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Abstract—Multi-class pixel labeling is an important problem Since the CRF is connected, this information can propagate
in computer vision that has many diverse applications, including throughout the image. More expressive forms of contextual
interactive image segmentation, semantic and geometric sceneinformation (SUCh asslw appears abovefoad) have been

understanding, and stereo reconstruction. Current state-othe- demonstrated by a number of researchers to improve labelin
art approaches learn a model on a set of training images and then S y u S S o Improv 9

apply the learned model to each image in a test set independently. accuracy [8, 9]. The contextual information is usually dedi

The quality of the results, therefore, depends strongly on the from other regions within the same image and can therefore

quality of the learned models and the information available within  pe limited. Moreover, since the contextual cues are derived

each training image. Importantly, this approach cannot leverage 3y the single image at hand, they can sometimes reinforce

information available in other images at test time which may . . ; . .

help to label the image at hand. !ncorrec'g interpretations of _the image. Inf(_)rmatlo_n frother
Instead of labeling each image independently, we propose aimages in the dataset, which could provide a rich source of

semi-supervised approach that exploits the similarity between context is ignored at test time in existing CRF models.

regions across many images in coherent image subsets. Specif- In this work, we extend the idea of a local pairwise

ically, our model nds similar regions in related images and gmoothness prior between adjacent pixels within an image

constrains the joint labeling of the images to agree on the labels Lo - . )
within these regions. By considering the joint labeling, our model to that of a long-range pairwise consistency prior for prop

gets to leverage contextual information that is not available when @gating information between images. We then perform joint
considering images in isolation. multi-class pixel labeling of all the images in the test set.
We test our approach on the popular 21-class MSRC multi- Speci cally, we construct a conditional Markov random eld
class image segmentation dataset and show improvement ingyer pixels from a set of images rather than a single image.
accuracy over a strong baseline model. Edges between neighbouring pixels within the same image
enforce the smoothness prior discussed above and that is
present in many state-of-the-art approaches. Edges hetwee
Multi-class image labeling—the task of assigning a clagsxels in different images encode our desire to label simila
label to every pixel in an image—is an important problem iregions consistently across the dataset. This has the befie
computer vision [1, 2, 3, 4]. The general problem formulatiopropagating contextual information from one image to aeoth
can be applied to many applications, including interactive The following example provides some intuition into why
gure/ground segmentation [5], geometric and semantimscethis may be bene cial: Consider a set of images containing a
understanding [1, 6], and stereo reconstruction [7]. Famex variety of instances of the same object category (e.g., Jircar
ple, in the context of semantic scene understanding a commmany of the images. In some of the images the objects may
task is to annotate every pixel in the image with a label froime easily recognized. However, instances from the sametobje
a pre-de ned set of categories, e.gky road, tree, etc. One category in other images may be more dif cult to recognize
of the most successful approaches to these problems uses oontheir own due, say, to weak local features (e.g., missing
ditional Markov random elds (CRFs), which combine localwheels) or lack of context (e.g., images of cars withoutblési
information for predicting class labels (such as coloutiuee  road below the car). By nding matching regions (such as
and position within the image) with a prior for smoothnesshe cars' headlights) between different images we are able t
The smoothness prior favours label con gurations in whicbxploit the more easily recognized objects to help iderttify
adjacent pixels (with similar colours) are labeled with $aene more dif cult ones.
category. Loosely speaking, this can be thought of as engodi  Our approach can be thought of as a semi-supervised image
the knowledge that objects have large spatial support. labeling approach. Like traditional pixel labeling apprbas,
Local neighbourhood priors can also encode contextuak rstlearn a model from a set of annotated training images.
information such as co-occurrence of label pairs. In thisrge However, instead of using that model to label each image in
con dent predictions from neighbouring pixels can in uenc the dataset in isolation, we enforce soft labeling constsai
the labeling of less con dent predictions, so that)y adjacent between regions with similar appearance in different irsage
to wateris more likely thansh adjacent tosky, for example. Importantly, the soft constraints are found in an unsusei
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manner (i.e., without knowing the class labels). Experiteenwell on background classes and can be easily expanded to
on the 21-class MSRC dataset [10] demonstrate that this le@ttorporate new objects. However, since the alignment iedo
to an improvement over a strong baseline CRF model. at a scene level small objects are often missed. Moreover,
unlike our approach, it does not make use of the similarity
between images in the set of images to be labeled.
Our work builds on the work from a number of researchers
who have investigated the problem of multi-class pixel labe . PIXEL LABELING FOR IMAGE SETS
ing. Perhaps, the most in uential works are those of He et al. In this section we describe our approach to dataset labeling
[1] and Shotton et al. [2], which are early examples of the usgnlike traditional approaches to multi-class pixel labgli
of conditional Markov random elds (CRFs) for the multi-which learn a model and then apply the learned model
class pixel labeling task. In particular, these models @e nio each test image in isolation, our method simultaneously
a grid-structured pairwise CRF over pixels with smoothnegsbels collections of images thereby leveraging contéxtua
prior. Our work extends this approach from inference onlsinginformation available from different images at test timee W
images to concurrent inference on multiple images in a setbegin by describing a typical conditional Markov randomdel
A line of research known as “co-segmentation” has al§ermulation of the single-image pixel labeling problem. We
studied the problem of labeling pixels in multiple imageghen extend this formulation to the case of multiple images.
simultaneously in recent years, with great success [11, 12]
Here the task is to perform joint segmentation of the sam®, Conditional Markov Random Fields for Pixel Labeling
or a similar looking object, from two or more images. The Conditional Markov random elds (CRFs) are a class
assumption is that using more images provides additionsfl probabilistic models for encoding conditional probiipil
information that can help improve the segmentation quality distributions over correlated random variables. They were
an assumption that is supported by impressive experimentat introduced as a generalization to Markov random elds
results (see, for example, Rother et al. [11]). (MRFs) by Lafferty et al. [17] for language modeling, but
Similar to co-segmentation, our work does joint imaghave subsequently proven to be a powerful framework for
segmentation over sets of images. However, our work hasny problems in computer vision such as multi-class pixel
a number of key differences. First, we do not impose thabeling [1, 2].
constraint of having a common object in the sets of images.Given an imagel , a CRF for pixel labeling de nes an
Instead, we focus on the semantic classes of the objegtsergy functiorover different label con gurations where lower
appearing in the images. For instance, in a collection ofj@sa energy labelings are preferred by the motdé@oncretely, let
that all have a car in them, we do not require the cars to bebe a set of discrete labels, e.gsky;road:::g, and let
exactly the same. Second, we do not asswamgriori that y = (y;;::::y,) be a vector of labels for the image where
the images will contain the same object. Instead, we emplgy 2 L is the label assigned to pixpl A pairwise CRF de nes
a matching stage to correspond similar regions and reasgfenergy function as the combinationwofary and pairwise
that these imply similar semantics. Last, we are interestgdtentialsas
in the case of multi-class labeling rather than gure-gréun
. . . . . X0 X
segmentation. That is, we may have multiple different disjec E(y:l)= (yisl )+ i (vioys) (1)
and background regions in the image set, and wish to label i=1 i 2N 5
each of these. To achieve this, we use a local region matchin _
algorithm [13] to form correspondences between the simil#ere i(yi;!) are the unary potentials dened for each
regions of these images that are encoded in a CRF de négfiable and j (yi;y; ;1) are the pairwise potentials de ned
over the entire image set. over adjacent variables in the image. Hég represents the
Our work makes use of the observation that scenes can&gonnected neighbourhood of pixels, i.e., the subset o$ pa
clustered into similar types, and that by nding regionsiwit (i;] ) such that pixeld andj and adjacent to each other in
similar appearance within different images we can constrdf'® image. . o .
labelings between images. To cluster the images we computd he unary potentials capture an individual pixel's prefiee
a gist descriptor [14] and perform hierarchical agglonieeat for each label given some local featurgs. In our work, we
clustering (see Section III-C below). Other techniques f&onstruct the local features as follows: First, we convahe
building similarity graphs over image collections have rbedMage with a 17-dimensional Iter bank to produce raw image
explored in the literature (e.g., [15]), however, the ainthiese features. The speci cation for the Iter pank is described i
works is often for image categorization or navigation, ret tShotton etal. [2]. Next, we de ne @ 3 grid of cells centered
provide context for pixel labeling. arognd each pixgb, where each grid cell coversta 5 patch
Other recent works have exploited this observation for scefif Pixels, and compute the mean and standard deviation of raw
labeling, but for the purpose of labeling a single image.der (17-dimensional) features in each cell. Finally, we appeed

ample, Liu et al. [16] aligns a novel scene with similar s&ene
P [ ] 9 1Formally, the energy function is de ned as the negative log tioé

from a large corpus of labeled images and tran_Sfer the labﬁnlﬁormalized conditional probability, i.e., i (y;x) is the energy function,
from the corpus to the novel scene. The algorithm perform&npP(y jx)/ expf E(y;x)g.

Il. BACKGROUND AND RELATED WORK



raw image features, the mean and standard deviation featuaee can be dif cult when only considering differences inaa

and the normalized andy location of the pixel together into between neighbouring pixels. Last, contextual informatioat

a 325dimensional local feature vector. may assist the correct labeling of a region may not be present
The local features are used to build a classi er that estimatin all images. Extending our model to image sets rather than

the probability of each label given the features. These wilidividual images partially addresses these drawbacks.

ultimately be used for specifying the unary potentials im ou , " )

model. To learn this multi-class classi er, we rst train a@ 5 Extending Conditional Random Fields to Image Sets

versus-all boosted decision tree classi er [18] for eadbela  Consider two images with similar objects appearing in each

* 2 L. We then combine the output of these one-versus-ail the images. Now assume that we are given correspondence

classi ers through multi-class logistic regression teanvia information between the images, i.e., we are told that aetubs

maximum-likelihood to calibrate the scores [19]. Condsete of pixels in one of the images corresponds (semantically to

letf, 2 R325 be the local feature vector for pixpl We learn subset of pixels in the other image. Then, just like the paiw

a boosted classier- : R3° | R for each class 2 L. Let smoothness prior, we could encode a soft constraint thaethe

the boosted classi ers. Our multi-class classi er is then ~ Note, that we do not need to be told what the semantic class
ox n T )0 is for this information to be useful. Furthermore, the cerre
Py, = "jfo)= P P @) spondence information that we receive may contain errors so
P P T we will want our constraint to be weighted by our con dence
koL €Xp o« (fp) .
in the correspondence.
where are the learned parameters. The unary potential forFormally, let I, and |, be two images and leP =
each pixel is forme_d by t_ak_ing the _negative log-probabiiay f(py:py) 1 pr 2 11;p2 2 | 29 be a set of correspondences
each class from this logistic classi er, between pairs of pixel§p;;p,) from the rst and second
(yi:1)= logP(yi jfi): 3) image, respe_ctlvely. We can now de ne a joint image labeling
energy function as
While our model makes use of boosted decision tree clas-
siers and multi-class logistic regression, the quality tbk E(yi;yolail2)= E(yiil)+ E(yarla)
nal model appears quite robust to this choice and other X ) -
imi ' + pa(YipiY2qila;l2)  (5)
researchers have reported similar baseline results usiveg o (pi)2P
classi er architectures, such as random forests and stippor P4
vector machines. where the last term encodes our soft constraint that thdslabe
The pairwise potential imposes a contrast-sensitive sioofor corresponding pixelsp in the rst image and pixel in
ness prior [5]. In other words, the model prefers con guwati the second image, should match. Speci cally we have,
where adjacent pixels take the same label. More formally, we (
3Coq  Y1ip 6 Y2iq

de ne the contrast-sensitive smoothness prior for two eelja pq(Yipi Vaugs 1 151 2) = _ (6)
pixelsi andj as 0 otherwise
n 0
14 2 kxi xj k? 6 V. where y1;, and y,,q are the labels for pixep in the rst
. vt ) = di d: exp 2 Yi y] . ! . " . .
i (Yiryisl)= 0" I otherwise image and pixelq in the second image, anghq is a (non-

negative) score that represents our con dence in the match.
“) In the following section we will describe how the matches

wherex; andx; are the RGB colour vectors for pixélsindj, and con dence scores are obtained. The constantveights
respectively, and = kx;  x;k? i 2N s is the mean-square- this between-image constraint against the unary and pair-
difference in colour over all adjacent pixels in the imagkeT wise terms from the within-image components of the model,
non-negative parameterg and , weight the prior relative i.e., E(y;;11) andE(y,;!2).
to the unary terms and are learned by cross-validation on theClearly this idea can be extended to multiple images where
training set of images to maximize overall pixel accuracgréd we de ne an energy functiorE (fy, g, ; fl ig,) over the

dj scales the contribution of the prior by the distance lbelwefm'nt labeling of multiple images 1;:::;1,, and let the set
the pixels, i.e.dj =1 for 4-connected pixels, andj = 2 P contain pairs of corresponding pixels between any two of
for diagonally-connected pixels. images in the set.

The contrast-sensitive pairwise potentials capture oliefbe ] .

that images are generally smooth with label changes orffy Matching Regions Between Images

occurring at the boundary between regions of different ap-Our model requires that we nd good matches between
pearance. While this assumption is generally a good one, tiggions in different images. To reduce computational nequi
implementation in CRFs for pixel labeling suffers from a rumments while still nding matches that are likely to help
ber of drawbacks. First, correct labeling relies on goodlocimprove labeling accuracy we adopt a two stage approach. In
evidence, i.e., local features that can predict the cocat#- the rst stage we compute a global gist descriptor [14] faztea
gory label. Second, determining where the region bounslarienage. We then cluster the images (separately for the tgini



Fig. 1. Some example clusters obtained by running hierarchigglomerative clustering on gist features. Scenes withlainobjects tend to be grouped

together. For example, (a) contains exclusively trees,emMf) is mostly aeroplanes. The tree structure representsenoedgr during clustering. See text for
details.

and testing sets) by performing hierarchical agglomegatigearch over all patches in one image to nd the most similar
clustering as follows: Lety 2 R" be the gist descriptor for patch in another image with respect to some distance metric.
the i-th image in image se$ (either training or testing), let The algorithm takes two imagés andl », and the patch size
Dj = kg g ko be the distance between two imageand as input. Since we are interested in matching every patch in
j in gist-space, and leN ™ be the maximum number of the image, the output of the algorithm can be thought of as an
images that we can tolerate per clugtémitially we start with approximatenearest-neighbour eldNNF) which is de ned
each image in its own cluster. We then repeatedly merge tas a functionf;, » : 13 ! R > whereR, gives the offset of
clusters at a time until any further merge results in a clustthe approximated most similar patch in imalge Similarly,

of size greater thalN M@, At each iteration we nd the two the algorithm will producd, 1:1,!R 1.

clusters such that their combined size is less tNat# and The RTCHMATCH algorithm has three phases. The rst
with minimum distance between their elements. Formally, Wi ase initializes the target NNF with random offsets. Mdst o
nd clusters S, and Sy satisfying these initial assignments are likely to be bad matches, hewe
some of the matches will be good. The second phase exploits
these good matches by propagating them to neighbouring
patches under the assumption that images have a naturally
smooth structure—i.e., a neighbouring patclp @fill probably
be a good match for a neighbouring patchf ¢p). The third
o ) . phase performs a random search over patches within a radius
In the second stage, we look for similar regions between ig¢ 1o pest offsets found so far for potentially better match
ages within the same cluster. We use theHMATCH algo-  pyrcpmatch is essentially a local search and the third
rithm introduced by Barnes et al. [20]. Brie yAPCHMATCH  ynaqe allows it to escape from local maxima. The algorithm
is an approximation algorithm that performs an incrementgl, o< over the second and third phases and terminatzsaft

2See the experimental section for metrics on running time and rr)emorxed number of iterations or after convergence (no improved
usage as a function of the number of images per cluster. matches can be found).

(a;b = argmin __min
a6 bjSa[S pj Nmax 12Sa;j2Ss
We then merge the clusters to create a new cluSterS .
Some example clusters on the MSRC [10] dataseNf&/®* =
15 are shown in Figure 1.

Dj (7)



The randomized search strategy for nding an approximat
NNF instead of an exact NNF also allowsTRHMATCH to  $4
run very ef ciently. Furthermore, the quality of the matshe
produced by RrcHMATCH have been shown to be good anc
the algorithm has been successfully used in image editsigta
such as re-targeting, completion, and reshufing [13, 20, 2

We run the RTcHMATCH algorithm on all pairs of images
in each cluster and retain the top three nearest-neighbours
per image patch. These are then used to add edges betwagn.
images when constructing our image-set CRF (as described
Section IlI-B). This achieves our goal of encoding the soir
constraint that regions with similar appearance in différe
images should be labeled the same. Figure 2 shows examg
of good and bad matches found by theTBHMATCH algo- ~.
rithm. Here we de ne “bad” to mean matches for which the
corresponding regions have different semantics (evengtihou (b)
they may have similar appearance). We note that our algorith
currently searches over patches of the same size and oriefif %,  Some examples of matches produced ByGRMATCH between

. . . . .. 100 patches. Images in (a) show some of the good matches. Images in
tion. Extending the search to be scale and rotation invaisan (b) show some of the bad matches. We mitigate the effect of thessenatches

an interesting topic for future work. using the match con dence score, which is determined by the Ri3&nce
Since matches for some patches may not be found andPgveen the patches. Although, there are some cases whereta lpetveen
. 0 different objects have a very low RGB distance and, cqueetly, a very
make our model more robust to poor matches we adjust tﬁ%ﬂ"@1 con dence score.
strength of the between-image label constraint as a fumctio
of the quality of the match as indicated by, in Equation 6.
Speci cally, letspq be the score returned by thel”HMATCH  cient algorithms exist for solving the resulting optimipat
algorithm for matching pixep in imagel ; to pixelq= f (p) problem at each -expansion iteration (see [24]). While our
in image | 2, where a lower score indicates a better matclenergy function has more pairwise terms than the standard 8-

Then we setyq to connected CRF they are still relatively few compared to the
s number of variables in the model. As discussed above, we limi
Cpq = €XP % (8) the number of matches from each pixel to three (although we

place no limit on the number of matches that can be made
where is the mean match score returned byrtEHMATCH  to a pixel). As such, we found inference to be quite fast and
for all pairs of matches in the image set. in practice followed a linear increase in running-time as th

D. Inference number of images increased (see Figure 6).

After constructing the CRF to add soft constraints between IV. EXPERIMENTAL RESULTS

images, we run inference to nd the most likely joint labejin . _ ) )
of all images in the image set. However, exact inference i ou We conducted experiments on the multi-class image labeling
model—as well as the baseline CRF model—is intractable af$k and compared the results of using CRFs on image sets,
we have to resort to an approximate inference scheme. ~ With correspondences over similar regions, and CRFs vvithou
By design, our energy function belongs to the class of S.Eh_ese correspondences, i.e., the baseline model on individ
called regular (or submodular) energies [22] and can therdMages. The dataset used for these experiments was the 21-
fore be minimized using the -expansion variant of graph_class MSRC c!ataset [1Q] consisting of 591 annotated images.
cuts [23, 24]. The -expansion algorithm is a move-makingE@ch image is approximatel20 240 and the dataset
algorithm that solves a series of binary problems in an €ontains avoid label for unknown pixels, which are ignored
erative manner. The variables in the model are initialized flUring both training and evaluatidnAs is standard on this
some valid assignment—in our case we take the minimizifitaset, we split the images into a training set consisting o
assignment from each unary term. Then at each iteration, the> images and an evaluation set consisting the remainig 27
optimal assignment is found in the sub-space of labels whéfages. We have established ve different folds of the dettas
each variable can either keep its current assignment oclswitVhere each fold has a random partition of the images into
to the label 2 L. Since our energy function is submodulaf@ining and test sets. These sets were then divided interk
this can be done exactly. A new label2 L is then chosen ©f up to N™ = 15 images as described in Section III-C
for the next iteration and the procedure repeated until neemo@Pove.

results in a lower energy assignment. 3 . .
F t . licati h th b The dataset also contains labels foountainand horse However, there
or computer vision applications where the number %te very few instances of these and we follow the literatargreéating these

pairwise terms in the energy function is sparse, very efeategories agoid.



TABLE |
RESULTS FOR100 100 PATCHES

Overall class accuracy|| Average class accuracy
Fold | Baseline | Our model || Baseline | Our model
1 73.2 74.1 58.0 58.7
2 76.1 7.4 64.1 65.0
3 71.6 73.4 59.3 60.6
4 72.4 73.3 58.0 57.8
5 75.9 76.0 63.2 63.0

A comparison of the overall class accuracy and average ctzssaxy of
the baseline and our model using patch matches of ige 100 pixels.

TABLE Il
RESULTS FOR25 25 PATCHES

Overall class accuracy|| Average class accuracy
Fold | Baseline | Our model || Baseline| Our model
1 73.2 73.8 58.0 57.8 Fig. 3. Best viewed in colour.Example matches for patches sizesl6D
2 76.1 77.1 64.1 65.0 100 at xed grid locations. Shown are the top matches for each lpgdtion
3 71.6 72.8 50.3 59.9 in the center image to other images in the same cluster. Matcbesdther
4 724 72.9 58.0 57.7 images in the cluster to the center image are not shown.
5 75.9 76.2 63.2 63.5

A comparison of the overall class accuracy and average ctassaxy of
the baseline and our model using patch matches of Zbze 25 pixels.
average of 1.0% and the average class accuracy by 0.5% for

the 100 100 While using25 25 gives a slightly lower

All parameters in the model were learned on the set gyerage improvement of 0.7% for the overall class accuracy
training images. Speci cally, we used a random sample 61|nd 9.3% f_or the average class accuracy. Oyr results show a
pixels from the training images to learn the unary tem{%onastent |mprovement in overall accuracy in all folds and
and then performed cross-validation to nd the best Weigh@provement in class-averaged accuracy in most of the folds

>, and 3, for the Within-image pairwise smoothness term We also show the qualitative results to see how the soft
and between-image label matching constraint, respeymm constraint over similar regions affect the Iabeling of the i
found that ; had little effect on performance and simply se@ges. In Figure 4, we show some of the images with improved
it to zero for all experiments). Note that the learned patamelabelings using our model. On the other hand, our model has
for , was different for the baseline model and our modé@llso introduced some degradation to the labeling accuvsey.
with between-image terms. show some of the degraded labelings in Figure 5.

In the region matching procedure discussed in Section llI-C Figure 3 shows the top matching regions for one of the
we have chosen RGB as our colour-space and used the simages in our dataset. Clearly all of the matches are in the
of-squared difference over the RGB channels as our distarasgrect context (i.e., aeroplanes on a eld). This is helped
metric in the RTCHMATCH algorithm. Furthermore, we par-by our clustering algorithm, which groups similar images
titioned each image into non-overlapping patches on a aegulogether based on global structure. Moreover, a numbereof th
grid. For each grid location in a particular image, we nd theénatches are consistent with respect to the semantics of the
best matches over all possible patches of other images in tagresponding pixels, for example, the front of the aenogla
cluster using the ArcHMATCH algorithm. Thus, in a cluster (bottom-right). However, there are also matches which are
with N images, this process produdss 1 matches for each partially inconsistent, e.g., the aeroplane’s tail (tefi)l This
grid location. To reduce computational complexity and prurexplains why performance sometimes degrades and suggests
poor matches, we limit the between-image edges to the tjst a more robust pairwise potential, which only requires a
three matches (based on theTBHMATCH score) per patch. subset of the pixels within each pair of matched regions to

We measure performance by two different metrics ar@fjree, may improve performance.
report average results on the evaluation set for each foldFinally, Figure 6 shows that the running time and memory
The rst performance metric measures overall accuracy andusage of our algorithm grow linear to the number of images
simply the proportion of correctly labeled pixels. The s&to in the cluster. We have chosen a maximum of 15 images per
performance metric is the class-averaged performancehwheluster in our experiments. At this size, it seems to already
is normalized for the different abundance of classes in thewve a reasonable number of matching images within the
dataset. Here we separately compute the proportion of eathster while keeping the running time below 7 minutes and
class labeled correctly and average the result. the memory usage below 1GB. For larger sets inference can

Table | and Table Il show the quantitative results frorbecome intractable and we are currently investigating viays
our experiments using patches of dimensid@® 100and reduce some of the computational overhead, e.g., by lignitin
25 25 pixels, respectively. Inclusion of the soft betweenthe total number of edges per variable or using other infaxen
image constraint improves the overall class accuracy by algorithms.
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Fig. 4. Best viewed in colour. These images show improved pixel labeling accuracy when usimgmodel. The images in row (a) show the labeling
of the sheep gets corrected from a baseline model labelingrafusing our model. Row (b) shows that the building was lathele an airplane using the
baseline model and that its labeling gets corrected usingnmatel. Rows (c) and (d) show signi cant improvements in the lialgeof the cow and bicycles,

respectively.

g oo, unmno Time 215 oo R0 sets necessitates distributed algorithms for multi-lavedrgy

: o +gao:mo 83 *ZO:J:“)O minimization. Such approaches have been explored in tre cas
g 200 5’53 of graphs with reglular structure [25], but it is unclear vma_zn

'3 1000 218 these are appropriate to the less regular structures adifnit

£ oo 503 our between-image constraints.

@

0O 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

No. of Images No. of Images Second, our matches are currently constrained to be of the
same size and orientation. Generalizing the matches todbe sc
and rotation invariant would almost certainly result in gom
Fig. 6. Running time and memory consumption as a function of the sibetter matches. Furthermore, analysis of the matches ¢eg.
of the image set for joint segmentation using patch size2%f 25 and g e 3) suggests that enforcing that all correspondinglgi
100 100. Both show a linear increase with increase in number of images. .~ ", . .
within the matched regions agree may contribute to degrada-
tion in performance in some cases. Constructing a more tobus
V. DISCUSSION constraint, such as only_ requiring a subset of the pixels .to
agree, would avoid this issue and is related to current ectiv
This work introduces a novel approach to the problem é¢search in higher-order potentials for Markov random ld
multi-class pixel labeling. Instead of treating each image  Third, we would like to explore model-free approaches
the test set as an isolated test case, we nd regions witthere instead of using the training data to learn appearance
similar appearance between images and prefer solutioneewhmodels for each of the classes of interest, we could simply ad
these regions are labeled consistently across the dafdset. soft constraints between images in the training set andésag
advantage of this approach is that contextual informatim cin the test set. Unlike the constraints we have now between tw
propagate through all images in a collection thereby impigv images in the test set, these additional constraints wadlde a
overall accuracy across the images. for labels to be transferred from the training set. This doul
Our research suggests a number of directions for futun@ve a number of advantages for large-scale systems, such
work. First, there are a number of meta-parameters—paie$ the ability to incrementally grow the training set withou
size, image and patch similarity metric, etc.—which effedtaving to re-learn the model parameters.
the performance of our method and a detailed exploration ofLast, there will always be vastly more unlabeled images
these parameters may lead to greater gains from our approdabhn images with available annotations. Our current work
One important meta-parameter, governed by computatiosalggests that there exist opportunities to exploit thessgén
and memory constrains, is the size of the sets over which ¥e& constraining label con gurations and improving scene
can perform tractable inference. Expanding to larger imagederstanding. We are excited about exploring other ways in

(&) Running Time (b) Memory Usage
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Fig. 5. Best viewed in colour.These images show some degradation in the pixel labeling @ancwhen using our model. Row (a) shows how the labeling
of a cow switches to sheep with our model. Row (b) shows how tlhe gets incorrectly labeled as sea with our model. Rows (@)(dhshow how a sign
and a cat both get incorrectly labeled as building with our ehod

which considering image collections jointly can help toprd12] S. Vicente, C. Rother, and V. Kolmogorov. Object cosegmen-
duce better interpretations for all the images in the cttbec

[13]
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