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Abstract

We present hierarchical rank pooling, a video sequence

encoding method for activity recognition. It consists of a

network of rank pooling functions which captures the dy-

namics of rich convolutional neural network features within

a video sequence. By stacking non-linear feature functions

and rank pooling over one another, we obtain a high capac-

ity dynamic encoding mechanism, which is used for action

recognition. We present a method for jointly learning the

video representation and activity classifier parameters. Our

method obtains state-of-the art results on three important

activity recognition benchmarks: 76.7% on Hollywood2,

66.9% on HMDB51 and, 91.4% on UCF101.

1. Introduction

Activity and action recognition in video is important for

many real-life applications including human-computer in-

teraction, sports analytic, elderly-care, and healthcare. In

action recognition a key challenge is to extract and represent

high-level motion patterns, dynamics, and evolution of ap-

pearance of videos. Recently, some success has been gained

by exploiting temporal information [1, 4, 5, 13, 28, 36].

Some methods use linear ranking machines to capture first

order dynamics [4]. Other methods encode temporal infor-

mation using RNN-LSTMs on video sequences [28, 36, 37].

To further advance activity recognition it is beneficial to ex-

ploit temporal information at multiple levels of granularity

in a hierarchical manner thereby capturing more complex

dynamics of the input sequences [3, 16, 26]. As frame based

features improve, e.g., from a convolutional neural network

(CNN), it is important to exploit information not only in

the spatial domain but also in the temporal domain. Several

recent methods have obtained significant improvements in

image categorisation and object detection using very deep

CNN architectures [25]. Motivated by these deep hierar-

chies [3, 16, 26, 25], we argue that learning a temporal en-

coding at a single level is not sufficient to interpret and un-

derstand video sequences, and that a temporal hierarchy is

Figure 1: Illustration of hierarchical rank pooling for en-

coding the temporal dynamics of a video sequence.

needed.

The recently introduced rank pooling method [4, 5] man-

aged to obtain good activity recognition performance using

hand-crafted features. Given a sequence of video frames,

the rank pooling method returns a vector of parameters en-

coding the dynamics of that sequence. The vector of pa-

rameters is derived from the solution of a linear ranking

SVM optimization problem applied to the entire video se-

quence, i.e., at a single level. As richer features are used

to describe the input frames (e.g., CNN features) and more

complex video sequences are considered, a single level may

no longer be sufficient for good performance. Furthermore,

the capacity of linear ranking employed by Fernando et

al. [4, 5] is limited and the rank pooling representation may

not be discriminative for the task at hand.

To overcome these limitations, we propose to encode a

video sequence at multiple levels. First, we divide the orig-

inal video into multiple overlapping video segments. At

the lowest level, we encode each video segment using rank

pooling. The resulting encoding captures the dynamics of

small video segments (see Figure 1). By recursively ap-

plying rank pooling on the obtained segment descriptors,

we capture higher-order, non-linear, and complex dynam-

ics. The output of the each encoding level is itself another

sequence of vectors which captures higher-order dynamics
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of previous levels. We repeat this process to obtain more

complex and expressive representations at the higher lev-

els of the hierarchy. The final representation of the video

is obtained by encoding the top-level dynamic sequence us-

ing rank pooling. This strategy allows us to encode more

complicated activities thanks to the higher capacity of the

model. Moreover, we introduce a non-linear feature trans-

form that we apply at each level before the rank pooling

function. We jointly learn the parameters of the non-linear

transformation and the activity classifier.

Our hierarchical rank pooling consists of a feed forward

network of non-linear operations and rank pooling opera-

tions as illustrated in Figure 2. At the final layers we prop-

agate back the errors to learn both video representation and

the classifier. We claim that it is possible to capture a large

number of temporal dynamics using two or more level of

temporal encoding. In short, our main contributions are: (1)

a novel temporal encoding method called hierarchical rank

pooling, and (2) joint learning of the rank pooling based

discriminative video representation and classifier. Our pro-

posed method is useful for encoding dynamically evolving

frame-based CNN features, and we are able to show signif-

icant improvements over other effective temporal encoding

methods.

2. Related Work

In the literature, temporal information of video se-

quences is encoded using different techniques. Fisher en-

coding [22] of spatial temporal features is commonly used

in prior state-of-the-art works [33] while Jain et al. [9] used

VLAD encoding [10] for action recognition over motion

descriptors. Temporal max pooling and sum pooling are

used with bag-of-features [32] as well as CNN features [23].

Temporal fusion methods such as late fusion or early fusion

are used in [13] in the context of CNN architectures. Tem-

poral information can also be encoded using 3D convolu-

tion operators [11, 30]. However, as recently demonstrated

in [30], such approaches need to rely on very large video

collections to learn meaningful 3D-representations. How-

ever, it is not clear how these methods can capture long-term

vide dynamics as 3D convolutions are applied only on short

video clips. Rank pooling is also used for temporal encod-

ing at representation level [4, 5] or at image level leading to

dynamic images [1].

Recently, recurrent neural networks are getting popu-

lar and used extensively for sequence encoding, sequence

generation and sequence classification [8, 29]. Long-short

term memory (LSTM) based approaches may use the hid-

den state of the encoder as a video representation [28]. A

CNN feature based LSTM model for action recognition is

presented in [36]. Typically, recurrent neural networks are

trained in a probabilistic manner to maximize the likelihood

of generating the next element of the sequence. Our hier-

archical rank pooling method does not rely on very large

number of training samples as in recurrent neural networks.

Moreover, our method has a clear objective in capturing dy-

namics of sequences independent of other sequences and

has the capacity to capture complex dynamic signals.

Hierarchical methods have also been used in activity

recognition [3, 26]. A CRF-based hierarchical sequence

summarization method is presented in [26]; a hierarchical

recurrent neural network for skeleton based action recogni-

tion is presented in [3]; and a hierarchical action proposal

based mid-level representation is presented in [16]. How-

ever, our method captures mid-level dynamics as well as

dynamics of the entire video using hierarchical rank pool-

ing principle which is suited for rich feature representations

such as deep CNN features.

3. Background

In this section we introduce the notation used in this pa-

per and provide background on the rank pooling method [4],

which our work extends. Let X = {X1, X2, . . . , Xn} be

a set of n training videos, each belonging to one of K dis-

crete classes. We represent each video by a variable-length

sequence of J i vectors so thatXi =
〈
x
i
1,x

i
2, . . . ,x

i
J

〉
with

order constraints x
i
1 ≺ x

i
2 ≺ · · · ≺ x

i
t ≺ · · · ≺ x

i
J en-

forced by the chronology. A compact video representation

is needed to classify a variable-length video sequence X

into one of the K classes. As such, we define a tempo-

ral encoding function φ : X 7→ u, which maps the video

sequence X (or sub-sequence thereof) into a fixed-length

feature vector, u ∈ R
D. Standard supervised classification

techniques learned on the set of training videos X can then

be applied to these vectors.

The goal of temporal encoding is to encapsulate valu-

able dynamic information inX into a singleD-dimensional

vector φ(X). In the rank pooling method of Fernando et

al. [4], the sequence encoder φ(·) captures time varying in-

formation of the entire sequence using a single linear sur-

rogate function f parametrised by u ∈ R
D. The function

f ranks frames of the video X = 〈x1, . . . ,xJ 〉 based on

the chronology. Ideally, the ranking function satisfies the

constraint,

f(xta) < f(xtb) ⇐⇒ ta < tb (1)

That is, the ranking function should learn to order frames

chronologically. In the linear case this boils down to finding

a parameter vector u such that f(x;u) = u
T
x satisfies

Equation 1. In Fernando et al. [4] this is done by training a

linear ranking machine such as RankSVM [12] on X . They

then use the learned parameters of RankSVM, i.e., u, as the

temporal encoding of the video. Since the ranking function

encapsulates ordering information and the parameters lie in

the same feature space, the ranking function captures the

evolution of information in the sequence X .
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To include non-linearity in the ranking function, Fer-

nando et al. [4] use non-linear feature maps such as signed

square root [22] or chi-square feature maps [31]. And to

obtain better generalizability, they also smooth the video

signal by Time Varying Mean (TVM) vectors. Computing

the TVM vectors from the sequence X involves taking the

mean of the signal at each time step t and is given by

x̄t =
1

t

t∑

τ=1

xτ (2)

Then instead of learning dynamics of the original sequence

x1 ≺ x2 ≺ · · · ≺ xJ , Fernando et al. [4] observed

empirically better performance using the TVM sequence

x̄1 ≺ x̄2 ≺ · · · ≺ x̄J . We follow their recommendations

and apply the same temporal smoothing to the input.

4. Discriminative Hierarchical Rank Pooling

In this section we present our major contributions. First,

in Section 4.1 we present our main idea of hierarchical

rank pooling and formulate our hierarchical rank pooling

representation. Next, in Section 4.2 and Section 4.3, we

complete the technical details of our hierarchical rank pool-

ing method by describing our temporal encoding machinery

and non-linear feature transforms, respectively. Finally, in

Section 4.4, we present our second major contribution for

learning discriminative dynamics.

4.1. Hierarchical rank pooling

Even with a rich feature representation of each frame

in a video sequence, such as derived from a deep CNN

model [14], the shallow rank pooling method [4] may not

be able to adequately model complex activities over long

sequences. As such, we propose a more powerful scheme

for encoding the dynamics of CNN features from a video

sequence. Motivated by the success of hierarchical encod-

ing of deep neural networks [14, 6], we extend rank pooling

to encode dynamics of a sequence at multiple levels in a

hierarchical manner. Moreover, at each stage, we apply a

non-linear feature transformation (which we later learn) to

capture complex dynamical behavior. We call our method

hierarchical rank pooling.

Our main idea is to perform rank pooling on sub-

sequences of the video. Each invocation of rank pooling

provides a fixed-length feature vector that describes the sub-

sequence. Importantly, the feature vectors capture the evo-

lution of frames within each sub-sequence. Now, the sub-

sequences themselves are ordered. As such, we can apply

rank pooling over the generated sequence of feature vectors

to obtain a higher-level representation. This process is re-

peated to obtain dynamic representations at multiple levels

for a given video sequence until we obtain a final encoding.

To make this hierarchical encoding even more powerful, we

Figure 2: Two layer network of hierarchical rank pooling

with window size three (Mℓ = 3) and stride one (Sℓ = 1).

apply a point-wise non-linear operation on the input to the

rank pooling function. An illustration of the approach is

shown in Figure 2.

Concretely, let X(1) = 〈x1, . . . ,xJ〉 be the sequence

of CNN feature vectors describing each frame in the in-

put video. We first apply a non-linear transformation ψ to

each feature vector to obtain a modified sequence X̃(1) =
〈ψ(x1), . . . , ψ(xJ)〉. Then applying temporal encoding φ

to sub-sequences of X̃(1) we obtain a sequenceX(2) of fea-

ture vectors describing each video sub-sequence. The tem-

poral encoding function φ and non-linear transform ψ will

be described in detail in the following subsections.

The process of going from X(1) to X(2) constitues the

first layer of our hierarchy. We can now extend the process

through additional rank pooling layers, which we formalize

by the following definition.

Definition 1 (Rank Pooling Layer). Let X(ℓ) =

〈x
(ℓ)
1 , . . . ,x

(ℓ)
Jℓ

〉 be a sequence of Jℓ feature vectors. Let

Mℓ be the window size and Sℓ be a stride. For t ∈ {1, Sℓ +

1, 2Sℓ + 1, . . .} define transformed sub-sequences X̃
(ℓ)
t =

〈ψ(x
(ℓ)
t ), . . . , ψ(x

(ℓ)
t+Mℓ−1)〉, where ψ(·) is a point-wise

non-linear transformation. Then the output of the ℓ-th rank

pooling layer is a sequence X(ℓ+1) = 〈. . . ,x
(ℓ+1)
t , . . .〉

where x
(ℓ+1)
t = φ(X̃

(ℓ)
t ) is a temporal encoding of the

transformed sub-sequence X̃
(ℓ)
t .

Each successive layer in our rank pooling hierarchy cap-

tures the dynamics of the previous layer. The entire hierar-

chy can be viewed as applying a stack of non-linear ranking

functions on the input video sequence X and shares some

conceptual similarities with deep neural networks. A simple

illustration of a two-layer hierarchical rank pooling network

is shown in Figure 2.

By varying the stride and window size for each layer we
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can control the depth of the rank pooling hierarchy. There

is no technical reason to limit the number of layers but ex-

perimentally we found that a depth of two or three layers is

sufficient for activity recognition.

To obtain the final vector representation x
(L+1), we con-

struct the sequence for the final layer X(L), and encode

the whole sequence X(L) with a single temporal encoding

φ(X̃(L)). In other words, the last layer in our hierarchy pro-

duces a single temporal encoding of last output sequence

X̃(L). We use this final feature vector x(L+1) of the video

as its representation, which can then be classified by stan-

dard techniques, e.g., SVM classifier.

4.2. Sequence encoding machinery φ

As described above, our hierarchical rank pooling re-

quires a temporal encoding function φ. One choice is the

point-wise ranking function f(·;u) : xt 7→ t parametrized

by u, which clearly satisfies the order constraints of Equa-

tion 1. The idea of rank pooling is to estimate the function

f(·;u) using sequence data X and to use the parameter u

as a sequence representation. Due to its fast implementa-

tions, we use Support Vector Regression (SVR) to learn the

parameters of the point-wise ranking function [19]. Given a

sequence of length J , the SVR parameters are given by

u
⋆∈ argmin

u

{
1

2
‖u‖2 +

C

2

J∑

t=1

[
|t− u

T
vt| − ǫ

]2
≥0

}
(3)

where vt = ψ(xt) is a non-linear feature mapping and

[·]≥0 = max{·, 0} projects onto the positive reals.

The above SVR objective is a relaxation of the mapping

f : xt 7→ t. However, this relaxation is useful in the case of

modelling dynamics of videos as the above SVR objective

is robust. We use the parameter u⋆, returned by SVR, as the

temporal encoding vector of sequence X .

4.3. Capturing non­linear dynamics ψ

With the temporal encoding function defined, we now

provide details on our non-linear feature mapping, i.e.,

vt = ψ(xt) in Equation 3. Usually, video sequence data

contains complex dynamic information that cannot be cap-

tured simply using linear methods. To obtain non-linear dy-

namics, one option is to use non-linear feature maps. Here

we transform the input vectors xt by a non-linear opera-

tion ψ(xt) before applying SVR based rank pooling. The

resulting mapping that generates dynamics can be written

as f : ψ(xt) 7→ t. In the literature, Signed Square Root

(SSR) and Chi-square feature mappings are used to ob-

tain good results. Neural networks employ sigmoid and

hyperbolic tangent functions to model non-linearity. The

advantage of SSR is exploited by Fisher vector-based ob-

ject recognition as well as in activity recognition [4, 33].

Our experience is that it is important to consider positive

activations separately from the negative activations when

CNN features are used. Typically the rectification applied

in CNN architectures keeps only the positive activations,

i.e., ψ(x) = max{0,x}. However, we argue that nega-

tive activations may also contain some useful information

and should be considered. Therefore, we propose to use

the following non-linear function on the activations of fully

connected layers of the CNN architecture. We call this op-

eration the sign expansion root (SER),

ψ(x) =
(√

max{0, x},
√

max{0,−x}
)

(4)

This operation doubles the size of the features space al-

lowing us to capture important non-linear information, one

for positives and the other for negatives. The square-root

operation takes care of projecting features to a non-linear

space induced by the Hellinger kernel [31]. SER has the

same property but specifically tailored for CNN activation

to exploit negative activations as well.

So far we have described how to represent a video by

a fixed-length descriptor using hierarchical rank pooling in

an unsupervised manner. These descriptors can be used to

learn an SVM classifier for activity recognition. In the next

section we describe how to jointly learn the activity classi-

fier and video representation using labelled video data. In

this way we build a representation that is more discrimina-

tive for the activity recognition task.

4.4. Learning discriminative dynamics

Until now we have assumed that the non-linear func-

tion ψ used for capturing sequence dynamics is fixed. In

this section we extend our framework to allow us to learn

sequence dynamics and activity classification jointly. We

propose to learn a parametric non-linear function ψ(Wxt)
where W ∈ R

D×D are shared across sequences.

Recall, the sequence encoding of X is obtained by op-

timizing Equation 3 to get u⋆, now with vt = ψ(Wxt).
Instead of using an SVM we use a soft-max classifier for de-

termining the activity of videos. Let Y be a random variable

denoting the activity of the video and let {wc}
K
c=1 denote

the classifier parameters. Then we can write the soft-max

probability as

pY (c) = P (Y = c | X; θ) ∝ ehc(X;wc,W ) (5)

where hc is the scoring function for the c-th class

hc(X;wc,W ) = w
T
c u

⋆ (6)

and θ = {wc,W | c = 1, . . . ,K} are the model parame-

ters. Importantly, u⋆ is a function of both the input videoX

and the non-linearity parameters W , i.e., u⋆ = φ(X;W ).
A principled approach to determining the parameters is

to find the θ that minimize the regularized negative log-

likelihood of the training set, whose objective function can

4



be written as

L(θ) = R(θ)−

n∑

i=1

K∑

c=1

[[Y i = c]] log pY i(c) (7)

whereR(θ) is some regularization function and [[·]] is the in-

dicator function evaluating to one when its argument is true

and zero otherwise. As is standard in large-scale machine

learning problems we can use stochastic gradient descent to

optimize Equation 7.

The main difficulty in differentiating L(θ) with respect

to (w.r.t.) the model parameters θ is in taking the derivative

of log pY i(c),

∇θ log pY i(c) = (1− pY i(c))∇θhc(X
i;wc,W ) (8)

which in turn requires computing derivatives of the scoring

function hc(X;wc,W ). The partial derivative of hc w.r.t.

the class variables wc′ is straightforward,

∇wc′
hc(X;wc,W ) =

{
u
⋆, if c = c′

0, otherwise.
(9)

However, the partial derivative w.r.t. W is more challenging

since we have to differentiate through the argmin function

of Equation 3. Such derivations are proposed before in the

context of bi-level optimization [20]. Let et be the SVR loss

contribution in Equation 3 for each xt, i.e.,

et =





t− v
T
t u

⋆ − ǫ, if t− u
T
vt ≥ ǫ

t− v
T
t u

⋆ + ǫ, if uT
vt − t ≥ ǫ

0, otherwise.

(10)

Let 1 be the all-ones vector of size n. Then let Kt = ∂vt

∂W

where (Kt)[ij]
.
=

∂vt[i]

∂Wij
where subscript [i] denotes the i-th

element of the associated vector. Let st = ŵ
T
c vt be a scalar

where the scaled classifier parameters ŵc given by

ŵc[i] =
wc[i]

1 + C
∑

t:et 6=0 ψ
2
[i](Wxt)

(11)

Then we can write the partial derivative of hc w.r.t. W as

∇Whc = C

J∑

t=1

et 6=0

etKt ⊙ (ŵc · 1T )− stKt ⊙ (u⋆ · 1T )

(12)

where ⊙ is the Hadamard product. The complete derivation

of Equation 12 is given in the supplementary material.

In our experiments, we use this discriminative learning

framework for the final layer of the hierarchical rank pool-

ing network. In this case we first construct the sequence for

the final layer X(L) and apply SSR feature map. Then we

feed forward this sequence through the parameterized non-

linear transform ψ(Wx
(L)
t ), temporal encoder φ(X̃(L)),

and apply the classifier to get a classification score. During

training we propagate errors back to the parametric non-

linear transformation layer ψ(·) and perform a parameter

update. Our overall algorithm is summarized below.

Algorithm 1: Hierarchical rank pooling.

1: for each labeled training video (X,Y ) ∈ X do

2: extract CNN features, X(1) =
〈
x
i
1,x

i
2, . . . ,x

i
J

〉

3: for each rank pooling layer, ℓ = 1 : L− 1 do

4: generate transformed sub-sequences X̃
(l)
t

5: rank pool sub-sequences, x
(ℓ+1)
t = φ(X̃

(ℓ)
t )

6: construct X(l+1) as 〈. . . ,x
(ℓ+1)
t , . . .〉

7: end for

8: get video representation as φ(X̃(L))
9: end for

10: if learning discriminative dynamics then

11: train non-linear transform and classifier (§4.4)

12: else

13: train SVM classifier only (§4.3)

14: end if

5. Experiments

We evaluate our hierarchical rank pooling method on

three important activity recognition datasets. We follow

exactly the same experimental settings per dataset, using

the same training and test splits as described in the liter-

ature. The datasets are: HMDB51 [15], which consist of

6,766 video clips divided into 51 action classes with three

splits, Hollywood2 [18], which consists of 12 human action

classes from 1,707 video clips, and UCF101 [27], which

consists of 101 action categories from 13,320 videos over

three splits.

Experimental details: Our primary focus is to evalu-

ate activity recognition performance using CNN features

and hierarchical rank pooling. We utilize pre-trained CNNs

without any fine-tuning. Specifically, for each video we ex-

tract activations from the VGG-16 [25] network’s first fully

connected layer (consisting of 4096 values, only from the

central patch). We represent each video frame by this vec-

tor before applying ReLU [14]. As a result the frame rep-

resentation vector contains both positive and negative com-

ponents of the activations.

Unless otherwise specified, we use a window size Mℓ

of 20, with a stride Sℓ of one and a hierarchy depth of

two in all our experiments. We use a constant C = 1
parameter for SVR training (Lib-linear). We test diffenent

non-linear SVM classifiers for the final classification always

with C = 1000 (LibSVM). For rank pooling [4] and trajec-
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METHOD Hollywood2 HMDB51 UCF101

Average pooling 40.9 37.1 69.3

Max pooling 42.4 39.1 72.5

Tempo. pyramid (avg. pool) 46.5 39.1 73.3

Tempo. pyramid (max pool) 48.7 39.8 74.8

LSTM [28] – 42.8 74.5

LRCN [2] – – 68.8

Rank pooling 44.2 40.9 72.2

Recursive rank pooling 52.5 45.8 75.6

Hierarchical rank pooling 56.8 47.5 78.8

Improvement +8.1 +4.7 +4.0

Table 1: Comparing several temporal pooling methods for

activity recognition using VGG-16’s fc6 features.

tory extraction [33] (in later experiments) we use the pub-

licly available code from the authors.

5.1. Comparing temporal pooling methods

In this section we compare several temporal pooling

methods using VGG-16 CNN features. We compare our hi-

erarchical rank pooling with average-pooling, max-pooling,

LSTM [28], two level temporal pyramids with mean pool-

ing, two level temporal pyramids with max pooling, re-

cently proposed LRCN [2], and vanilla rank pooling [4].

To obtain a representation for average pooling, the aver-

age CNN feature activation over all frames of a video was

computed. The max-pooled vector is obtain by applying

the max operation over each dimension of the CNN feature

vectors from all frames of a given video. We also com-

pare with a variant of hierarchical rank pooling called re-

cursive rank pooling, where the next layer’s sequence ele-

ment at time t denoted by x
(ℓ+1)
t is obtained by encoding

all frames of the previous layer sequence up to time t, i.e.

x
(ℓ+1)
t = φ(〈ψ(x

(ℓ)
1 ), . . . , ψ(x

(ℓ)
t )〉) for t = 2, . . . , Jℓ.

We compare these base temporal encoding methods on

three datasets and report results in Table 1. Results show

that the rank pooling method is only slightly better than max

pooling or mean pooling. We believe this is due to the lim-

ited capacity of rank pooling [4]. Moreover, temporal pyra-

mid seems to outperform rank pooling except for HMDB51

dataset. LRCN results seem disappointing. However, these

results in [2] are obtained using a Caffe reference model

whereas we use more powerful VGG-16 features (though

without any fine tuning). Using a Caffe reference model

(also without fine tuning) we obtain 74.6%. Interestingly,

when we extend rank pooling to recursive rank pooling, we

notice a jump in performance from 44.2% to 52.5% for Hol-

lywood2 and 40.9% to 45.8% in HMDB51. We also see a

noticeable improvement in UCF101 dataset. Hierarchical

rank pooling improves over rank pooling by a significant

margin. The results suggest that it is important to exploit

dynamic information in a hierarchical manner as it allows
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Figure 3: Activity recognition performance versus hierar-

chy depth on Hollywood2 and HMDB-51.

complicated sequence dynamics of videos to be expressed.

To verify this, we also performed an experiment by varying

the depth of the hierarchical rank pooling and reported re-

sults for one to three layers. Results are shown in Figure 3.

As expected the improvement from depth of one to two

is significant. Interestingly, as we increase the depth of the

hierarchy to three, the improvement is marginal. Perhaps

with only two levels, one can obtain a high capacity dy-

namic encoding.

5.2. Evaluating other parameters

Hierarchical rank pooling consists of two more hyper-

parameters: (1) window size, i.e., the size of the video sub-

sequences and (2) stride of the video sampling. These two

parameters control how many sub-sequences can be gener-

ated at each layer. In the next experiment we evaluate how

performance varies with window size and stride. Results

are reported in Figure 4(top). The window size does not

seem to make a big impact on the results (1–2%) for some

datasets. However, we experimentally verified that a win-

dow size of 20 frames seems to be a reasonable compro-

mise for all activity recognition tasks. The trend in Fig-

ure 4(bottom) for the stride is interesting. It shows that

the best results are always obtained by using a small stride.

Small strides generate more encoded sub-sequences captur-

ing more statistical information.

5.3. The effect of non­linear feature maps

Non-linear feature maps are important for modeling

complex dynamics of an input video sequence. In this sec-

tion we compare our new Sign Expansion Root (SER) fea-

ture map introduced in Section 4.3 with the Signed Square

Root (SSR) method, which is commonly used in the litera-

ture [22]. Results are reported in Table 2. As evident in the

table, our new feature map SER is useful not only for hier-

archical rank pooling, which gives an improvement of 6.3%

over SSR, but also for baseline rank pooling method, which

gives an improvement of 6.8%. This seems to suggest that

there is valuable information in both positive and negative
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Figure 4: Activity recognition performance versus window

size (top) and stride (bottom).

Hierarchical

METHOD Rank pooling rank pooling

Signed square root (SSR) 44.2 50.5

Sign expansion root (SER) 51.0 56.8

Table 2: Effect non-linear feature maps during the training

of rank pooling methods using Hollywood2 dataset.

activations of fully connected layers. Furthermore, this ex-

periment suggests that it is important to consider positive

and activations separately for activity recognition.

5.4. The effect of non­linear kernel SVM

Generally, it is necessary to utilize SVM classifiers with

non-linear kernels to obtain good generalizable results. This

is mostly due to the complex nature of image and video data.

In this experiment we evaluate several non-linear kernels

that exist in literature and compare their effect when used

with Hierarchical Rank Pooling method. We compare clas-

sification performance using different kernels (1) linear, (2)

linear kernel with SSR, (3) Chi-square kernel, (4) Kernel-

ized SER (5) combination of Chi-square kernel with SER.

Results are reported in Table 3. On all three datasets we

see a common trend. First, the SSR kernel is more effective

than not utilizing any kernel or feature map. Interestingly,

on deep CNN features, Chi-square Kernel is more effec-

tive than SSR. Perhaps this is because the Chi-square kernel

utilizes both negative and positive activations in a separate

manner to some extent. The SER method seems to be the

most effective kernel. Interestingly, applying SER feature

map over Chi-square kernel seems to improve results fur-

ther. We conclude that SER non-linear feature map is effec-

tive not only during the training of rank pooling techniques,

but also for action classification specially when used with

CNN activation features. Next we also evaluate the effect of

non-linear kernels on final video representations when used

with other pooling methods such as rank pooling, average

Hollywood2 HMDB51 UCF101

KERNEL TYPE (mAP %) (%) (%)

Linear 45.1 40.0 66.7

Signed square root (SSR) 48.6 42.8 72.0

Chi-square kernel 50.6 44.2 73.8

Sign expansion root (SER) 54.0 46.0 76.6

Chi-square + SER 56.8 47.5 78.8

Table 3: Effect of non-linear SVM kernels on action classi-

fication with hierarchical rank pooling representation.

KERNEL TYPE Avg. pool Max pool Rank pool Ours

Linear 38.1 39.6 33.3 45.1

Signed square root (SSR) 38.6 38.4 35.3 48.6

Chi-square kernel 39.9 41.1 40.8 50.6

Sign expansion root (SER) 39.4 41.0 37.4 54.0

Chi-square + SER 40.9 42.4 44.2 56.8

Table 4: Effect of non-linear kernels on other pooling meth-

ods using Hollywood2 dataset (mAP %).

METHOD Results

Rank pooling 72.2

Hierarchical rank pooling 78.8

Discriminative hierarchical rank pooling 81.4

Table 5: Effect of learning discriminative dynamics for hi-

erarchical rank pooling on the UCF101 dataset.

pooling and max pooling. Results are reported in Table 4

on Hollywood2 dataset. A similar trend as in the previous

table can be observed here. We conclude that our kernal-

ized SER is useful not only for our hierarchical rank pooling

method, but also for the other considered temporal pooling

techniques.

5.5. The effect of discriminative rank pooling

Now we evaluate the effect of discriminative method in

Section 4.4, which we implemented with full GPU support.

We evaluate the effect of this method only on the largest

dataset, UCF101. We first construct the first layer sequence

using hierarchical rank pooling. Then we learn the parame-

ters θ using the labelled video data. We initialize theW ma-

trix to the identity and the classifier parameters to those ob-

tained from the linear SVM classifier. Results are reported

in Table 5. We improve results by 2.6% over hierarchical

rank pooling and a significant improvement of 9.2% over

rank pooling. However, due to the lack of training data,

we do not fully exploit the advantages of our discrimina-

tive rank pooling method using chosen datasets. During test

time, we process a video at 120 frames per second.
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METHOD Hollywood2 HMDB51 UCF101

RP. (HOG) 53.4 44.1 72.8

RP. (HOF) 64.0 53.7 78.3

RP. (MBH) 65.8 53.9 82.6

RP. (ALL) 68.5 60.0 86.5

RP. (ALL+CNN ) 71.4 63.0 88.1

HRP. (CNN) 56.8 47.5 78.8

RP. (ALL)+ HRP (CNN) 74.1 65.0 90.7

Table 6: Combining CNN-based Hierarchical Rank Pool-

ing (HRP) with improved trajectory features encoded with

Fisher vectors and Rank Pooling(RP).

5.6. Combining with trajectory features

In this experiment we combine CNN features which

are encoded using hierarchical rank pooling with trajectory

features [33] which are encoded with Fisher vectors [22]

and rank pooling [4]. We use Improved Dense Trajectory

(MBH, HOG, HOF) [33] encoded with Fisher vectors [22]

at frame level. We utilize a Gaussian mixture model of

256 components to create the Fisher vectors. To keep the

dimensionality manageable, we halve the size of each de-

scriptor using PCA. This is exactly the same setup used

by Fernando et al. [4]. Due to the extremely large dimen-

sionality of the Fisher vectors, we do not use hierarchical

rank pooling over Fisher vectors. To obtain state-of-the-art

results, we use encode trajectory features [33] using rank

pooling and combine them with CNN features encoded with

hierarchical rank pooling. For each dataset we report re-

sults on HOG, HOF and MBH features obtained with the

publicly available code of rank pooling [4]. We use aver-

age kernel method to combine CNN features with trajec-

tory features. Results are shown in Table 6. Hierarchical

rank pooled (CNN) outperforms trajectory based HOG fea-

tures on all three datasets. Furthermore, on UCF101 dataset,

Hierarchical rank pooled (CNN) outperforms rank pooled

HOF features. Nevertheless, trajectory based MBH fea-

tures still dominate the best results for an individual fea-

ture. The combination of rank pooled trajectory features

(HOG+HOF+MBH) with hierarchically rank pooled CNN

features gives a significant improvement. It is interesting

to see that the biggest improvement is obtained in Holly-

wood2 dataset where state-of-the art results are obtained.

On HMDB51 dataset just using default parameters, we al-

most reach previous state-of-the art results. On UCF-101

dataset the combination brings us above the state of the

art performance with an improvement of 4.2% over rank

pooled trajectory features. We conclude that our hierarchi-

cal rank pool features are complimentary to trajectory-based

rank pooling.

Hollywood2 HMDB51 UCF101

our * method 76.7 66.9 91.4

Zha et al. [37] – – 89.6

Yue-Hei-Ng et al. [36] – – 88.6

Simonyan et al. [24] – 59.4 88.0

Wang et al. [34] 65.9 91.5

Methods without CNN features

Lan et al. [17] 68.0 65.4 89.1

Fernando et al. [4] 73.7 63.7 –

Hoai et al. [7] 73.6 60.8 –

Peng et al. [21] – 66.8 –

Wu et al. [35] – 56.4 84.2

Wang et al. [33] 64.3 57.2 –

Table 7: Comparison with the state-of-the-art methods.

5.7. Comparing to state­of­the­art

In this section we discuss state-of-the-art perfor-

mance. We combine rank pooled trajectory features

(HOG+HOF+MBH) with CNN features encoded with our

method. In addition to that, we choose parameters for hi-

erarchical rank pooling based on the prior experimental re-

sults reported in Figures 3 and 4 for each of the dataset, i.e.,

without use of any grid search. As in [4, 7] we use data aug-

mentation only for Hollywood2 and HMDB51. We evalu-

ate discriminative rank pooling method only for UCF101

dataset as there is not that much of training data in Holly-

wood2 and HMDB51 datasets. Results are reported in Ta-

ble 7. We improves over previous state-of-the-art by 3.0%

on Hollywood2 dataset, by 0.1% on HMDB51 dataset and

reach state-of-the-art on UCF101 dataset.

6. Conclusion

In this paper we present a novel temporal encoding

method called hierarchical rank pooling which consists of

a network of non-linear operations and rank pooling lay-

ers. The obtained video representation has high capacity

and capability of capturing informative dynamics of rich

frame-based feature representations. We also presented a

principled way to learn non-linear dynamics using a stack

consisting of parametric non-linear activation layers, rank

pooling layers and, a soft-max classifier which we coined

discriminative hierarchical rank pooling. We demonstrated

substantial performance improvement over other tempo-

ral encoding and pooling methods such as max pooling,

rank pooling, temporal pyramids, and LSTMs. Combining

our method with features from the literature, we obtained

state-of-the-art results on the Hollywood2, HMDB51 and

UCF101 datasets.
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