
Overview
• Alphabet SOUP provides a general purpose framework for 

approximate energy minimization of arbitrary energies that 
scales to accommodate available resources and problem 
complexity.

• Many problems in computer vision can be modeled using 
conditional Markov random fields.

• Finding the MAP solution is NP-hard, so people resort to 
approximate techniques.

• Very efficient methods exist for problems with certain structure
(e.g., α-expansion (Veksler, 1999) for submodular energies).

• Message passing algorithms (e.g., max-product or its convex 
variants) are the only general purpose approach (for problems 
with arbitrary energies and non-homogeneous domains). 

• Static and dynamic theoretical guarantees when the inner loop of
our method is exact.
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Cell Membrane Surface Reconstruction
• Task: Reconstruct surface of bacteria from tomography scans.
• Model: Discretized mesh: 3D orientation and 1D radial offset. 

Here the energy is regular, but α-expansion does not scale.
• γ-Expansion Moves: (θX, θY, θZ, R) coordinates.

• (i) simultaneous optimization of all coordinates
• (ii) Alphabet SOUP over coordinate pairs
• (iii) Alphabet SOUP over individual coordinates
• ∞ indicates that problem could not fit into memory
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Image Completion and In-painting
• Task: Fill in missing part of image using image patches.
• Model: Pairwise MRF of Komodakis and Tziritas (2006).
• γ-Expansion Moves: Non-overlapping sets of 250 patches. 

Patches for adjacent variables taken from adjacent locations in 
the image. This provides low energy pairs.
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γ-Expansion Moves
• For each i, let Ai

γ be a subset of the domain for variable Xi. 
Then a γ-expansion move maps each Xi from its current value xi
to a value in {xi} ∪ Ai

γ. This generalizes other approaches:

• α-expansion: set Ai = {α} for all i.
• α-β swap: set Ai = {α} for all xi = β, Ai = {β} for all xi = α, and empty 

otherwise.
• ICM: set Ai = dom(Xi) for i = k and empty otherwise.
• Fusion move: set xi = xi0 and Ai = {xi1}.

• We can find the γ-expansion move with minimum energy by 
minimizing                                 where
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Alphabet SOUP Algorithm3

Theoretical Guarantees
• Definition (covering set): A set of moves γ1, …, γK is covering if 

for every xi ∈ dom(Xi), there exists a γk such that xi ∈ Ai
k.

• Theorem (static): Let γ1, …, γK be a covering set of moves.* If x
is a local optimum relative to γ1, …, γK, then E(x) is within a 
constant factor of the optimal energy.

• Theorem (dynamic): By using the LP-dual message passing 
methods for the inner loop we can provide a global bound on the 
optimality gap. E.g., for the method of Globerson et al. (2007) the 
current assignment is within

of the optimal, where 

*Assume θc(xc) ≥ 0 for all cliques c, with equality only if there exists some γ ksuch that xi∈ Ai
k for all variables Xi in the clique.
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Object Detection and Outlining
• Task: Detect object and localize using landmark based outline.
• Model: LOOPS (Heitz et al. (2008)).
• γ-Expansion Moves: Overlapping candidate landmark locations, 

sorted by unary potential (highest to lowest).
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Rosetta Protein Design

• Task: Find most stable configuration of amino-acids that give 
rise to a given 3D structure.

• Model: Protein design dataset from Yanover et al. (2007).
• γ-Expansion Moves: Subset of 50 values (modulo domain size)
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Choosing the γ-expansion Moves
• Our method allows the selection of γ-expansion moves to be 

tailored to the problem at hand, e.g., (static) overlapping ordinal 
ranges, grouped low-energy configurations, or (dynamic)
coordinate descent on vector-valued variables
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Conclusion
• Alphabet SOUP is a flexible method for finding approximate solutions to the 

MAP inference problem for arbitrary energy functions. Our method is faster 
than standard max-product belief propagation, requires significantly less 
memory, and often produces lower energy solutions.

• Most interesting direction for further study is in providing more formal 
foundations for the choice of subsets used for the different variables.
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minimize E(x) =
P

c θc(xc)
subject to xi ∈ dom(Xi) ∀Xi ∈ X
minimize E(x) =

P
c θc(xc)

subject to xi ∈ dom(Xi) ∀Xi ∈ X

Eγ(x̂; x) =
P

c θ
γ
c (x̂c)Eγ(x̂; x) =

P
c θ

γ
c (x̂c)

θγc (x̂c) =

½
θc(x̂c) if ∀Xi ∈ Xc : x̂i ∈ Aγi ∪ xi
∞ otherwise

θγc (x̂c) =

½
θc(x̂c) if ∀Xi ∈ Xc : x̂i ∈ Aγi ∪ xi
∞ otherwise

∞
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θij(Xi,Xj)θij(Xi,Xj) θγij(X̂i, X̂j)θγij(X̂i, X̂j)

xi = 1, xj = 3
Aγi = {0, 1}
Aγj = {0, 1}

xi = 1, xj = 3
Aγi = {0, 1}
Aγj = {0, 1}

start with arbitrary assignment x
repeat
for k = 1, . . . ,K
find x̂ one γk-expansion-move away from x
if E(x̂) < E(x) then x← x̂

start with arbitrary assignment x
repeat
for k = 1, . . . ,K
find x̂ one γk-expansion-move away from x
if E(x̂) < E(x) then x← x̂

∆ = E(x)−Psminxs
P

c∈N(s) δ
s
c(xs)∆ = E(x)−Psminxs

P
c∈N(s) δ

s
c(xs)

δsc(xs) = minxc\s

½
{βsc(xc)}xc∈γ ,

n
1

|S(c)|θc(xc)
o
xc /∈γ

¾
δsc(xs) = minxc\s

½
{βsc(xc)}xc∈γ ,

n
1

|S(c)|θc(xc)
o
xc /∈γ

¾


