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Abstract—Multi-class pixel labeling is an important problem
in computer vision that has many diverse applications, including
interactive image segmentation, semantic and geometric scene
understanding, and stereo reconstruction. Current state-of-the-
art approaches learn a model on a set of training images and then
apply the learned model to each image in a test set independently.
The quality of the results, therefore, depends strongly on the
quality of the learned models and the information available within
each training image. Importantly, this approach cannot leverage
information available in other images at test time which may
help to label the image at hand.

Instead of labeling each image independently, we propose a
semi-supervised approach that exploits the similarity between
regions across many images in coherent image subsets. Specif-
ically, our model �nds similar regions in related images and
constrains the joint labeling of the images to agree on the labels
within these regions. By considering the joint labeling, our model
gets to leverage contextual information that is not available when
considering images in isolation.

We test our approach on the popular 21-class MSRC multi-
class image segmentation dataset and show improvement in
accuracy over a strong baseline model.

I. I NTRODUCTION

Multi-class image labeling—the task of assigning a class
label to every pixel in an image—is an important problem in
computer vision [1, 2, 3, 4]. The general problem formulation
can be applied to many applications, including interactive
�gure/ground segmentation [5], geometric and semantic scene
understanding [1, 6], and stereo reconstruction [7]. For exam-
ple, in the context of semantic scene understanding a common
task is to annotate every pixel in the image with a label from
a pre-de�ned set of categories, e.g.,sky, road, tree, etc. One
of the most successful approaches to these problems uses con-
ditional Markov random �elds (CRFs), which combine local
information for predicting class labels (such as colour, texture
and position within the image) with a prior for smoothness.
The smoothness prior favours label con�gurations in which
adjacent pixels (with similar colours) are labeled with thesame
category. Loosely speaking, this can be thought of as encoding
the knowledge that objects have large spatial support.

Local neighbourhood priors can also encode contextual
information such as co-occurrence of label pairs. In this setting
con�dent predictions from neighbouring pixels can in�uence
the labeling of less con�dent predictions, so that,�sh adjacent
to water is more likely than�sh adjacent tosky, for example.

Since the CRF is connected, this information can propagate
throughout the image. More expressive forms of contextual
information (such assky appears aboveroad) have been
demonstrated by a number of researchers to improve labeling
accuracy [8, 9]. The contextual information is usually derived
from other regions within the same image and can therefore
be limited. Moreover, since the contextual cues are derived
from the single image at hand, they can sometimes reinforce
incorrect interpretations of the image. Information from other
images in the dataset, which could provide a rich source of
context is ignored at test time in existing CRF models.

In this work, we extend the idea of a local pairwise
smoothness prior between adjacent pixels within an image
to that of a long-range pairwise consistency prior for prop-
agating information between images. We then perform joint
multi-class pixel labeling of all the images in the test set.
Speci�cally, we construct a conditional Markov random �eld
over pixels from a set of images rather than a single image.
Edges between neighbouring pixels within the same image
enforce the smoothness prior discussed above and that is
present in many state-of-the-art approaches. Edges between
pixels in different images encode our desire to label similar
regions consistently across the dataset. This has the bene�t of
propagating contextual information from one image to another.

The following example provides some intuition into why
this may be bene�cial: Consider a set of images containing a
variety of instances of the same object category (e.g., a car) in
many of the images. In some of the images the objects may
be easily recognized. However, instances from the same object
category in other images may be more dif�cult to recognize
on their own due, say, to weak local features (e.g., missing
wheels) or lack of context (e.g., images of cars without visible
road below the car). By �nding matching regions (such as
the cars' headlights) between different images we are able to
exploit the more easily recognized objects to help identifythe
more dif�cult ones.

Our approach can be thought of as a semi-supervised image
labeling approach. Like traditional pixel labeling approaches,
we �rst learn a model from a set of annotated training images.
However, instead of using that model to label each image in
the dataset in isolation, we enforce soft labeling constraints
between regions with similar appearance in different images.
Importantly, the soft constraints are found in an unsupervised



manner (i.e., without knowing the class labels). Experiments
on the 21-class MSRC dataset [10] demonstrate that this leads
to an improvement over a strong baseline CRF model.

II. BACKGROUND AND RELATED WORK

Our work builds on the work from a number of researchers
who have investigated the problem of multi-class pixel label-
ing. Perhaps, the most in�uential works are those of He et al.
[1] and Shotton et al. [2], which are early examples of the use
of conditional Markov random �elds (CRFs) for the multi-
class pixel labeling task. In particular, these models de�ne
a grid-structured pairwise CRF over pixels with smoothness
prior. Our work extends this approach from inference on single
images to concurrent inference on multiple images in a set.

A line of research known as “co-segmentation” has also
studied the problem of labeling pixels in multiple images
simultaneously in recent years, with great success [11, 12].
Here the task is to perform joint segmentation of the same,
or a similar looking object, from two or more images. The
assumption is that using more images provides additional
information that can help improve the segmentation quality—
an assumption that is supported by impressive experimental
results (see, for example, Rother et al. [11]).

Similar to co-segmentation, our work does joint image
segmentation over sets of images. However, our work has
a number of key differences. First, we do not impose the
constraint of having a common object in the sets of images.
Instead, we focus on the semantic classes of the objects
appearing in the images. For instance, in a collection of images
that all have a car in them, we do not require the cars to be
exactly the same. Second, we do not assumea priori that
the images will contain the same object. Instead, we employ
a matching stage to correspond similar regions and reason
that these imply similar semantics. Last, we are interested
in the case of multi-class labeling rather than �gure-ground
segmentation. That is, we may have multiple different objects
and background regions in the image set, and wish to label
each of these. To achieve this, we use a local region matching
algorithm [13] to form correspondences between the similar
regions of these images that are encoded in a CRF de�ned
over the entire image set.

Our work makes use of the observation that scenes can be
clustered into similar types, and that by �nding regions with
similar appearance within different images we can constrain
labelings between images. To cluster the images we compute
a gist descriptor [14] and perform hierarchical agglomerative
clustering (see Section III-C below). Other techniques for
building similarity graphs over image collections have been
explored in the literature (e.g., [15]), however, the aim inthese
works is often for image categorization or navigation, not to
provide context for pixel labeling.

Other recent works have exploited this observation for scene
labeling, but for the purpose of labeling a single image. Forex-
ample, Liu et al. [16] aligns a novel scene with similar scenes
from a large corpus of labeled images and transfer the labels
from the corpus to the novel scene. The algorithm performs

well on background classes and can be easily expanded to
incorporate new objects. However, since the alignment is done
at a scene level small objects are often missed. Moreover,
unlike our approach, it does not make use of the similarity
between images in the set of images to be labeled.

III. P IXEL LABELING FOR IMAGE SETS

In this section we describe our approach to dataset labeling.
Unlike traditional approaches to multi-class pixel labeling,
which learn a model and then apply the learned model
to each test image in isolation, our method simultaneously
labels collections of images thereby leveraging contextual
information available from different images at test time. We
begin by describing a typical conditional Markov random �eld
formulation of the single-image pixel labeling problem. We
then extend this formulation to the case of multiple images.

A. Conditional Markov Random Fields for Pixel Labeling

Conditional Markov random �elds (CRFs) are a class
of probabilistic models for encoding conditional probability
distributions over correlated random variables. They were
�rst introduced as a generalization to Markov random �elds
(MRFs) by Lafferty et al. [17] for language modeling, but
have subsequently proven to be a powerful framework for
many problems in computer vision such as multi-class pixel
labeling [1, 2].

Given an imageI , a CRF for pixel labeling de�nes an
energy functionover different label con�gurations where lower
energy labelings are preferred by the model.1 Concretely, let
L be a set of discrete labels, e.g.,f sky; road; : : :g, and let
y = ( y1; : : : ; yn ) be a vector of labels for the image where
yp 2 L is the label assigned to pixelp. A pairwise CRF de�nes
an energy function as the combination ofunary andpairwise
potentialsas

E(y ; I ) =
nX

i =1

 i (yi ; I ) +
X

ij 2N 8

 ij (yi ; yj ; I ) (1)

where  i (yi ; I ) are the unary potentials de�ned for each
variable and ij (yi ; yj ; I ) are the pairwise potentials de�ned
over adjacent variables in the image. HereN8 represents the
8-connected neighbourhood of pixels, i.e., the subset of pairs
(i; j ) such that pixelsi and j and adjacent to each other in
the image.

The unary potentials capture an individual pixel's preference
for each label given some local features. In our work, we
construct the local features as follows: First, we convolvethe
image with a 17-dimensional �lter bank to produce raw image
features. The speci�cation for the �lter bank is described in
Shotton et al. [2]. Next, we de�ne a3� 3 grid of cells centered
around each pixelp, where each grid cell covers a5� 5 patch
of pixels, and compute the mean and standard deviation of raw
(17-dimensional) features in each cell. Finally, we appendthe

1Formally, the energy function is de�ned as the negative log ofthe
unnormalized conditional probability, i.e., ifE (y ; x ) is the energy function,
thenP (y j x ) / expf� E (y ; x )g.



raw image features, the mean and standard deviation features
and the normalizedx andy location of the pixel together into
a 325-dimensional local feature vector.

The local features are used to build a classi�er that estimates
the probability of each label given the features. These will
ultimately be used for specifying the unary potentials in our
model. To learn this multi-class classi�er, we �rst train a one-
versus-all boosted decision tree classi�er [18] for each label
` 2 L . We then combine the output of these one-versus-all
classi�ers through multi-class logistic regression trained via
maximum-likelihood to calibrate the scores [19]. Concretely,
let f p 2 R325 be the local feature vector for pixelp. We learn
a boosted classi�er� ` : R325 ! R for each class̀ 2 L . Let
� (f p) = ( � 1(f p); : : : ; � L (f p)) be the vector of scores from
the boosted classi�ers. Our multi-class classi�er is then

P(yp = ` j f p) =
exp

n
� T

` � (f p)
o

P
k2L exp

n
� T

k � (f p)
o (2)

where � are the learned parameters. The unary potential for
each pixel is formed by taking the negative log-probabilityfor
each class from this logistic classi�er,

 i (yi ; I ) = � logP(yi j f i ): (3)

While our model makes use of boosted decision tree clas-
si�ers and multi-class logistic regression, the quality ofthe
�nal model appears quite robust to this choice and other
researchers have reported similar baseline results using other
classi�er architectures, such as random forests and support
vector machines.

The pairwise potential imposes a contrast-sensitive smooth-
ness prior [5]. In other words, the model prefers con�gurations
where adjacent pixels take the same label. More formally, we
de�ne the contrast-sensitive smoothness prior for two adjacent
pixels i and j as

 ij (yi ; yj ; I ) =

(
� 1
dij

+ � 2
dij

exp
n

� kx i � x j k2

2�

o
yi 6= yj

0 otherwise
(4)

wherex i andx j are the RGB colour vectors for pixelsi andj ,
respectively, and� =



kx i � x j k2

�
ij 2N 8

is the mean-square-
difference in colour over all adjacent pixels in the image. The
non-negative parameters� 1 and � 2 weight the prior relative
to the unary terms and are learned by cross-validation on the
training set of images to maximize overall pixel accuracy. Here
dij scales the contribution of the prior by the distance between
the pixels, i.e.,dij = 1 for 4-connected pixels, anddij =

p
2

for diagonally-connected pixels.
The contrast-sensitive pairwise potentials capture our belief

that images are generally smooth with label changes only
occurring at the boundary between regions of different ap-
pearance. While this assumption is generally a good one, its
implementation in CRFs for pixel labeling suffers from a num-
ber of drawbacks. First, correct labeling relies on good local
evidence, i.e., local features that can predict the correctcate-
gory label. Second, determining where the region boundaries

are can be dif�cult when only considering differences in colour
between neighbouring pixels. Last, contextual information that
may assist the correct labeling of a region may not be present
in all images. Extending our model to image sets rather than
individual images partially addresses these drawbacks.

B. Extending Conditional Random Fields to Image Sets

Consider two images with similar objects appearing in each
of the images. Now assume that we are given correspondence
information between the images, i.e., we are told that a subset
of pixels in one of the images corresponds (semantically) toa
subset of pixels in the other image. Then, just like the pairwise
smoothness prior, we could encode a soft constraint that these
pixels be labeled as belonging to the same semantic class.
Note, that we do not need to be told what the semantic class
is for this information to be useful. Furthermore, the corre-
spondence information that we receive may contain errors so
we will want our constraint to be weighted by our con�dence
in the correspondence.

Formally, let I 1 and I 2 be two images and letP =
f (p1; p2) : p1 2 I 1; p2 2 I 2g be a set of correspondences
between pairs of pixels(p1; p2) from the �rst and second
image, respectively. We can now de�ne a joint image labeling
energy function as

E(y 1; y 2; I 1; I 2) = E(y 1; I 1) + E(y 2; I 2)

+
X

(p;q)2P

 pq(y1;p ; y2;q ; I 1; I 2) (5)

where the last term encodes our soft constraint that the labels
for corresponding pixels,p in the �rst image and pixelq in
the second image, should match. Speci�cally we have,

 pq(y1;p ; y2;q ; I 1; I 2) =

(
� 3cpq y1;p 6= y2;q

0 otherwise
(6)

where y1;p and y2;q are the labels for pixelp in the �rst
image and pixelq in the second image, andcpq is a (non-
negative) score that represents our con�dence in the match.
In the following section we will describe how the matches
and con�dence scores are obtained. The constant� 3 weights
this between-image constraint against the unary and pair-
wise terms from the within-image components of the model,
i.e., E (y 1; I 1) andE(y 2; I 2).

Clearly this idea can be extended to multiple images where
we de�ne an energy functionE(f y i g

n
i =1 ; fI i gn

i =1 ) over the
joint labeling of multiple imagesI 1; : : : ; I n , and let the set
P contain pairs of corresponding pixels between any two of
images in the set.

C. Matching Regions Between Images

Our model requires that we �nd good matches between
regions in different images. To reduce computational require-
ments while still �nding matches that are likely to help
improve labeling accuracy we adopt a two stage approach. In
the �rst stage we compute a global gist descriptor [14] for each
image. We then cluster the images (separately for the training



(a) (b)

(c) (d)

Fig. 1. Some example clusters obtained by running hierarchical agglomerative clustering on gist features. Scenes with similar objects tend to be grouped
together. For example, (a) contains exclusively trees, while (b) is mostly aeroplanes. The tree structure represents merge order during clustering. See text for
details.

and testing sets) by performing hierarchical agglomerative
clustering as follows: Letgi 2 Rn be the gist descriptor for
the i -th image in image setS (either training or testing), let
D ij = kgi � gj k2 be the distance between two imagesi and
j in gist-space, and letN max be the maximum number of
images that we can tolerate per cluster.2 Initially we start with
each image in its own cluster. We then repeatedly merge two
clusters at a time until any further merge results in a cluster
of size greater thanN max. At each iteration we �nd the two
clusters such that their combined size is less thanN max and
with minimum distance between their elements. Formally, we
�nd clusters Sa andSb satisfying

(a; b) = argmin
a6= b:jS a [S b j� N max

�
min

i 2S a ;j 2S b

D ij

�
(7)

We then merge the clusters to create a new clusterSa [ S b.
Some example clusters on the MSRC [10] dataset forN max =
15 are shown in Figure 1.

In the second stage, we look for similar regions between im-
ages within the same cluster. We use the PATCHMATCH algo-
rithm introduced by Barnes et al. [20]. Brie�y, PATCHMATCH

is an approximation algorithm that performs an incremental

2See the experimental section for metrics on running time and memory
usage as a function of the number of images per cluster.

search over all patches in one image to �nd the most similar
patch in another image with respect to some distance metric.
The algorithm takes two imagesI 1 andI 2, and the patch size
as input. Since we are interested in matching every patch in
the image, the output of the algorithm can be thought of as an
approximatenearest-neighbour �eld(NNF) which is de�ned
as a functionf 1! 2 : I 1 ! R 2 whereR 2 gives the offset of
the approximated most similar patch in imageI 2. Similarly,
the algorithm will producef 2! 1 : I 2 ! R 1.

The PATCHMATCH algorithm has three phases. The �rst
phase initializes the target NNF with random offsets. Most of
these initial assignments are likely to be bad matches, however,
some of the matches will be good. The second phase exploits
these good matches by propagating them to neighbouring
patches under the assumption that images have a naturally
smooth structure—i.e., a neighbouring patch ofp will probably
be a good match for a neighbouring patch off (p). The third
phase performs a random search over patches within a radius
of the best offsets found so far for potentially better matches.
PATCHMATCH is essentially a local search and the third
phase allows it to escape from local maxima. The algorithm
iterates over the second and third phases and terminates after a
�xed number of iterations or after convergence (no improved
matches can be found).



The randomized search strategy for �nding an approximate
NNF instead of an exact NNF also allows PATCHMATCH to
run very ef�ciently. Furthermore, the quality of the matches
produced by PATCHMATCH have been shown to be good and
the algorithm has been successfully used in image editing tasks
such as re-targeting, completion, and reshuf�ing [13, 20, 21].

We run the PATCHMATCH algorithm on all pairs of images
in each cluster and retain the top three nearest-neighbours
per image patch. These are then used to add edges between
images when constructing our image-set CRF (as described in
Section III-B). This achieves our goal of encoding the soft
constraint that regions with similar appearance in different
images should be labeled the same. Figure 2 shows examples
of good and bad matches found by the PATCHMATCH algo-
rithm. Here we de�ne “bad” to mean matches for which the
corresponding regions have different semantics (even though
they may have similar appearance). We note that our algorithm
currently searches over patches of the same size and orienta-
tion. Extending the search to be scale and rotation invariant is
an interesting topic for future work.

Since matches for some patches may not be found and to
make our model more robust to poor matches we adjust the
strength of the between-image label constraint as a function
of the quality of the match as indicated bycpq in Equation 6.
Speci�cally, letspq be the score returned by the PATCHMATCH

algorithm for matching pixelp in imageI 1 to pixel q = f (p)
in image I 2, where a lower score indicates a better match.
Then we setcpq to

cpq = exp
�

�
spq

2�

�
(8)

where� is the mean match score returned by PATCHMATCH

for all pairs of matches in the image set.

D. Inference

After constructing the CRF to add soft constraints between
images, we run inference to �nd the most likely joint labeling
of all images in the image set. However, exact inference in our
model—as well as the baseline CRF model—is intractable and
we have to resort to an approximate inference scheme.

By design, our energy function belongs to the class of so-
called regular (or submodular) energies [22] and can there-
fore be minimized using the� -expansion variant of graph-
cuts [23, 24]. The� -expansion algorithm is a move-making
algorithm that solves a series of binary problems in an it-
erative manner. The variables in the model are initialized to
some valid assignment—in our case we take the minimizing
assignment from each unary term. Then at each iteration, the
optimal assignment is found in the sub-space of labels where
each variable can either keep its current assignment or switch
to the label� 2 L . Since our energy function is submodular
this can be done exactly. A new label� 2 L is then chosen
for the next iteration and the procedure repeated until no move
results in a lower energy assignment.

For computer vision applications where the number of
pairwise terms in the energy function is sparse, very ef�-

(a)

(b)

Fig. 2. Some examples of matches produced by PATCHMATCH between
100� 100 patches. Images in (a) show some of the good matches. Images in
(b) show some of the bad matches. We mitigate the effect of these bad matches
using the match con�dence score, which is determined by the RGBdistance
between the patches. Although, there are some cases where a match between
two different objects have a very low RGB distance and, consequently, a very
high con�dence score.

cient algorithms exist for solving the resulting optimization
problem at each� -expansion iteration (see [24]). While our
energy function has more pairwise terms than the standard 8-
connected CRF they are still relatively few compared to the
number of variables in the model. As discussed above, we limit
the number of matches from each pixel to three (although we
place no limit on the number of matches that can be made
to a pixel). As such, we found inference to be quite fast and
in practice followed a linear increase in running-time as the
number of images increased (see Figure 6).

IV. EXPERIMENTAL RESULTS

We conducted experiments on the multi-class image labeling
task and compared the results of using CRFs on image sets,
with correspondences over similar regions, and CRFs without
these correspondences, i.e., the baseline model on individual
images. The dataset used for these experiments was the 21-
class MSRC dataset [10] consisting of 591 annotated images.
Each image is approximately320 � 240 and the dataset
contains avoid label for unknown pixels, which are ignored
during both training and evaluation.3 As is standard on this
dataset, we split the images into a training set consisting of
315 images and an evaluation set consisting the remaining 276
images. We have established �ve different folds of the dataset
where each fold has a random partition of the images into
training and test sets. These sets were then divided into clusters
of up to N max = 15 images as described in Section III-C
above.

3The dataset also contains labels formountainand horse. However, there
are very few instances of these and we follow the literature in treating these
categories asvoid.



TABLE I
RESULTS FOR100 � 100 PATCHES

Overall class accuracy Average class accuracy
Fold Baseline Our model Baseline Our model

1 73.2 74.1 58.0 58.7
2 76.1 77.4 64.1 65.0
3 71.6 73.4 59.3 60.6
4 72.4 73.3 58.0 57.8
5 75.9 76.0 63.2 63.0

A comparison of the overall class accuracy and average class accuracy of
the baseline and our model using patch matches of size100 � 100 pixels.

TABLE II
RESULTS FOR25 � 25 PATCHES

Overall class accuracy Average class accuracy
Fold Baseline Our model Baseline Our model

1 73.2 73.8 58.0 57.8
2 76.1 77.1 64.1 65.0
3 71.6 72.8 59.3 59.9
4 72.4 72.9 58.0 57.7
5 75.9 76.2 63.2 63.5

A comparison of the overall class accuracy and average class accuracy of
the baseline and our model using patch matches of size25 � 25 pixels.

All parameters in the model were learned on the set of
training images. Speci�cally, we used a random sample of
pixels from the training images to learn the unary terms
and then performed cross-validation to �nd the best weights
� 2 and � 3, for the within-image pairwise smoothness term
and between-image label matching constraint, respectively (we
found that� 1 had little effect on performance and simply set
it to zero for all experiments). Note that the learned parameter
for � 2 was different for the baseline model and our model
with between-image terms.

In the region matching procedure discussed in Section III-C,
we have chosen RGB as our colour-space and used the sum-
of-squared difference over the RGB channels as our distance
metric in the PATCHMATCH algorithm. Furthermore, we par-
titioned each image into non-overlapping patches on a regular
grid. For each grid location in a particular image, we �nd the
best matches over all possible patches of other images in the
cluster using the PATCHMATCH algorithm. Thus, in a cluster
with N images, this process producesN � 1 matches for each
grid location. To reduce computational complexity and prune
poor matches, we limit the between-image edges to the top
three matches (based on the PATCHMATCH score) per patch.

We measure performance by two different metrics and
report average results on the evaluation set for each fold.
The �rst performance metric measures overall accuracy and is
simply the proportion of correctly labeled pixels. The second
performance metric is the class-averaged performance, which
is normalized for the different abundance of classes in the
dataset. Here we separately compute the proportion of each
class labeled correctly and average the result.

Table I and Table II show the quantitative results from
our experiments using patches of dimensions100� 100 and
25 � 25 pixels, respectively. Inclusion of the soft between-
image constraint improves the overall class accuracy by an

Fig. 3. Best viewed in colour.Example matches for patches sizes of100�
100 at �xed grid locations. Shown are the top matches for each gridlocation
in the center image to other images in the same cluster. Matches from other
images in the cluster to the center image are not shown.

average of 1.0% and the average class accuracy by 0.5% for
the 100 � 100. While using 25 � 25 gives a slightly lower
average improvement of 0.7% for the overall class accuracy
and 0.3% for the average class accuracy. Our results show a
consistent improvement in overall accuracy in all folds and
improvement in class-averaged accuracy in most of the folds.

We also show the qualitative results to see how the soft
constraint over similar regions affect the labeling of the im-
ages. In Figure 4, we show some of the images with improved
labelings using our model. On the other hand, our model has
also introduced some degradation to the labeling accuracy.We
show some of the degraded labelings in Figure 5.

Figure 3 shows the top matching regions for one of the
images in our dataset. Clearly all of the matches are in the
correct context (i.e., aeroplanes on a �eld). This is helped
by our clustering algorithm, which groups similar images
together based on global structure. Moreover, a number of the
matches are consistent with respect to the semantics of the
corresponding pixels, for example, the front of the aeroplane
(bottom-right). However, there are also matches which are
partially inconsistent, e.g., the aeroplane's tail (top-left). This
explains why performance sometimes degrades and suggests
that a more robust pairwise potential, which only requires a
subset of the pixels within each pair of matched regions to
agree, may improve performance.

Finally, Figure 6 shows that the running time and memory
usage of our algorithm grow linear to the number of images
in the cluster. We have chosen a maximum of 15 images per
cluster in our experiments. At this size, it seems to already
have a reasonable number of matching images within the
cluster while keeping the running time below 7 minutes and
the memory usage below 1GB. For larger sets inference can
become intractable and we are currently investigating waysto
reduce some of the computational overhead, e.g., by limiting
the total number of edges per variable or using other inference
algorithms.
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Fig. 4. Best viewed in colour.These images show improved pixel labeling accuracy when usingour model. The images in row (a) show the labeling
of the sheep gets corrected from a baseline model labeling of bird using our model. Row (b) shows that the building was labeled as an airplane using the
baseline model and that its labeling gets corrected using ourmodel. Rows (c) and (d) show signi�cant improvements in the labeling of the cow and bicycles,
respectively.

(a) Running Time (b) Memory Usage

Fig. 6. Running time and memory consumption as a function of the size
of the image set for joint segmentation using patch sizes of25 � 25 and
100 � 100. Both show a linear increase with increase in number of images.

V. D ISCUSSION

This work introduces a novel approach to the problem of
multi-class pixel labeling. Instead of treating each imagein
the test set as an isolated test case, we �nd regions with
similar appearance between images and prefer solutions where
these regions are labeled consistently across the dataset.The
advantage of this approach is that contextual information can
propagate through all images in a collection thereby improving
overall accuracy across the images.

Our research suggests a number of directions for future
work. First, there are a number of meta-parameters—patch
size, image and patch similarity metric, etc.—which effect
the performance of our method and a detailed exploration of
these parameters may lead to greater gains from our approach.
One important meta-parameter, governed by computational
and memory constrains, is the size of the sets over which we
can perform tractable inference. Expanding to larger image

sets necessitates distributed algorithms for multi-labelenergy
minimization. Such approaches have been explored in the case
of graphs with regular structure [25], but it is unclear whether
these are appropriate to the less regular structures admitted by
our between-image constraints.

Second, our matches are currently constrained to be of the
same size and orientation. Generalizing the matches to be scale
and rotation invariant would almost certainly result in some
better matches. Furthermore, analysis of the matches (e.g., see
Figure 3) suggests that enforcing that all corresponding pixels
within the matched regions agree may contribute to degrada-
tion in performance in some cases. Constructing a more robust
constraint, such as only requiring a subset of the pixels to
agree, would avoid this issue and is related to current active
research in higher-order potentials for Markov random �elds.

Third, we would like to explore model-free approaches
where instead of using the training data to learn appearance
models for each of the classes of interest, we could simply add
soft constraints between images in the training set and images
in the test set. Unlike the constraints we have now between two
images in the test set, these additional constraints would allow
for labels to be transferred from the training set. This could
have a number of advantages for large-scale systems, such
as the ability to incrementally grow the training set without
having to re-learn the model parameters.

Last, there will always be vastly more unlabeled images
than images with available annotations. Our current work
suggests that there exist opportunities to exploit these images
for constraining label con�gurations and improving scene
understanding. We are excited about exploring other ways in
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Fig. 5. Best viewed in colour.These images show some degradation in the pixel labeling accuracy when using our model. Row (a) shows how the labeling
of a cow switches to sheep with our model. Row (b) shows how the road gets incorrectly labeled as sea with our model. Rows (c) and (d) show how a sign
and a cat both get incorrectly labeled as building with our model.

which considering image collections jointly can help to pro-
duce better interpretations for all the images in the collection.
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