access to GPUs).

II. RELATED WORK

Our proposed method is inspired by two lines of research.
The first is dropout [4], originally proposed as a mechanism
to regularise training of convolutional neural networks. In the
original formulation of dropout, at each training iteration and
for each training instance the output of individual neurons
within a layer are randomly suppressed. That is, the output for
a randomly selected set of neurons is set to zero. To distinguish
this method from our approach we refer to it as width dropout.
A parameter known as the dropout ratio controls the probability
that any individual neuron will be suppressed.

Width dropout can be interpreted in two ways. First, dropout
provides a mechanism for regularising training that prevents
co-adaption of features within each layer of the network. As a
result, more diverse features are learned. Second, dropout can
be seen as training an exponential ensemble of sub-networks
on the fly. In other words, each training iteration operates
different subsets of the original network. Both interpretations
are consistent with the observation that width dropout helps
prevent over-fitting and leads to models with better accuracy
on unseen test data.

Despite only training a subset of the network at each
iteration, width dropout does not result in any speedup, i.e., the
computational load is the same independent of the dropout ratio
(including no dropout). This is because from an implementation
perspective, random memory access is inefficient compared to



Fig. 1. (a) Original ResNet (b) ResNet with Depth Dropout. For simplicity only convolutional layers are depicted.

linear memory access especially on a GPU due to coalesced
memory access strategy employed by GPUs. Or put another
way, it is more efficient to perform convolution over the entire
image plane than on selected regions of the image. Therefore,
width dropout is always implemented as a full convolution
followed by element-wise multiplication by a mask to zero out
the suppressed neurons.

In contrast to this approach, our proposed method randomly
skips entire layers along the depth direction. We refer to
this approach as depth dropout. Unlike width dropout the
motivation here is not to prevent co-adaption of features but to
reduce training time. By skipping entire layers the convolutional
operations within those layers can be avoided altogether unlike
width dropout, thus giving a computational speedup. Note that
depth dropout is complementary to width dropout and both
can be used when training deep convolutional neural networks.

Now given that depth dropout suppresses the output of entire
layers the information path through these layers is effectively
blocked. As such, depth dropout only makes sense if there
exists an alternative path for information to flow. This leads
to the second inspiration for our work—residual networks [7].
In a residual network, each residual unit consists of a primary
path of two or three convolution layers, and an alternative path
which short-circuits the input to the output of the residual unit
in question. More specifically, the output of the primary path
through the convolutional layers is added to the unit’s input
to produce the output of the unit. This type of architecture
allows us to randomly skip the primary path while the shortcut
connection provides an alternative path for information to
flow. In He et al. [7], variants of their model equip the
shortcut connections with trainable weights, which they termed

projection operations. We adopt a similar strategy in our work
but for different reason as discussed in the next section.

The recently introduced idea of stochastic depth [5] is similar
in spirit to our work. In their work, different dropout ratios
are applied to each residual unit as a linear function of depth.
Our work differs from their approach in two respects. First,
we apply the same dropout ratio uniformly to each residual
unit and therefore we achieve uniform speedup for all residual
units resulting in overall faster training. Second, we equip
our shortcut connections with trainable weights as suggested
by He et al. [7] As such, our shortcut connections are able
to automatically adjust to the noise introduced by dropout.
Without trainable weights on the shortcut connections, training
can diverge if high dropout ratios exist throughout the entire
network.

III. DEPTH DROPOUT

In this section we formally introduce our depth dropout
model and discuss implications on the training procedure and
provide an analysis of training speedup as a function of dropout
ratio.

A. Model Formulation

Consider the n-th two-layered residual unit in the original
ResNet architecture. The unit receives input on−2 from the
unit below, processes it through two convolutional layers, and
then adds the input to produce the output on for the unit. We
can write this formally as

on = fn(on−2) + on−2 (1)



where fn abstracts away the operations of the convolutional
layers in transforming the input. Figure 1(a) provides a visual
illustration of the layer. In the figure, we denote the path
with two convolutional layers as primary path. We also denote
the path that directly connects the bottom and the top of
the residual unit as shortcut path. Note that the figure only
shows convolutional layers to highlight the main computational
components. However, it should be understood that these layers
also include batch normalisation [10] and element-wise non-
linear transformation. We adopt this convention when referring
to convolutional layers for the rest of our paper.

Now we consider a slightly generalised form of the original
residual network where we allow the convolutional path to be
scaled by a factor an as follows:

on = anfn(on−2) + on−2 (2)

where the original residual network can be obtained by settings
an to one.

Observe that we do not need to restrict an to be deterministic.
If we instead let an to be generated from a random distribution,
we will have a network with random architecture. In this paper,
we restrict our attention to Bernoulli distribution (sampling an
to be either zero or one), which given a sampling of the an’s
will result in a random subset of the original residual network.
This approach delivers us a speed advantage since computation
of layers with zero an can be skipped as we discuss below.

The above model can be further generalised by allowing the
shortcut path to also be transformed. In our early experiments
we found this necessary to prevent the training process from
diverging when high dropout ratios are used. Formally we
have,

on = anfn(on−2) + tn(on−2) (3)

where an is drawn from Bernoulli distribution and tn is a
trainable function. In our work we implement tn as yet another
convolutional layer as illustrated in Figure 1(b).

In this formulation only the primary path of the residual
unit undergoes random dropout while the newly introduced
transformed shortcut path is always present. Our experiments
show that tn with trainable weights learns to cope with the noise
introduced by the dropout and prevents the training process
from diverging. We next discuss details of training with depth
dropout.

B. Training with Depth Dropout

We follow the standard approach of using stochastic gradient
descent (SGD) on mini-batches of training examples to learn
the parameters of a ResNet model. At each SGD iteration, we
first sample the an from a Bernoulli distribution such that

an =

{
0 with probability p
1 with probability 1− p

(4)

where p is the expected depth dropout ratio. Then for all
layers with an set to zero, we physically skip computation
along the primary path for that unit, effectively removing

those layers from the network (for that iteration). In this
case, all information from the n-th layer flows through tn.
Computation is saved on both the forward (evaluation) and
backward (gradient propagation) passes.

Note here the difference between our approach and the
conventional width dropout approach. In the width dropout
settings each individual feature in the mini-batch of an SGD
iteration receives an independent random draw. In our approach,
each residual unit receives an independent random draw but the
draw for this residual unit applies to all the training samples
in the minibatch. The distinction is important since it results
in greater computational efficiency because we can now skip
all computation along the primary path of units with an = 0.
Adopting a strategy of separate draws for each individual
sample would harm data parallelism across GPU cores within
the mini-batch.

Having outlined our training procedure we next provide a
theoretical analysis of the computational advantage of training
with depth dropout.

C. Computational Analysis of Depth Dropout

By skipping the computation of the primary path within a
subset of residual units we gain linear speedup compared to
the baseline residual network. To formalize this, let τ1 and τ2
denote the running time of the primary path and the shortcut
path of a residual unit. Here we include the total time of both
the forward and backward passes. Thus the time to compute the
output of a residual unit is τ1 + τ2, where we have ignored the
very small overhead associated with combining the paths and
other minor housekeeping tasks. Now, with the introduction of
depth dropout, the primary path is skipped with probability p.
Thus the expected running time becomes Ep[τ1] + τ2, where
Ep[·] is the expectation with respect to the Bernoulli distribution
with parameter p.

For example, suppose we have a residual unit with two
convolutional layers in the primary path fn and one convolution
layer in the shortcut path as depicted in Figure 1(b). Again,
by convolution layer, we refer to a stack of a convolutional
layer, a batch normalisation layer and a non-linear layer. We
assume that two convolution layers on the primary path have
3×3 filters while the convolution layer on the shortcut path
has 1×1 filters. We further assume that all convolution layers
have same input dimensions. Thus, the running time of the
convolution layer with 1×1 filters is theoretically 1

9 of the
convolutional layer with 3×3 filters. Let τ denote the total
running time of a single convolutional layer. The total running
time of the baseline residual unit (Figure 1(a)) is 2τ . With
a dropout ratio of p = 1

2 the expected running time of the
proposed residual unit (Figure 1(b)) is 1

2 (τ + τ) + 1
9τ = 10

9 τ .
Thus, the theoretical time saving is 45.5%.

Since our residual path has trainable weights, one may
argue that our network has more complexity than the original
baseline residual network. Nevertheless, randomly dropping
out the primary path will effectively train similar or even less
number of weights on expectation (with p = 1

2 ) during each
iteration compared to the baseline residual network. To see this,



consider the following example. Supposed that there are two
convolutional layers on the primary path and one convolutional
layer on the shortcut path and the dropout ratio is p = 1

2 . The
expected number of trainable convolutional layers with depth
dropout is 1

22 +
1
9 = 10

9 , which is on expectation less than the
baseline residual network.

D. Inference

At test time we fix an to one. Unlike width dropout we do
not divide the feature outputs by the dropout ratio as dropout
in our model is performed layer-wise and we have already
taken into account the effect of the dropped residual units by
learning a transformation tn on the shortcut path. Note, that
while the introduction of tn implies additional processing cost
(at test time) over the original residual network, the test time
cost is negligible compared the the cost to train the network.

IV. EXPERIMENTAL RESULTS

We conduct experiments on two standard image classification
datasets and compare against results reported in the literature.
Specifically, we provide results on the small CIFAR10 [1]
dataset and the much larger ImageNet [6] dataset. All of our
networks are trained using the Caffe deep learning software
framework [11].

Our experiments are designed to study two aspects of our
proposed depth dropout method. We first carry out experiments
to study the variation of error rate as a function of dropout ratio.
Next, we perform experiments on error rates versus training
time to determine whether networks trained with depth dropout
can achieve the same level of accuracy in less time than the
baseline ResNet model (without dropout).

A. CIFAR10 Experiments

The CIFAR10 dataset consists of 50k training images and
10k test images of size 32×32 pixels. Each image in the dataset
is categorised into one of 10 object classes (such as “dog”,
“bird”, “airplane”, etc.). Our training protocol strictly follows
the original residual network paper [7]. That is, we augment
the CIFAR10 images by padding a border of four zeros to each
side of the image and subtract the pixel-wise mean (over the
training dataset) from all image pixels. In addition, we perform
random horizontal flipping of the images during training to
augment the dataset. Our initial learning rate is set to 0.1. We
train up to 64,000 iterations and divide the learning rate by 10
after 32,000 iterations and again after 48,000 iterations. We
train our models on two nVidia Titan X GPUs with a minibatch
size of 64 training examples per GPU. The baseline network
we used is the 56-layered network (ResNet-56) with the same
architecture as described in He et al. [7]. All reported error
rates are computed on the full test image set using model
parameters obtained at the final training iteration.

The two convolutional layers on the primary path have
are equipped with 3×3 filters. The convolutional layers on
the shortcut path are equipped with 1×1 filters followed by
batch normalisation and non-linearity. We also found that
disabling the dropout for the residual units that performs spatial

downsampling (i.e. where the convolutional stride of 2) of the
input feature maps improves accuracy by a noticeable margin
while still maintains reasonable speedup. For the 56-layered
residual network, there are a total of 27 residual units with 3 out
of them performing spatial dowmsampling as as described in He
et al. [7]. Let τ denote the total running time of the primary path
of a residual unit. The theoretical running time of the baseline
model (i.e. 27 residual units) is 27τ . The theoretical running
time our proposed model with those 3 residual units disabling
dropout and 0.5 dropout ratio is 1

224τ +3τ +241
9τ ≈ 17.667τ .

Thus, the time saving for 0.5 dropout ratio is about 34.6%.
The time savings for dropout ratios of 0.25 and 0.75 are 12.3%
and 56.7% respectively.

1) Error Rates versus Dropout Ratio: We first analyse the
effect of dropout ratio on error rate training following the
protocol outlined above. Results for different dropout rates are
shown in Table I and summarised in Figure 2(a). As can be
seen from the table, the baseline method (no dropout) achieves
0.085 error rate, which is similar to the result of 0.069 reported
by He et al. [7], but which uses their in-house deep learning
software instead of Caffe. With a dropout ratio of 0.25 the
model achieves a relative error rate of 0.4% lower than the
baseline. We hypothesize that this is because a dropout ratio
of 0.25 is good balance that prevents over and under-fitting,
which yields the most robust model among all the other dropout
ratios. As the dropout ratio increases beyond 0.25 the error
rate worsens slightly, increasing by 1.3% at 0.5 dropout and
up by 2.7% at 0.75 dropout ratio.

We also plot top-1 error rate as a function of training iteration
for different dropout ratios (see Figure 3(a)). As can be seen
the effect of increasing dropout ratio is consistent with the
observations above throughout the training process with all
converging after about 32,000 iterations. However, despite all
experiments converging after a fixed number of iterations, the
actual running time to reach convergence differs with dropout
ratio, which we analyse next.

2) Error Rates versus Training Time: We begin by dis-
cussing our experimental protocol to carry out this study. Since
all of our experiments are run on a shared GPU server, the
training speed can vary at different points of time during the
training process due to variations of the GPU and server load
outside of our control. We circumvent this problem by explicitly
running speed benchmarks for a small number of iterations
on the networks with different dropout ratios. Concretely, we
run the forward and backward pass for 500 iterations for each
network on the same (single) GPU exclusively, i.e., with no
other jobs running on that GPU. We then record the average
running time over the 500 iterations for each network. Since the
computation cost of each mini-batch is independent of the data
within the mini-batch nor the current network parameter settings
(other than dropout ratio), this gives a reliable estimate of the
running time per iteration. We use this estimate to produce
the error versus running time plots shown in Figure 3(b).
Notice that the higher the dropout ratio the faster the network
converges.

We also provide a table of average running times for both



(a) (b)

(c)

Fig. 2. Relative error rate and training time as a function of dropout ratio
for the CIFAR10 dataset in (a) and (b), respectively. Also shown is error rate
versus training time in (c). Relative error is defined as the error of current
model divided by baseline error minus one.

the forward and backward passes in Table II. The speed up
obtained with dropout ratios of 0.25, 0.5 and 0.75 over the
baseline are 0.175, 0.341 and 0.516, respectively, which are
close to theoretical speedups of 0.123, 0.346 and 0.567.

Figure 2 summarises the results of our CIFAR10 experiments.
Displayed are the change in error rate relative to the baseline
(at convergence) as a function of dropout ratio in (a); training
speedup as a function of dropout ratio in (b); and relative error
versus speedup in (c). As shown in (c), the increase of relative
error rate appears sub-linear as the increase of speedup. We
hypothesise that depth dropout has built-in regularisation effect
as the original dropout. The model trained with depth dropout
is robust. Therefore, the relative error grows sub-linearly as
the increase of speedup.

B. ImageNet Experiments

We also conduct experiments on a very large-scale dataset.
Here we used the ImageNet [6] dataset, which consists of
1.2 million training and 50k validation colour images. The
size of the the raw images varies but averages to about 400×
500 pixels. The dataset contains 1000 different classes (with
images in the validation set balanced over all classes, i.e., 50
images per class). The network we used in this experiment is

TABLE I
DROPOUT RATIO VS ERROR RATE ON CIFAR10

Dropout ratio Error rate

0.0 0.085
0.25 0.081
0.5 0.098
0.75 0.113

TABLE II
AVERAGE RUNNING TIME (MS) PER ITERATION ON CIFAR10

Dropout ratio forward backward total

0.0 64.0 104.5 168.5
0.25 53.6 85.4 139.0
0.5 43.5 67.6 111.1
0.75 33.0 48.5 81.5

TABLE III
DROPOUT RATIO VS ERROR RATE ON IMAGENET

Dropout ratio Error rate

0.0 0.340
0.5 0.341

the 18-layered ResNet. We choose 18-layered network to fit
into our computational budget. Again, our training protocol
strictly follows the original residual network paper [7]. Our
initial learning rate is 0.1 and we use a minibatch size of
256 training examples. We train up to a maximum of 600k
iterations. We also use the same training data augmentation
techniques employed by the original residual network paper.
Namely, we perform random scales and random flipping of the
images during training. During test, we report our accuracy
figures using the center crop and using network parameters
obtained at 600k iterations.

Due to the size of the dataset we only run experiments with
a dropout ratio of 0.5. As seen in Table III, the performance
gap between the baseline and depth dropout is 0.1%, which
is small. As with the CIFAR10 experiments we also produce
plots of top-1 error rate as a function of training iteration and
running time in Figures 4(a) and (b), respectively. Note here
that the running time is significantly longer than on the smaller
CIFAR10 dataset, but we again see a speedup over the baseline
when using dropout. Here the learning curve for both models
tends to flatten out after around 300k iterations with a small
gap between the two models.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed depth dropout, a novel method for
training very deep residual networks. Depth dropout improves
training time with negligible difference in the accuracy of the
final model on hold-out data as compared to a baseline model
without dropout. While the current speedup of around 30% may



(a) (b)
Fig. 3. Top-1 test set error on CIFAR10 versus (a) training iteration number and (b) training time in hours.

(a) (b)
Fig. 4. Top-1 validation error on ImageNet versus (a) training iteration number and (b) training time in hours.

appear small, the gain needs to be considered in light of the
very long training times and the large number of experiments
that researchers typically need to run. At the end of the day
even a small saving in computation allows researchers to run
many more experiments when working with large-scale data
and in environments with limited compute resources.

The baseline network used in our CIFAR10 experiments is
relatively deep, containing 56 convolutional layers, which we
denote by ResNet-56. In the ImageNet experiments, however,
we used ResNet-18 as our baseline network. We picked this
baseline network mainly for faster experimental turnaround
to meet the time budget of our project. Due to the built-in
regularisation effect of depth dropout, we hypothesise that
less deep networks such as ResNet-18 benefit less from deep
networks, which we observe in our experimental results but
would need to be confirmed in future work. Nevertheless, the
effectiveness of our proposed method is promising.

In our work we used a fixed dropout ratio for all layers in
the network. Recent work by Huang et al. [5] showed that the
dropout ratio can be varied as a function of depth, but here it
is not clear whether the approach can obtain the same level of
speedup. In the future we would like to explore data dependent
dropout strategies. That is, have the dropout rate adapt to the
training data, which has the potential to improve both model
accuracy and significantly speed up training time. We would
also like to explore alternative transformations for the shortcut
path to have even greater asymmetry in the computational
cost between dropout and no dropout, thus leading to further
speedups.
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