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Multi-class Pixel Labeling 

FG/BG segmentation 
[Boykov and Jolly, 2001; 

Rother et al., 2004] 

Geometric context 
[Hoiem et al., 2005] 

Semantic segmentation 
[He et al., 2004; Shotton et 

al., 2006; Gould et al., 2009] 

Digital photo montage 
[Agarwala et al., 2004] 

Stereo reconstruction 
[Scharstein and Szeliski, 

2005] 

Denoising and 

Inpainting 

Label every pixel in an image with a class label 

from some pre-defined set, i.e., 
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Pixelwise Pixel Labeling 

x4 x5 x6 

x7 x8 x9 

x1 x2 x3 
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Pixelwise Pixel Labeling 
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• Options for improving accuracy: 

– (i) use more features, more data, 

more complex models 

– (ii) use priors to guide the labeling 

towards a more plausible solution 

 

• Most common priors enforce 

smoothness (e.g., pairwise) 

• Data dependent priors can take 

into account image features 
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Introducing (Data Dependent) Priors 
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y2 y1 

constraint on 

joint assignment 
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Conditional Markov Random Fields 

energy function x4 x5 x6 

x7 x8 x9 

x1 x2 x3 

y4 y5 y6 

y7 y8 y9 

y1 y2 y3 
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• A pseudo-Boolean function is a mapping 

 

 

 

• Can be written (uniquely) as a multi-linear polynomial or 

(non-uniquely) in posiform 

• A binary pairwise MRF is just a quadratic (bilinear) 

pseudo-Boolean function (QPBF) 

• Submodular QPBFs can be minimized by graph cuts 

– identified by negative coefficients on pairwise terms 
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Binary CRFs and Pseudo-Boolean Fcns 

[Boros and Hammer, 2001] 
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• construct a graph where 

every st-cut corresponds 

to a joint assignment to 

the variables 

• the cost of the cut should 

equal the energy of the 

assignment 

• the minimum-cut then 

corresponds to the energy 

minimizing assignment 
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• Start with a pixel labeling problem 

• Formulate as multi-label CRF inference 

• (move-making: α-expansion, αβ-swap, ICM) 

– Convert to a sequence of binary pairwise CRF 

inference problems 

– Write CRF as a quadratic pseudo-Boolean function 

– Solve by finding the minimum cut (maximum flow) 

 

• (relaxation) 

• (approximation) 
10 

Energy Minimization via Graph-Cuts 
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[Boykov et al., 2001] 
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Contrast Sensitive Pairwise Smoothness 
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xi xj 

yj yi 
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Pairwise Smoothness Results 
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Image Independent 

(unary only) 

Pairwise CRF 



• Ideal: Suppose an oracle told us which pixels belong 

together. Then all we would need to do is predict the 

class labels. 

 

 

 

 

• Problem: no over-segmentation algorithm is perfect. 

Even if they were, our label predictions may be wrong. 

 

• Solution: use superpixels as soft constraints. 
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Why Not Use Superpixels? 
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• Pairwise Potts Potential: 

– Penalize if two pixels 

disagree 

 

• Higher-order Potts Potential: 

– Penalize if any two pixels in a 

clique disagree 

– Penalty paid once 
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Generalized Potts Model 

yj yi 

yj 

yi 

yb 
ya 

yv yu 

[Kohli et al., 2007] 
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Higher-order Smoothness Potentials 
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Generalized Potts 
[Kohli et al., 2007] 

Robust Potts Model 
[Kohli et al., 2008; 

Ladicky et al., 2009] 

Arbitrary Concave 
[Kohli and Kumar, 2010; 

Gould, 2011] 
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Binary Lower Linear Envelope MRFs 

number of non-zero 

labels 
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Inference (Binary Case) 
z 

y1 y2 y3 
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Inference (Binary Case) 

y1 y2 y3 

z1 z2 
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negative 

(submodular) 
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Inference (Full CRF---Binary Case) 
z1 z2 

x4 x5 x6 

x7 x8 x9 

x1 x2 x3 

y4 y5 y6 

y7 y8 y9 

y1 y2 y3 

sum of submodular potentials is submodular 
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Learning (Binary Case) 

[Gould, ICML 2011] 
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difference in 

energy functions 
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Learning (Binary Case) 

[Gould, ICML 2011] 
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• Sampled lower linear envelope (2nd order) 

 

 

• Slope (1st order) 

 

 

• Curvature (0th order) 
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Learning Variants (Binary Case) 



23 

Weighted Smoothness Potentials 

clique “weight” 
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weighted 

clique 

membership 



Lower Linear Envelope Restricted Boltzmann Machine 
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Aside: Relationship to RBM 
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importantly, higher-order cliques can overlap 
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Defining the Higher-order Cliques 
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oversegment to 

produce contiguous 

superpixels 

cluster (e.g, k-means) to 

produce non-contiguous 

regions 

, … ,  



• Aggregation by summation 

 

 

• Aggregation by minimization 

 

 

• Move-making (approximate) inference 
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Extending to Multiple Labels 
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[Park and Gould, ECCV 2012] 
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Dual Decomposition Inference 
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master 

 

 

[Komodakis et al., PAMI 2010] 

slave 

 

 

slave 
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Dual Decomposition Inference (Details) 
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cost of setting i-th variable to 

label for k-th linear function 
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Semantic Segmentation Results 
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Semantic Segmentation Results 
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Semantic Segmentation Results 
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Semantic Segmentation Results 
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Semantic Segmentation Results 
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“GrabCut” Results 
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“GrabCut” Results 
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“GrabCut” Results 
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“GrabCut” Results 
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Higher-order Matching Potentials 
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[Gould, CVPR 2012] 
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Inference with Matching Potentials 

non-submodular pairwise terms 

• Problem: non-submodular terms (in move making 

steps when labels already agree before the move) 

 

• Solution: approximate with (tight) upper-bound 

by setting z = 1 
[Gould, CVPR 2012] 
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Cross-Image Consistency Potentials 
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[Rivera and Gould, DICTA 2011] 

P 
Q 



41 

Cross-Image Results 
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• Priors/constraints provide a mechanism for scene 

understanding that simply adding more features cannot 
 

• Many other (higher-order) consistency potentials, e.g., 

– Cardinality [Tarlow et al., 2010], label co-occurrence [Ladicky et al., 

2010], label cost [Delong et al., 2010], densely connected 

[Krahenbuhl and Koltun, 2011], connectivity [Vincete et al., 2008] 

 

• Biggest challenge is in learning the parameters of these 

– Currently, piecewise learning and cross-validation works best 
 

• Opportunities: higher-order (supermodular) loss 

functions [Tarlow and Zemel, 2011; Pletscher and Kohli, 2012] 
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Summary and Challenges for (Higher-

order) Consistency Potentials 
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