
Stephen Gould, ANU  
 

Graphical Models for Scene Understanding: 
Challenges and Perspectives, ICCV 2013  

2 December 2013  

Consistency Potentials for Scene 
Understanding:  

from Pairwise to Higher -order  



2 

Multi-class Pixel Labeling 

FG/BG segmentation 
[Boykov and Jolly, 2001; 

Rother et al., 2004] 

Geometric context 
[Hoiem et al., 2005] 

Semantic segmentation 
[He et al., 2004; Shotton et 

al., 2006; Gould et al., 2009] 

Digital photo montage 
[Agarwala et al., 2004] 

Stereo reconstruction 
[Scharstein and Szeliski, 

2005] 

Denoising and 

Inpainting 

Label every pixel in an image with a class label 

from some pre-defined set, i.e., 
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Pixelwise Pixel Labeling 

x4 x5 x6 

x7 x8 x9 

x1 x2 x3 

y4 y5 y6 

y7 y8 y9 

y1 y2 y3 
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Pixelwise Pixel Labeling 

Stephen Gould @ Graphical Models for Scene Understanding: Challenges and Perspectives, ICCV 2013 



ÅOptions for improving accuracy: 

ï(i) use more features, more data, 

more complex models 

ï(ii) use priors to guide the labeling 

towards a more plausible solution 

 

ÅMost common priors enforce 

smoothness (e.g., pairwise) 

ÅData dependent priors can take 

into account image features 
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Introducing (Data Dependent) Priors 
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y2 y1 

constraint on 

joint assignment 
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Conditional Markov Random Fields 

energy function x4 x5 x6 

x7 x8 x9 

x1 x2 x3 

y4 y5 y6 

y7 y8 y9 

y1 y2 y3 
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ÅA pseudo-Boolean function is a mapping 

 

 

 

ÅCan be written (uniquely) as a multi-linear polynomial or 

(non-uniquely) in posiform 

ÅA binary pairwise MRF is just a quadratic (bilinear) 

pseudo-Boolean function (QPBF) 

ÅSubmodular QPBFs can be minimized by graph cuts 

ïidentified by negative coefficients on pairwise terms 
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Binary CRFs and Pseudo-Boolean Fcns 

[Boros and Hammer, 2001] 
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Åconstruct a graph where 

every st-cut corresponds 

to a joint assignment to 

the variables 

Åthe cost of the cut should 

equal the energy of the 

assignment 

Åthe minimum-cut then 

corresponds to the energy 

minimizing assignment 
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ÅStart with a pixel labeling problem 

ÅFormulate as multi-label CRF inference 

Å(move-making: Ŭ-expansion, Ŭɓ-swap, ICM) 

ïConvert to a sequence of binary pairwise CRF 

inference problems 

ïWrite CRF as a quadratic pseudo-Boolean function 

ïSolve by finding the minimum cut (maximum flow) 

 

Å(relaxation) 

Å(approximation) 
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Energy Minimization via Graph-Cuts 
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[Boykov et al., 2001] 
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Contrast Sensitive Pairwise Smoothness 
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xi xj 

yj yi 
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Pairwise Smoothness Results 
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Image Independent 

(unary only) 

Pairwise CRF 



Å Ideal: Suppose an oracle told us which pixels belong 

together. Then all we would need to do is predict the 

class labels. 

 

 

 

 

ÅProblem: no over-segmentation algorithm is perfect. 

Even if they were, our label predictions may be wrong. 

 

ÅSolution: use superpixels as soft constraints. 

13 

Why Not Use Superpixels? 
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ÅPairwise Potts Potential: 

ïPenalize if two pixels 

disagree 

 

ÅHigher-order Potts Potential: 

ïPenalize if any two pixels in a 

clique disagree 

ïPenalty paid once 
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Generalized Potts Model 

yj yi 

yj 

yi 

yb 
ya 

yv yu 

[Kohli et al., 2007] 
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Higher-order Smoothness Potentials 
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Generalized Potts 
[Kohli et al., 2007] 

Robust Potts Model 
[Kohli et al., 2008; 

Ladicky et al., 2009] 

Arbitrary Concave 
[Kohli and Kumar, 2010; 

Gould, 2011] 
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Binary Lower Linear Envelope MRFs 
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Inference (Binary Case) 
z 

y1 y2 y3 
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Inference (Binary Case) 

y1 y2 y3 

z1 z2 
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negative 

(submodular) 
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Inference (Full CRF---Binary Case) 
z1 z2 

x4 x5 x6 

x7 x8 x9 

x1 x2 x3 

y4 y5 y6 

y7 y8 y9 

y1 y2 y3 

sum of submodular potentials is submodular 
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Learning (Binary Case) 

[Gould, ICML 2011] 
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difference in 

energy functions 
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Learning (Binary Case) 

[Gould, ICML 2011] 
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