Deep Declarative Networks: A New Hope

A/Prof. Stephen Gould

Research School of Computer Science

The Australian National University
2019

What did we gain?

\checkmark Better-than-human performance on closed-world classification tasks
\checkmark Very fast inference (with the help of GPU acceleration)
\checkmark versus very slow iterative optimization procedures
\checkmark Common tools and software frameworks for sharing research code
\checkmark Robustness to variations in realworld data if training set is sufficiently large and diverse

What did we lose?

x Clear mathematical models; separation between algorithm and objective (loss function)
\times Theoretical performance guarantees
x Interpretability and robustness to adversarial attacks
x Ability to enforce hard constraints
x Intuition guided by physical models
\times Parsimony - capacity consumed learning what we already know

What if we could have the best of both worlds?

Deep learning models

- Linear transforms (i.e., convolutions)
- Elementwise non-linear transforms
- Spatial/global pooling

Deep learning layer

x : input
y : output
θ : local parameters
f : forward function

End-to-end computation graph

End-to-end learning

- Learning is about finding parameters that maximize performance,

$\operatorname{argmax}_{\theta} \quad$ performance $(\operatorname{model}(\theta))$

- To do so we need to understand how the model output changes as a function of its input and parameters
- (Local based learning) incrementally updates parameters based on a signal back-propagated from the output of the network
- This requires calculation of gradients

$$
\frac{d J}{d x}=\frac{d J}{d y} \frac{d y}{d x} \text { and } \frac{d J}{d \theta}=\frac{d J}{d y} \frac{d y}{d \theta}
$$

Example: Back-propagation through a node

Consider the following implementation of a node

```
fwd_fcn(x)
    y0}=\frac{1}{2}
    for t = 1, ..., T do
        \mp@subsup{y}{t}{}\leftarrow\frac{1}{2}(\mp@subsup{y}{t-1}{}+\frac{x}{\mp@subsup{y}{t-1}{}})
    return }\mp@subsup{y}{T}{
```

We can back-propagate gradients as

$$
\begin{gathered}
\frac{\partial y_{t}}{\partial y_{t-1}}=\frac{1}{2}\left(1-\frac{x}{y_{t-1}^{2}}\right) \\
\frac{\partial y_{t}}{\partial x}=\frac{1}{2 y_{t-1}}+\frac{\partial y_{t}}{\partial y_{t-1}} \frac{\partial y_{t-1}}{\partial x}
\end{gathered}
$$

It turns out that this node implements the Babylonian algorithm, which computes

$$
y=\sqrt{x}
$$

As such we can compute its derivative directly as

$$
\begin{aligned}
\frac{\partial y}{\partial x} & =\frac{1}{2 \sqrt{x}} \\
& =\frac{1}{2 y}
\end{aligned}
$$

```
bck_fcn(x, y)
    return }\frac{1}{2y
```

Chain rule gives $\frac{\partial J}{\partial x}$ from $\frac{\partial J}{\partial y}$ (input) and $\frac{\partial y}{\partial x}$ (computed)

Separate of forward and backward operations

Deep declarative networks (DDNs)

In an imperative node the implementation of the forward processing function \tilde{f} is explicitly defined. The output is then

$$
y=\tilde{f}(x ; \theta)
$$

where x is the input and θ are the parameters of the node.

In a declarative node the inputoutput relationship is specified as the solution to an optimization problem

$$
y \in \operatorname{argmin}_{u \in C} f(x, u ; \theta)
$$ where f is the objective and C are the constraints.

Imperative vs. declarative node example: global average pooling

$$
\left\{x_{i} \in \mathbb{R}^{m} \mid i=1, \ldots, n\right\} \rightarrow \mathbb{R}^{m}
$$

Imperative specification:

Declarative specification:

$$
y=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

$$
y=\underset{u \in \mathbb{R}^{m}}{\operatorname{argmin}} \sum_{i=1}^{n}\left\|u-x_{i}\right\|^{2}
$$

"the vector u that is the minimum distance to all input vectors $x_{i}{ }^{\prime \prime}$

Deep declarative nodes: special cases

Unconstrained (e.g., robust pooling)	$y(x) \in \operatorname{argmin}_{u \in \mathbb{R}^{m} f(x, u)}$
Equality Constrained (e.g., projection onto L_{p}-sphere)	$y(x) \in\left\{\begin{array}{c}\operatorname{argmin}_{u \in \mathbb{R}^{m}} f(x, u) \\ \text { subject to } h(x, u)=0\end{array}\right\}$
Inequality Constrained (e.g., projection onto L_{p}-ball)	$y(x) \in\left\{\begin{array}{c}\operatorname{argmin}_{u \in \mathbb{R}^{m}} f(x, u) \\ \operatorname{subject~to~} h(x, u) \leq 0\end{array}\right\}$

Imperative and declarative nodes can co-exist

Learning as bi-level optimization

learning problem

minimize (over $\boldsymbol{x})$	objective (\boldsymbol{x})
subject to	constraints (\boldsymbol{x})

bi-level learning problem
minimize (over \boldsymbol{x}) objective $(\boldsymbol{x}, \boldsymbol{y})$
subject to constraints (\boldsymbol{x})
declarative node problem
minimize (over \boldsymbol{y}) objective $(\boldsymbol{x}, \boldsymbol{y})$
subject to constraints (\boldsymbol{y})

A game theoretic perspective

- Consider two players, a leader and a follower
- The market dictates the price its willing to pay for some goods based on supply, i.e., quantity produced by both players, $P\left(q_{1}+q_{2}\right)$
- Each player has a cost structure associated with producing goods, $C_{i}\left(q_{i}\right)$ and wants to maximize profits, $q_{i} P\left(q_{1}+q_{2}\right)-C_{i}\left(q_{i}\right)$
- The leader picks a quantity of goods to produce knowing that the follower will respond optimally. In other words, the leader solves

$$
\begin{array}{cc}
\operatorname{maximize}_{q_{1}} & q_{1} P\left(q_{1}+q_{2}\right)-C_{1}\left(q_{1}\right) \\
\text { subject to } & q_{2} \in \operatorname{argmax}_{q} q P\left(q_{1}+q\right)-C_{2}(q)
\end{array}
$$

Solving bi-level optimization problems

$$
\begin{array}{cc}
\operatorname{minimize}_{x} & J(x, y) \\
\text { subject to } & y \in \operatorname{argmin}_{u} f(x, u)
\end{array}
$$

- Closed-form lower-level problem: substitute for \boldsymbol{y} in upper problem

$\operatorname{minimize}_{x} J(x, y(x))$

- May result in a difficult (single-level) optimization problem

Solving bi-level optimization problems

$$
\begin{array}{cc}
\operatorname{minimize}_{x} & J(x, y) \\
\text { subject to } & y \in \operatorname{argmin}_{u} f(x, u)
\end{array}
$$

- Convex lower-level problem: replace lower problem with sufficient conditions (e.g., KKT conditions)
$\begin{array}{cc}\text { minimize }_{x, y} & J(x, y) \\ \text { subject to } & h(y)=0\end{array}$
- May result in non-convex problem if KKT conditions are not convex

Solving bi-level optimization problems

$$
\begin{array}{cc}
\operatorname{minimize}_{x} & J(x, y) \\
\text { subject to } & y \in \operatorname{argmin}_{u} f(x, u)
\end{array}
$$

- Gradient descent: compute gradient with respect to \boldsymbol{x}

$$
x \leftarrow x-\eta\left(\frac{\partial J(x, y)}{\partial x}+\frac{\partial J(x, y)}{\partial y} \frac{d y}{d x}\right)
$$

- But this requires computing the gradient of \boldsymbol{y} (itself a function of \boldsymbol{x})

Algorithm for solving bi-level optimization

SolveBiLevelOptimization:

initialize x
repeat until convergence:
solve $y \in \operatorname{argmin}_{u} f(x, u)$
compute $J(x, y)$
compute $\frac{d J}{d x}=\frac{\partial J(x, y)}{\partial x}+\frac{\partial J(x, y)}{\partial y} \frac{d y}{d x}$
update $x \leftarrow x-\eta \frac{d J}{d x}$
return x

How do we compute $\frac{d}{d x} \operatorname{argmin}_{u \in C} f(x, u)$?

Implicit differentiation

Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function and let

$$
y(x)=\operatorname{argmin}_{u} f(x, u)
$$

The derivative of f vanishes at (x, y). By Dini's implicit function theorem (1878)

$$
\frac{d y(x)}{d x}=-\left(\frac{\partial^{2} f}{\partial y^{2}}\right)^{-1} \frac{\partial^{2} f}{\partial x \partial y}
$$

The result extends to vector-valued functions, vector-argument functions and (equality) constrained problems. See [Gould et al., 2019].

Proof sketch

$y \in \operatorname{argmin}_{u} f(x, u) \Rightarrow \frac{\partial f(x, y)}{\partial y}=0$

LHS: $\quad \frac{d}{d x} \frac{\partial f(x, y)}{\partial y}=\frac{\partial^{2} f(x, y)}{\partial x \partial y}+\frac{\partial^{2} f(x, y)}{\partial y^{2}} \frac{d y}{d x}$

RHS: $\quad \frac{d}{d x} 0=0$

Rearranging gives $\frac{d y}{d x}=-\left(\frac{\partial^{2} f}{\partial y^{2}}\right)^{-1} \frac{\partial^{2} f}{\partial x \partial y}$.

Deep declarative nodes: what do we need?

- Forward pass
- A method to solve the optimization problem
- Backward pass
- Specification of objective and constraints
- (And cached result from the forward pass)
- Do not need to know how the problem was solved

examples

Global average pooling

$$
\left\{x_{i} \in \mathbb{R}^{m} \mid i=1, \ldots, n\right\} \rightarrow \mathbb{R}^{m}
$$

Robust penalty functions, ϕ

Quadratic	Pseudo-Huber	Huber	Welsch	Truncated Quad.
$\frac{1}{2} Z^{2}$	$\sqrt{1+\left(\frac{z}{\alpha}\right)^{2}}-1$	$\left\{\begin{array}{c} \frac{1}{2} z^{2} \text { for }\|z\| \leq \alpha \\ \text { else } \alpha\left(\|z\|-\frac{1}{2} \alpha\right) \end{array}\right.$	$1-\exp \left(\frac{-z^{2}}{2 \alpha^{2}}\right)$	$\begin{cases}\frac{1}{2} z^{2} & \text { for }\|z\| \leq \alpha \\ \frac{1}{2} \alpha^{2} & \text { otherwise }\end{cases}$
closed-form, convex, smooth, unique solution	convex, smooth, unique solution	convex, non-smooth, non-isolated solutions	non-convex, smooth, isolated solutions	non-convex, non-smooth, isolated solutions

Example: robust pooling

minimize (over $x)$	$J(x, y) \triangleq \frac{1}{2}\\|y\\|^{2}$
subject to	$y \in \operatorname{argmin}_{u} \sum_{i=1}^{n} \phi\left(u-x_{i} ; \alpha\right)$

Example: Euclidean projection

closed-form, smooth, unique solution*

Example: quadratic programs

$$
\begin{array}{cc}
\operatorname{argmin}_{u \in \mathbb{R}^{m}} & \frac{1}{2} u^{T} P u+q^{T} u+r \\
\text { subject to } & A u=b \\
G u \leq h
\end{array}
$$

Can be differentiated with respect to its parameters:

$$
P \in \mathbb{R}^{m \times m}, \quad q \in \mathbb{R}^{m}, \quad A \in \mathbb{R}^{n \times m}, \quad b \in \mathbb{R}^{n}
$$

Example: convex programs

$$
\begin{array}{cc}
\operatorname{argmin}_{u \in \mathbb{R}^{m}} & c^{T} u \\
\text { subject to } & b-A u \in K
\end{array}
$$

Can be differentiated with respect to its parameters:

$$
A \in \mathbb{R}^{n \times m}, \quad b \in \mathbb{R}^{n}, \quad c \in \mathbb{R}^{m}
$$

Implementing deep declarative nodes

- Need: objective and constraint functions, solver to obtain y
- Gradient by automatic differentiation

$$
\frac{d y(x)}{d x}=-\left(\frac{\partial^{2} f}{\partial y^{2}}\right)^{-1} \frac{\partial^{2} f}{\partial x \partial y}
$$

```
import autograd.numpy as np
from autograd import grad, jacobian
def gradient(x, Y, f)
    fY = grad(f, 1)
    fYY = jacobian(fY, 1)
    fXY = jacobian(fY, 0)
    return -1.0 * np.linalg.solve(fYY(x,y), fXY(x,y))
```


cvxpylayers

- Disciplined convex optimization
- Subset of optimization problems

- Write problem using cvx
- Solver and gradient computed automatically!

```
x = cp. Parameter(n)
y = cp. Variable(n)
obj = cp. Minimize(cp.sum_squares(x - y ))
cons = [ y >= 0]
prob = cp. Problem(obj, cons)
layer = CvxpyLayer(prob, parameters=[x], variables=[y])
```


applications

Robust point cloud classification

[Gould et al., 2019]

Robust point cloud classification

O	Top-1 Accuracy \%						Mean Average Precision $\times 100$					
$\%$	$[34]$	Q	PH	H	W	TQ	$[34]$	Q	PH	H	W	TQ
0	88.4	84.7	84.7	86.3	86.1	85.4	95.6	93.8	95.0	95.4	95.0	93.8
10	79.4	84.3	85.6	85.5	86.6	85.5	89.4	94.3	94.6	95.1	94.6	94.7
20	76.2	84.8	84.8	85.2	86.3	85.5	87.8	94.8	95.0	95.0	94.8	95.0
50	72.0	84.0	83.1	83.9	84.3	83.9	83.3	93.8	93.5	94.3	94.8	94.8
90	29.7	61.7	63.4	63.1	65.3	61.8	38.9	76.8	78.7	78.5	79.1	76.6

O	Top-1 Accuracy \%					Mean Average Precision $\times 100$						
$\%$	$[34]$	Q	PH	H	W	TQ	$[34]$	Q	PH	H	W	TQ
0	88.4	84.7	84.7	86.3	86.1	85.4	95.6	93.8	95.0	95.4	95.0	93.8
1	32.6	84.9	84.7	86.4	86.2	85.3	48.6	93.8	95.1	95.3	95.1	93.0
10	6.47	83.9	84.6	85.3	86.0	85.9	8.20	93.4	94.8	94.4	94.9	93.9
20	5.95	79.6	82.8	81.1	84.7	84.9	7.73	91.9	93.4	92.7	94.2	94.6
30	5.55	70.9	74.2	72.2	77.6	83.2	6.00	87.8	89.5	85.1	90.9	92.8
40	5.35	55.3	59.1	55.4	63.1	75.6	6.41	77.6	80.2	72.7	83.2	90.6
50	4.86	32.9	36.0	34.6	44.1	57.9	5.68	62.3	60.2	60.1	66.4	85.3
60	4.42	14.5	16.2	18.1	27.1	30.6	5.08	39.1	36.3	38.5	42.7	68.5
70	4.25	5.03	6.33	7.95	$\mathbf{1 4 . 1}$	11.9	4.66	22.5	19.3	18.4	25.7	47.9
80	3.11	4.10	4.51	5.64	8.88	5.11	4.21	10.8	8.91	8.98	14.9	26.7
90	3.72	4.06	4.06	4.30	5.68	4.22	4.49	8.20	5.98	5.80	8.37	9.78

Video activity recognition

Stand Up

Sit Down

[Fernando and Gould, 2016]

Video clip classification pipeline

Temporal pooling

- Max/avg/robust pooling summarizes an unstructured set of objects

$$
\left\{x_{i} \mid i=1, \ldots, n\right\} \rightarrow \mathbb{R}^{m}
$$

- Rank pooling summarizes a structured sequence of objects

$$
\left\langle x_{i} \mid i=1, \ldots, n\right\rangle \rightarrow \mathbb{R}^{m}
$$

Rank Pooling

- Find a ranking function $r: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $r\left(x_{t}\right)<r\left(x_{s}\right)$ for $t<s$
- In our case we assume that $r: x \mapsto u^{T} x$ is a linear function
- Use u as the representation

Experimental results

Method	Accuracy (\%)
Max-Pool + SVM	66
Avg-Pool + SVM	67
Rank-Pool + SVM	66
Max-Pool-CNN (end-to-end)	71
Avg-Pool-CNN (end-to-end)	70
Rank-Pool-CNN (end-to-end)	87
Improved trajectory features + fisher vectors + rank-pooling	$\mathbf{8 7}$

Visual attribute ranking

1. Order a collection of images according to a given attribute
2. Recover the original image from shuffled image patches

Birkhoff polytope

- Permutation matrices form discrete points in Euclidean space which imposes difficulties for gradient based optimizers
- The Birkhoff polytope is the convex hull for the
 set of $n \times n$ permutation matrices
- This coincides exactly with the set of $n \times n$ doubly stochastic matrices
- We relax our visual permutation learning problem over permutation matrices to a problem over doubly stochastic matrices

$$
\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow B^{n}
$$

End-to-end visual permutation learning

Sinkhorn normalization or projection onto B^{n}

$$
\begin{aligned}
& \text { sinkhorn_fcn (A) } \\
& \begin{array}{l}
Q=A \\
\text { for } t=1, \ldots, T \text { do } \\
Q_{i, j}
\end{array} \frac{Q_{i, j}}{\sum_{k} Q_{i, k}} \\
& Q_{i, j} \leftarrow \frac{Q_{i, j}}{\sum_{k} Q_{k, j}} \\
& \text { return } Q
\end{aligned}
$$

Alternatively, define a deep declarative module

$$
\begin{array}{ll}
\underset{Q \in \mathbb{R}_{+}^{n \times n}}{\operatorname{minimize}} & \|Q-A\| \\
\text { subject to } & Q \mathbf{1}=\mathbf{1} \\
& Q^{T} \mathbf{1}=\mathbf{1}
\end{array}
$$

Visual attribute learning results

Blind perspective-n-point

Blind perspective-n-point

Blind perspective-n-point

Australian National University

code and tutorials at http://deepdeclarativenetworks.com CVPR 2020 Workshop (http://cvpr2020.deepdeclarativenetworks.com)

