
COMP1040: The Craft of Computing

Stephen Gould
stephen.gould@anu.edu.au

Mark Reid
mark.reid@anu.edu.au

October 11, 2016

ii

Copyright c� 2015–2016, Stephen Gould and Mark Reid. All rights reserved.

Contents

1 Overview 1
1.1 Summary . 1
1.2 Organisation and Principles . 2

2 Assessment and Practice 5
2.1 Assessment Policy . 5
2.2 Weekly Exercises . 6
2.3 Assignments . 7
2.4 Projects . 7

3 Lectures 9
3.1 Lecture 1: Welcome to The Craft of Computing 10
3.2 Lecture 2: Introduction to Coding 16
3.3 Lecture 3: Software Development Basics—Tools and Evironments 25
3.4 Lecture 4: Data Structures I . 38
3.5 Lecture 5: Execution Models and Control Flow 49
3.6 Lecture 6: Data Formats and Files 60
3.7 Lecture 7: String Processing . 69
3.8 Lecture 8: Functions . 76
3.9 Lecture 9: Computer Architecture 86
3.10 Lecture 10: Data Structures II 95
3.11 Lecture 11: Objects and Classes 106
3.12 Lecture 12: Tools and Practices 116
3.13 Lecture 13: Reading Source Code 123
3.14 Lecture 14: Libraries and APIs 128
3.15 Lecture 15: Searching for Help 134
3.16 Lecture 16: Advanced Revision Control 139
3.17 Lecture 17: Visualising Data . 147
3.18 Lecture 18: Visualising Data II 158
3.19 Lecture 19: Debugging Strategies 166
3.20 Lecture 20: Software Design . 176
3.21 Lecture 21: Collaborating . 186
3.22 Lecture 22: Refactoring Code . 189
3.23 Lecture 23: Advanced Programming 197
3.24 Lecture 24: Regular Expressions 207
3.25 Lecture 25: Data Pipelines and Command Line Processing 212
3.26 Lecture 26: Optimising Code . 220
3.27 Lecture 27: Defensive Programming 230

iii

iv CONTENTS

3.28 Lecture 28: Programming Languages 235
3.29 Lecture 29: Distributing Software 240

4 Tools 245
4.1 Python . 245
4.2 PyCharm . 246
4.3 GitLab . 246
4.4 Configuring PyCharm . 246

Chapter 1

Overview

1.1 Summary

Knowing how to effectively use computational tools to perform data analysis,
simulation, and visualisation is a crucial skill in a number of industries and
academic disciplines. The aim of this course is to provide skills for tackling
the “messiness” of real-world computer systems, programming languages, and
data. Unlike many other computer science courses which explain a single area in
depth, the focus of The Craft of Computing A companion course, The

Art of Computing, teaches
computational thinking in
contrast to computational
doing taught in this course.

is on understanding core principles
that allow students to quickly and confidently learn and apply a variety of
computational tools to several different types of problem. Furthermore, by the
end of the course students will be able to readily adapt their know-how to new
programming languages and software development tools. The skills developed
in this course will be a great asset to students in their undergraduate life and
future careers.

1.1.1 Learning Outcomes

Students completing this class will:

• Appreciate the creative possibilities computation brings to multiple disci-
plines.

• Be able to solve practical problems in various domains using appropriate
software tools.

• Be able to understand, modify, debug, and write small programs in a
high-level programming language.

• Be able to translate learned programming skills to new programming lan-
guages, tools, and contexts.

• Understand the culture, conventions and resources to do with software
development, deployment, and use.

1

2 CHAPTER 1. OVERVIEW

1.1.2 What this course is not

This course is about craft, not science—it is about building and using tools,
not analysing them. This course is not intended as a substitute for introduc-
tory computer science courses that systematically introduce students to a pro-
gramming language so they will be able to write robust, performant code from
scratch. Instead, we want to show students how to adapt existing code and/or
write small amounts of simple data processing code that “glues” together ex-
isting libraries to solve a problem. Some of this philosophy is captured by the
principles of post-modern programming.

This course is also not about programming, although programming is an
important skill, it is only part of the picture. The environments, tools, existing
libraries, and cultures around solving computational problems are of equal or
greater importance. It is not necessary to understand every aspect of a pro-
gramming langauge to be able to use it to solve a problem at hand.

1.1.3 Topics

The emphasis of this course of “getting things done with computers” is reflected
in the following choice of topics:

• Introduction to computational environments and tools.

• Computer fundamentals and computational thinking.

• Learning programming languages and libraries.

• Data flow and visualisation.

• Collaborating and distributing code.

1.1.4 Programming Language

The course uses Python as the primary programming language for teaching.
Students are not expected to have prior programming experience and an in-
troduction to Python will be given during the first few weeks of the course.
However, the course makes no attempt to be a comprehensive tour of all of
Python’s features and students will be expected to learn some aspects of the
language on their own.

The principles learned in the course are applicable to many programming
languages and environments. Students will have the option of applying the
knowledge and skills developed in the course to other programming languages
through two open-ended projects.

1.2 Organisation and Principles

1.2.1 Course Snapshot

The workload model for the course assumes that an average student spending
10 hours per week on the course should be capable of achieveing a Credit level
grade. Contact hours include three 50 minute lectures and one laboratory ses-
sion per week. In addition lectures and tutors will hold office hours and be
available online for help with weekly exercises and assignments.

1.2. ORGANISATION AND PRINCIPLES 3

Wk Lectures and Labs Assessments
1

Learning
to

program
Exercises
1 hr/wk
(10%)

Assignment 1
5 hr/wk (10%)

2
3
4 Assignment 2

5 hr/wk (20%)5 Doing
interesting

things with data
6 Assignment 3

5 hr/wk (20%)7
Teaching Break (2 weeks)

8
Collaborating,
best practices,

and advanced topics
Exercises
1 hr/wk

Project
6 hr/wk
(40%)

9
10
11
12 Beyond

COMP104013

1.2.2 Vignettes and Exercises

The course will be delivered through a series of lectures broken into short vi-
gnettes that highlight the main aspects of the course topics. Course material
will be reinforced through laboratory sessions and assessable weekly exercises,
individual assignments, and group projects.

As much as practical, we will aim to present small exercises alongside each
vignette to allow students to play with the ideas the vignette introduces. Addi-
tionally, online exercises that introduce common programming “gotchas” (e.g.,
bad variable scope, variable typos, off-by-one errors, etc.) so students gain
experience fixing these common problems.

The exercises will be presented through an online, interactive programming
environment (i.e., CodeBench) and shift towards working with code reposito-
ries, command-line tools, editors, IDEs, etc. as the course progresses.

1.2.3 Assignments as Real-World Projects

Since one of our main aims is to give students the skills and confidence to solve
real-world problems with computing tools, the format of assignments will aim
to closely match what it is like to work “in the wild”. That is, data will need to
be found and possible cleaned and transformed; appropriate libraries will need
to be found (and installed if necessary); submission will involve pushing code to
a repository along with notes and a report; etc.

1.2.4 First Lecture

We want the first lecture to be primarily a demonstration of what we hope to
students to be able to do once they successfully finish the course. Ideally, the
demonstration will be around 30 minutes of live coding, showing how to go from
raw data or idea, through data processing, looking up how to use language and
library APIs (e.g., Googling answers on StackExchange), to finally produce a
visualisation.

4 CHAPTER 1. OVERVIEW

1.2.5 Laboratory Sessions

Weekly laboratory sessions will be staffed by tutors and lecturers to help stu-
dents who are having difficulty with the concepts developed in class. The first
laboratory session will be dedictaed to ensuring that students are able to access,
and are familiar with, the software development tools that will be used through-
out the course. Thereafter, laboratory sessions will be driven by specific student
needs as they arise. Laboratory attendance is not compulsory.

1.2.6 Seeking Help

By the end of the course students will be equiped with enough knowledge and
skills to be able to seek help from web resources such as tutorial sites and
newsgroups. During the course students will be able to seek help in a more
structured way.

• For help relating to course logistics students should talk to course staff
after lectures or during laboratory sessions, or send an email to the course
email address.

• For help with weekly exercises students can make use of the online chat
facility.

• For help with assignments students should raise the question in the issue
tracking system within GitLab and assign the issue to course staff.

The following resources may be useful:

[1] Punch and Enbody, “The Practice of Computing Using Python (2nd Ed.)”,
Pearson Education, Inc., 2013.

[2] Lutz, “Learning Python (5th Ed.)”, O’Reilly Media, 2013.

[3] https://www.python.org/

[4] http://www.tutorialspoint.com/python/

[5] http://pythontutor.com/

[6] http://stackoverflow.com/

[7] https://gitlab.cecs.anu.edu.au/groups/comp1040

Chapter 2

Assessment and Practice

The primary objective of this course is to equip students with computational
skills that will benefit their university studies and future careers. As such, a
significant amount of time will be devoted to practice. This is reflected in the
structure of the assessments, which include:

• weekly exercises (10%);

• three individual assignments (10%, 20% and 20%);

• one substantial group project (40%).

There will be no final exam for this course. Final marks for the course may be
moderated by the Research School of Computer Science examiners’ meeting.

2.1 Assessment Policy

Exercises. Exercises are aimed at practicing a specific concept. These should
be done individually and submitted through the online CodeBench tool.
A set of ten exercises is assigned each week throughout the semester. Each
weekly set contributes up to 1% of the final course grade. We will take
the best ten weekly exercises over the semester (for a maximum of 10%).

Assignments. Learning a new skill is often best done in teams. In this course
we encourage discussion of assignments but the final assignment submis-
sion must be your own work. In particular, you should not consult written
or electronic notes from other students when preparing your solution.

Project. Projects are intended to be done in groups (of up to four students);
collaboration is essential and the final submission must be a joint submis-
sion. Students should indicate a rough breakdown of contributions from
each group member.

2.1.1 Evidence of Own Work

The course staff reserve the right to ask students to explain parts of work sub-
mitted for assessment. Marks may be adjusted if the student cannot adequately
explain the work.

5

6 CHAPTER 2. ASSESSMENT AND PRACTICE

(a) (b)

(c) (d)

Figure 2.1: Example screenshots from online framework for weekly exercises.

2.1.2 Late Penalty

Students are expected to work consistently on assignments and projects through-
out the semester and keep an up-to-date software source code respository. Marks
will be awarded based on material submitted (i.e., in the repository) at the as-
sessment due date and time. Consistent with ANU policy, extensions will not
be granted for mismanagement of time or resources. A doctor’s certificate is
required to receive an extension as a result of illness.

2.2 Weekly Exercises

Weekly exercises provide students with an opportunity to practice programming
and debugging while at the same time being exposed to a wide variety of coding
examples. Exercises are submitted via the online CodeBench framework and
are graded automatically. Students receive immediate feedback and have the

2.3. ASSIGNMENTS 7

opportunity to correct errors and resubmit (before the deadline).

The framework provides students with a dashboard showing their progress.
A small set of mandatory exercises (taking an estimated one hour maximum to
complete) will be assigned per week. In addition, a student can elect to practice
on more exercises (not for credit). Exercises do not need to be completed in
one session—students can save exercises and return to them later. Submitting
an exercise automatically saves it (and evaluates it for correctness).

Students can login to the framework at https://codebench.cecs.anu.

edu.au using their ANU username and password.

Figure 2.1 shows screenshots from the framework. Figure 2.1(a) shows the
CodeBench login screen, which requires a student (or course staff member)
to enter their username and password. Figure 2.1(b) shows the list of exercises
for Week 1 and indicates which exercises have already been completed. An
example exercise is shown in Figure 2.1(c). Once complete the student can elect
to automatically proceed to the next exercise in the weekly set. Students can
also choose to find similar (non-assessable) exercises to practice on. Writing
and executing code can be done within the browser. Alternatively, the student
can download the code (and resources) and experiment using the standard tool
chain if they are more comfortable doing so.

Figure 2.1(d) shows an online chat tool that is available within the framework
for students to seek help from course staff. If course staff are not online the
messages get cached. The main CodeBench dashboard shows a calendar of
office hours for when students can expect course staff to be online.

In addition to the assigned weekly exercises, students can practice on non-
assessable exercises. These are tagged with keywords that facilitate finding
exercises on a particular topic. Some standard tags are: indexing, loops, strings,
functions, conditionals, containers, files, expressions, etc.

2.3 Assignments

Instructions for each assignment will be provided 2–3 weeks prior to the due
date. Starter code for assignments will be made available via the course Git-
Lab account. Students should fork the assignment repository and change the
visibility to private. Assignments should be submitted via GitLab and must be
the student’s own work.

Assignments should be completed in Python 3. Only libraries supplied with
the Anaconda distribution can be used unless otherwise stated in the assignment
instructions.

A set of tests will be provided with the assignment starter code but additional
tests may be run by the course staff when assessing the submitted code. Code
will also be marked for being well structured, clearly designed, and easy to
follow.

2.4 Projects

Projects involve the development of a more substantial piece of software than
assignments. They also involve working in a team. Projects are marked based

8 CHAPTER 2. ASSESSMENT AND PRACTICE

on submission of the project code (40%), report (40%) and an in-class oral
presentation (20%).

Any libraries (and, in deed, programming language) can be used for the
projects but external code and other people’s work must be clearly acknowl-
edged. Students must discuss projects and intended programming languages
with course staff prior to commencing the project. If a project is not done in
Python then detailed installation instructions for entire software suite must be
provided.

Chapter 3

Lectures

Lecture sessions run for 50 minutes. They will be a combination of traditional
lecturing combined with and live coding demonstrations. It is expected that
students actively participate in the lectures. We hope to video record all lec-
ture sessions but students will gain more by attending and participating in the
lectures. A tentative lecture schedule is provided below.

Wk Lecture A Lecture B Lecture C
(9am Mondays) (2pm Tuesdays) (9am Wednesdays)

1 Welcome and Demo Introduction to Coding S/W Dev. Basics
2 Data Structures I Execution Models Data Formats and Files
3 String Processing Functions Computer Architecture
4 Data Structures II (guest lecture) Objects and Classes
5 S/W Tools and Practices Reading Source Code Libraries and APIs
6 Searching for Help (guest lecture) Advanced Rev. Control
7 Visualising Data (guest lecture) Visualising Data II

—semester break—
8 Debugging Strategies S/W Design Collaborating
9 (public holiday) (no lecture) (no lecture)
10 (public holiday) Refactoring Code Advanced Programming
11 Regular Expressions Data Pipelines Optimizing Code
12 Defensive Programming Programming Languages Software Distribution
13 (project presentations)

Table 3.1: Tentative lecture Schedule.

Time permitting some additional advanced topics may be covered. These
include: client-server programming, databases, concurrency, and Jupyter note-
books.

Non-compulsory laboratory sessions will be run each week. The lab in the
first week will be dedicated to helping students set up their development envi-
ronment. Thereon lab sessions will be unstructured—students are free to attend
any lab session and raise questions about material covered in lectures or seek
help on exercises or assignments.

9

10 CHAPTER 3. LECTURES

3.1 Lecture 1: Welcome to The Craft of Com-
puting

Learning Outcomes

• Course welcome and logistics

• Live coding demonstration touching on the key concepts that will
be developed throughout the course

• Information on first week laboratory sessions for installing soft-
ware and setting up development environments

Overview
The first lecture is primarily a demonstration of what we hope stu-
dents will be able to do once they successfully finish the course. The
demonstration will be around 45 minutes of live coding, showing how
to go from raw data or idea through to data processing, looking up how
to use language and library APIs (e.g., Googling answers on StackEx-
change), and collaborating to finally produce a visualisation that can
be shared in a report or web page.

3.1.1 Logistics and Overview

• Introduction of course staff, lecture times, and lab times.

• What this course is about and handout of questionnaire.

• Overview of assessment and expected workload (assignments, projects and
exercises).

• Where to get course notes or revisit recorded lectures.

• Let’s get started...

3.1.2 Demo: Actors and Movies

During this demo you will be exposed to the process of gluing code together to
solve a specific task. The focus is on “getting stuff done” rather than detailed
planning and analysis, and will touch on some key philosophies of the course—
searching the web for help, directed reading of API documentation, and testing
as you go. Along the way you will also be introduced to the Python programming
language, the PyCharm IDE, and GitLab for revision control (the online exercise
tool CodeBench will not be introduced until Lecture 2).

Importantly, you will see many things that will be new to you during this
lecture. Don’t worry about trying to understand all of the concepts now. By
the end of the course you will be able to do everything we show here, and more!

The task for this demo is as follows: We are given a dataset containing
a list of movies and actors who starred in them. The dataset was extracted from
IMDB and preprocessed to only include the top 250 most popular movies (and
actors who appear more than twice in these movies). Our goal is to understand
which actors often appear in movies together.

3.1. LECTURE 1: WELCOME TO THE CRAFT OF COMPUTING 11

Figure 3.1: Snapshots of two of the tools used in this course–the GitLab repository
web interface and the PyCharm integrated development environment (IDE).

Starting the Project and Reading the Data

• Fork dataset project on GitLab (https://gitlab.cecs.anu.edu.au/comp1040/
comp1040-movie-data).

• Start PyCharm and choose to “Check out from Version Control”. Copy
and paste the URL from GitLab and choose the destination directory.
This will clone a local copy of the Git project. Say “Yes” to opening the
cloned project.

• Open the acting.json file and look at format.

• Add a new file to the project (File|New...). Call it actors.py.

– Click “OK” to add the new file to Git.

• Write some comments about what the code is doing

• Write code to open and read the dataset into an appropriate data structure

– Look up how to load a json file (https://docs.python.org/3/
library/json.html)

– Import the json library

– Store in a dictionary of actors indexed by movie

• Test that the code works

• Commit and push code to the repository. Show that the modified code
has appeared in GitLab.

12 CHAPTER 3. LECTURES

Python Code

1 import json

2

3 # Read the database of actors and the movies that they appear in,

4 # and store as a map of movie titles to actors.

5

6 movie_cast = dict()

7

8 with open(’acting.json’) as file:

9 data = json.load(file)

10 for actor , movies in data.items ():

11 for title in movies:

12 if title not in movie_cast:

13 movie_cast[title] = list()

14 movie_cast[title]. append(actor)

15

16 # check that we have read the file correctly by

17 # looking at one or two movies

18 print(movie_cast["Star Wars (1977)"])

19 print(movie_cast["Rain Man (1988)"])

Find Most Common Co-Star for a Given Actor

• Write a function that given an actor’s name will find all actors that appear
with them in any movie

• Test the function with some examples

• Write some code to find the actor who appears the most with a given actor

• Test using the costars found previously

• Commit and push the code

Python Code

1 # write a function for finding the costars of a given actor.

2 def find_costars(star):

3 costars = []

4 for title , actors in movie_cast.items ():

5 if star in actors:

6 print("{} stars in {}".format(star , title))

7 for actor in actors:

8 if actor != star and actor not in costars:

9 costars.append(actor)

10 return costars

11

12 # test the function with "Tom Cruise"

13 star = "Cruise , Tom"

14 costars = sorted(find_costars(star))

15 print("Co-stars of {}: {}".format(star , ’; ’.join(costars)))

3.1. LECTURE 1: WELCOME TO THE CRAFT OF COMPUTING 13

Python Code

1 # write a function that finds movies in common between two actors

2 def movies_in_common(star , costar):

3 movies = []

4 for title , actors in movie_cast.items ():

5 if star in actors and costar in actors:

6 movies.append(title)

7 return movies

8

9 # for each costar , find out how many movies they have in common

10 shared_movie_count = {}

11 for costar in costars:

12 shared_movie_count[costar] = len(movies_in_common(star , costar))

13

14 # find the costar with most movies in common and show those movies

15 max_count = max(shared_movie_count.values ())

16 for costar , n in shared_movie_count.items ():

17 if n == max_count:

18 print("{} stars with {} {} times".format(costar , star , n))

19 print(" in {}".format(movies_in_common(star , costar)))

Visualization

• Add a collaborator to the GitLab project (via Settings|Members)

• Collaborator opens PyCharm, clones project on separate machine, and
makes sure the code runs

• Add visualization of links between all actors that appears in a move to-
gether

• Search NetworkX documentation for how to do this

• Commit and push the code

Python Code

1 import networkx as nx

2 import matplotlib.pyplot as plt

3

4 # extract the set of actors from movie cast

5 all_actors = set([actor for cast in movie_cast.values ()

6 for actor in cast])

7

8 # create a graph and add the actors as nodes

9 g = nx.Graph()

10 for a in all_actors:

11 g.add_node(a)

12

13 # add edges between actors appearing together in the same movie

14 for title , actors in movie_cast.items ():

15 for i in range(len(actors)):

16 for j in range(i + 1, len(actors)):

17 g.add_edge(actors[i], actors[j])

18

19 # draw and show the graph

20 nx.draw(g, node_color="#ff7f7f", node_size =50, edge_color="#000000",

21 width=1, with_labels=False)

22 plt.show()

14 CHAPTER 3. LECTURES

Visualization II

• First project member updates to get the visualization code and makes
sure it runs

• Adds an item to the issue tracking system asking for a feature that high-
lights the path between any two actors

• Second project member views issue tracker

• Adds functionality to highlight a path between any two actors and marks
issue as done

• Show some examples with pairs of actors and also output the sequence of
movie-actor pairs along the path

• Commit final code to repository and close issue

Python Code

1 # find path between actors

2 first_actor = "Cruise , Tom"

3 second_actor = "Hackman , Gene"

4 path = nx.shortest_path(g, first_actor , second_actor)

5

6 for i in range(len(path) - 1):

7 for title , actors in movie_cast.items ():

8 if (path[i] in actors) and (path[i + 1] in actors):

9 print("{} stars with {} in {}".format(path[i],

10 path[i + 1], title))

11 break

Python Code

1 # draw and show path on the graph

2 path_edges = list(zip(path , path [1:]))

3 node_labels = dict ([(actor , actor) for actor in path])

4

5 positions = nx.spring_layout(g)

6 nx.draw(g, positions , edge_color="#7f7f7f", node_size =50,

7 width=1, alpha =0.25)

8 nx.draw_networkx_edges(g, positions , edgelist=path_edges ,

9 edge_color="#0000ff", width =4)

10 nx.draw_networkx_nodes(g, positions , nodelist=path ,

11 node_color="#7f7fff", node_size =50)

12 nx.draw_networkx_labels(g, positions , labels=node_labels)

13 plt.show()

3.1.3 Next Lecture

• Introduction to programming and Python

• Using the CodeBench exercise framework

• Release of first assignment

3.1. LECTURE 1: WELCOME TO THE CRAFT OF COMPUTING 15

Figure 3.2: Visualisation of the path between Tom Cruise and Gene Hackman in
the top 250 movies database.

16 CHAPTER 3. LECTURES

3.2 Lecture 2: Introduction to Coding

Learning Outcomes

• Understand that software is implemented as a sequence of instruc-
tions which determine the behaviour of a program.

• Understand some basic Python syntax and constructs including
comments, variable assignment, and simple expressions.

• Know what can go wrong when writing software and that testing
should be an integral part of software development.

Overview
In this lecture we will discuss the concept of a program as a sequence of
instructions that are interpreted by a computer. However, emphasis will
be placed on software being written for people not computers and hence
the importance of good design, naming conventions, and comments.
The distinction between declaritive versus imperative knowledge will be
demonstrated. A small program will then be studied to introduce some
basic programming constructs and illustrate what can go wrong when
writing programs (i.e., bugs) and how to mitigate these problems.

3.2.1 Programming Languages

There are many, many different programming languages. Some differ only
slightly in syntax and style, others differ drammaticaly in the way that you
think about a program. In this course we will teach the Python programming
language, but by the end of the course you should have sufficient knowledge to
be able to learn any new programming language by yourself. You will also be
competent at designing, coding, and debugging small programs in Python.

So what is a program?

A program (written in a programming language) is a sequence of instructions
that gets intrepretted by a computer to achieve some computational task.Some programming

languages do not execute
instructions sequentially

but they will not be
considered in this course.

But,
while it is important for the computer to be able to interpret the program, it
is equally important that a program be understandable to other programmers.
This is because programs need to be checked for correctness (i.e., tested) and
maintained—requirements change over time. Always keep in mind that pro-
grams are written for people not for machines.

Declarative versus Imperative Knowledge

An important distinction when thinking about programming is that between
declarative knowledge and imperative knowledge. Consider the definition of a
square root: The square root of a number x is a number y such that the product
of the number y with itself is equal to x. Mathematically we write

√
x = y subject to y2 = x and y ≥ 0

This is an example of declarative knowledge. It tells us what the square root
is but does not tell us how to compute it. Imperative knowledge (sometimes

3.2. LECTURE 2: INTRODUCTION TO CODING 17

called procedural knowledge), on the other hand, gives us a recipe or procedure
for performing some task. For example, the following algorithm tells us how to
compute a square root.

1. Initialize. Start with some guess, y.

2. Check. If y2 is approximately equal to x then stop.

3. Update. Otherwise compute y ← 1
2

�
y + x

y

�
.

4. Repeat. Go to Step 2.

Python is an imperative programming language. We need to tell the com-
puter how to perform a task.

3.2.2 A First Example in Python

Let’s now consider a simple example of writing a program to calculate the area
and circumference of a circle with radius 10cm using formalae A = πr2 and
C = 2πr, respectively. In Python we could write: In Python the ** operator

indicates exponentiation,
so 10 ** 2 means 102.Python Console

1 >>> print (3.141 * 10 ** 2)

2 314.1

3 >>> print (2 * 3.141 * 10)

4 62.82

This is fine if all we wish to do is perform this calculation once. However, if
the calculation were used in some larger piece of software there would be some
problems. First, the numerical expressions are not easy to interpret and obscure
the calculation being done. Second, we would need to recompute the value each
time we needed it in the program. Third, if we ever changed the radius we
would need to work out how to change the expression. A variable in a computer

program is used to store or
reference data.

An alternative is to use
variables and comments to help the reader of our program (which could be our
future selves) understand what we are trying to do

Python Code

1 # calculate area and circumference of a circle

2

3 import math

4

5 radius = 10

6 area = math.pi * radius ** 2

7 circumference = 2 * math.pi * radius

8 print(area , circumference)

The code may look more involved but it’s actually easier to understand what
it is doing and has the advantage that we can avoid recalculating the area or
circumference each time they are needed (since they are stored in variables area
and circumference, respectively). Note that the variables also act to document
the code. Another way to document code is through comments. Comments help other

programmers understand
your code.

Comments are
intended to explain the code to yourself and to other programmers. They are
ignored by the computer. In Python comments start with a # character. Like
much of good programming commenting is a matter of style—you do not need
to go overboard or repeat what is obvious in the code.

18 CHAPTER 3. LECTURES

Python Code

1 # This Python code snippet calculates the area and circumference

2 # of a circle of radius 10cm.

3

4 # Import the math module so that we can use the constant math.pi

5 # instead of having to define it ourselves.

6 import math

7

8 # Now set the radius of the circle to 10 by assigning the value

9 # 10 to a variable called radius.

10 radius = 10

11

12 # The following two lines calculate the area and circumference of

13 # the circle using the value in the variable called radius. The

14 # results are stored in variables with names corresponding to the

15 # value being stored.

16 area = math.pi * radius ** 2

17 circumference = 2 * math.pi * radius

18

19 # Print both the area and circumference that were just computed.

20 print(area , circumference)

We can also easily compute the area and circumference of a circle with
different radius by simply changing the radius variable. Later, we will learn
about functions which makes this even easier. Note that you should always
remember to change your comments when you change your code. Comments
that are inconsistent with the code can be very confusing.

Operator Precedence

Like in standard mathematical notation operators in expressions are evaluated
in a certain order. For example, in the calculation of area in the code above
the radius is squared (radius ** 2) before it is multiplied by π (math.pi *

radius ** 2). Parentheses can be used to control the order of evaluation. So

(a * b) ** 2

computes (ab)2 = a2b2 which is different from

a * b ** 2

Table 3.2 lists the operator precedence for standard Python operators.

Variables

A variable in a computer program is used to store or reference data. We saw
examples in the code snippets above. Variables names should be descriptive to
help document the code and make it more maintainable. Often programmers
will use naming conventions to further help maintainability of the code. For
example, a variable might be called name str where the suffix str is used to
indicate that the variable contains a string.

Programming languages also put restrictions on what can be used as a valid
variable name. For example, certain keywords are reserved by the langauge and
cannot be used (the import and print keywords in the code snippets above
are two examples).Often underscores are used

to separate words in
variable names, e.g.,

area of circle. This is
just a convention. Another

common convention is
CamelCase where the first
character of each word is

capitalised (e.g.,
areaOfCircle).

In Python variable names can contain letters, numbers and
underscores (“ ”), and must between with a letter or underscore. Variable names

3.2. LECTURE 2: INTRODUCTION TO CODING 19

Operator Description
or Boolean OR
and Boolean AND
not Boolean NOT
in, not in, is, is not,

<, <=, >, >=, <>, !=, ==

Comparisons

| Bitwise OR
^ Bitwise XOR
& Bitwise AND
<<, >> Shifts
+, - Addition and subtraction
*, /, //, % Multiplication, division, remainder
+x, -x, ∼x Positive, negative, bitwise NOT
** Exponentiation

Table 3.2: Operator precedence for standard Python operators ordered from lowest
to highest precedence. Operators listed on the same row have the same precedence and
most are evaluated from left to right (see the Python documentation for exceptions).

are case sensitive. Other characters, such as space and symbols, have special
meaning and cannot be used in variable names.

There are three important operations that can be done with variables. These
are creating the variable, assigning a (new) value to the variable, and extracting
a value from the variable. Usually a value is assigned to a variable when it is
first created (sometimes called initialisation). A variable cannot be used in an
expression before it is created. For example, in the circle code above we first
assigned the value 10 to the variable radius before using the variable radius

in the expressions for calculating area and circumference.
Variable assignment is done using the equals operator (=). The left-hand

side of the operator contains only the name of the variable being assigned to
and the right-hand side of the operator contains the expression that is being
assigned. So

hypotenuse = math.sqrt(3 ** 2 + 4 ** 2)

is legal, where as

hypotenuse ** 2 = 3 ** 2 + 4 ** 2

is not. The expression (on the right-hand side) is always evaluated before the
value is assigned. This allows you to update a variable based on its current
value. For example,

count = count + 1

increments the value stored in the variable count by one and stores the result
back in count.

Some variables/constants (and other functionality) are provided as exten-
sions to the language via libraries (sometimes called modules). Libraries will be covered

in detail in a future lecture.
The import

math statement in example code above gave our small program access to a
host of pre-existing variables and functions. In particular, we made use of the
math.pi variable which defines π up to machine precision. Try running the

20 CHAPTER 3. LECTURES

command help(math) in a Python shell to see what else is provided in the
math library. Alternatively visit the online Python documentation at http:

//docs.python.org/3/library/math.html.

Program Execution Flow

At the core of any programming language is the concept of control flow, which
dictates the sequence in which lines of code are executed in the language. In the
circle example above each line of code was executed once in order. However, it
is possible to have more elaborate control via conditional execution and loops.
An example is the Babylonian algorithm for computing the square root of a
number, which repeats the same basic calculation over and over. In Python it
would be implemented as follows.

Python Code

1 # Function to compute a square root using the Babylonian algorithm

2 def square_root(x):

3 y = 0.5 * x

4 while (y * y != x):

5 y = 0.5 * (y + x / y)

6 return y

The while keyword tells Python that the following indented statements are
to be executed repeatedly until the condition in parentheses is met. We will
cover loops and conditional execution in detail in a later lecture.

In Python we refer to a line of code (roughly) as a statement.Statements perform
actions; Expressions

return values.

Statements
can be thought of as the smallest standalone unit within a programming lan-
guage. They are commands that perform some action (sometimes called a side
effect) but do not return any values. For example, assigning the result of some
computation to a variable is a statement. Statements often contain expressions.
The calculation of the area of a circle

math.pi * radius ** 2

is an expression. Expressions can act as statements but statements cannot act
as expressions.

We can test the above Babylonian algorithm code by calling or evaluating
the function on some test cases:

Python Console

1 >>> square_root (4.0)

2 2.0

3 >>> square_root (25.0)

4 5.0

5 >>> square_root (4.41)

6 2.1

7 >>> square_root (10.0)

8 ?

Return Values and Side Effects

Beginners to programming often confuse return values and side effects. For
example, the expression "hello" + "world" returns a value—the character
string helloworld—which can be assigned to a variable (or used in a larger

3.2. LECTURE 2: INTRODUCTION TO CODING 21

expression). The statement print("helloworld") does not return anything,
but does have the side effect of displaying helloworld on the screen. This
can be particularly confusing in the Python console which displays the value
returned by an expression if it is not explicitly assigned to a variable.

Python Console

1 >>> print("helloworld") # statement

2 helloworld

3 >>> "hello" + "world" # expression (console evaluates and prints)

4 helloworld

Getting User Input

So far our program is fairly limited—it can only calculate the area and circum-
ference of a circle with fixed radius, namely 10cm. Our program would be much
more useful if it could calculate the area and circumference of a circle with ar-
bitrary radius. The following code snippet prompts the user to enter a radius
each time it is run.

Python Code

1 # calculate area and circumference of a circle

2 # with radius from user input

3

4 import math

5

6 radius = float(input("Enter radius:"))

7 area = math.pi * radius ** 2

8 circumference = 2 * math.pi * radius

9 print (area , circumference)

Note the line radius = float(input("Enter radius:")). This line does
a number of things. First, it prompts the user to enter a radius. Second, it
waits for user input. Third, it converts the text that the user inputs into a
floating-point number. We will discuss variable

types in a later lecture.
Last, it allocates the variables radius and assigns the

user-entered value to it.

Whitespace, Indentation, and Continuation

Formatting of your code is important not just to make it easy for humans to read
but the layout of the code also affects how it is interpretted by the computer.
Whitespace are characters that do not print (e.g., space, tab and end-of-lines).
Whitespace separates keywords and make your code more readable. For the
most part, you can place whitespace anywhere in your program. However, there
are some special exceptions.

Indentation, i.e., whitespace at the start of a line, is special in Python (not
so in most other programming languages). In Python, indentation defines a
block of code (called a suite in Python) whose execution is conditioned on some
test or part of a loop. We will see examples of indentation when we discuss
conditional execution, loops, and functions.

Python is also sensitive to line endings. Usually the end of the line delimits
the end of a statement. If you want a statement to continue over multiple lines
(e.g., to make the code more readable) you can use the backslash character (\),

22 CHAPTER 3. LECTURES

area_of_circle = \

math.pi * radius_of_circle ** 2

Continuation is particularly useful when printing out long strings, e.g.,

print("It is the mark of an educated mind to be able to", \

" entertain a thought without accepting it ---Aristotle.")

will print the single sentence “It is the mark of an educated mind to be able
to entertain a thought without accepting it—Aristotle.” Note that continuation
does not work for comments. Every line of a comment must begin with a #

character.

3.2.3 What Can Go Wrong With Programs?

There are many things that can go wrong when writing software. This is why it
is important to test thoroughly and test often. Many programmers will write a
suite of tests before they write the code. Errors in software are generally called
bugs.The first electronic

computers, assembled from
vaccuum tubes, got very
hot and attracted insects.

Every now and then an
insect would touch an

electric circuit and fry a
component (and itself).
The process of replacing
the component became
known as debugging.

Remember, a good programmer is not someone who writes correct code
the first time, but someone who can quickly detect and correct bugs and make
it easy for others to do so too. We will discuss debugging strategies in great
detail in a later lecture. Here we summarise the types of errors that can occur
in a program.

Syntax Errors

Syntax errors are errors where the code that has been typed in is malformed
in some way. That is, the code does not follow the rules of the programming
language. For example, using a variable before it is declared is a syntax error.
Syntax errors are the easiest to detect because Python stops execution and
warns us about them. However, interpretting these warnings and correcting
errors is something that requires practice.

Runtime Errors

Runtime errors are not due to anything wrong in the way that the program was
written but are a result of trying to perform some illegal or ill-defined operation.
For example, dividing any number by zero is not defined but Python may not
know that the demonenator in some expression is zero until the program is
run. When Python does try to evaluate the expression it will stop executing
the program and print an error message. Detecting and preventing this type of
error will make your program much more robust.

Another common runtime error involves invalid or illegal memory accesses.
This can result in crashing the program or worse undetected data corruption.
A very common cause of illegal memory access occurs when accessing elements
outside of the bounds of an array. We will discuss this more in Lecture 4.

Logical/Algorithmic Errors

Logical errors are much more subtle. These are errors that do not prevent your
program from running, rather they result in an incorrect result being obtained.
For example, forgetting to square the radius in the calculation of the area of

3.2. LECTURE 2: INTRODUCTION TO CODING 23

a circle will produce the wrong result (except in the case where the radius is
exactly zero or one) but Python will very happily run the code. Only testing
and careful code inspection will pick up these sorts of errors.

Computational Limitations

All computers perform numerical calculations using finite precision arithmetic.
Some errors occur because we are operating near the limitation of the computer’s
ability to represent a number. This type of error is very common when testing
for equality of two floating-point numbers. For example, on a 64-bit computer
231 + 2−22 evaluates to 231. Unlike in mathematics, in

Python the operator == is
used to test for equality
while the operator = is used
for variable assignment.

Try the following in Python,

Python Console

1 >>> a = 2.0 ** 31

2 >>> b = a + 0.5 ** 22

3 >>> print(a == b)

4 True

The result of the comparison should be False but Python prints True.

Our code for the Babylonian algorithm above contains this type of error. For
many input values the code works fine. However, the comparison y * y != x is
susceptible to errors caused by numerical precision, and the program may never
terminate. A solution is to recognise that any calculation is only performed up
to some fixed precision. The inequality test can then be changed to abs(y * y

- x) > 1.0e-6 where we are only checking whether the difference between y2

and x is greater than one millionth.1 With this change we would find square-
roots up to a precision that is sufficient for most purposes.

Python Code

1 # More robust version of the Babylonian algorithm

2 def square_root(x):

3 y = 0.5 * x

4 while abs(y * y - x) > 1.0e-6:

5 y = 0.5 * (y + x / y)

6 return y

Python Console

1 >>> square_root (10.0)

2 3.1622776604441363

CodeBench Exercise Framework

The CodeBench framework has been designed for this course to give you prac-
tice in writing and debugging small snippets of code. The use of CodeBench
for completing and submitting weekly exercises will be demonstrated in the lec-
ture. To access to CodeBench go to https://codebench.cecs.anu.edu.au/,
select the appropriate course (including semester and year), and login with your
ANU credentials.

1In most programming languages 1.0e-6 in interpretted as 10−6 where the e is used to
represent 10 to some power. So 5.3e7 means 5.3× 107 or 53, 000, 000.

24 CHAPTER 3. LECTURES

Figure 3.3: The CodeBench login screen.

3.2.4 Next Lecture

• The software development process

• Text editors and IDEs

• Saving and running programs

• Introduction to revision control and issue tracking

3.3. LECTURE 3: SOFTWARE DEVELOPMENT BASICS—TOOLS AND EVIRONMENTS25

3.3 Lecture 3: Software Development Basics—
Tools and Evironments

Learning Outcomes

• Understand the basic process for developing software (design, im-
plement, test, and revise).

• Understand that software source code is stored in text files on
a computer and interpretted or compiled to produce executable
machine instructions.

• Understand how files are stored within a filesystem.

• Be able to navigate a filesystem to create, modify, copy, and delete
files and directories.

• Understand the difference between raw text files and formatted
text such as in word processing documents.

• Understand the role of a text editor versus a word processor in
writing software.

• Install and perform basic tasks (opening files, running code) using
an IDE (PyCharm).

• Be able to start and use a Python console to interact with code.

• Install and perform basic revision control tasks (checking in and
out code) using GitLab and PyCharm.

• Understand issue reporting and tracking.

• Understand the relationship between IDEs and underlying tools
(e.g., interpreters, version control, file system, etc.)

Overview
In this lecture we introduce text editors and integrated development
environments as the mechanisms for developing code. We will discuss
the tools that will be used in the course and provide instructions for
how they can be installed on Windows, Linux, and Mac OS/X. A brief
overview of filesystems and the distinction of source code versus data
(e.g., a Word document) will be given.

3.3.1 Text Editors and IDEs

Writing, running, and testing code usually involves using several different tools:
a documentation browser; an editor for writing the code; the file system for
saving and loading code and data; an interpreter or compiler to execute code;
and version control for managing code changes and sharing. As its name sug-
gests, an Integrated Development Environment or IDE is an application that
provides an environment for pulling together all the various tools required to
develop code. These are usually presented as a unified “workbench” of win-
dows and tabs that allow you easily shift between writing, running, debugging,
and versioning code. IDEs also typically include extra features such as syntax
highlighting (colouring keywords, strings, and variables) and auto-completion
(showing lists of accessible variables, functions, and function arguments).

Software versions will
change from time-to-time
and the interface that you
see may appear slightly
different from that
described in these notes.
However, the general
concepts remain fairly
constant between versions.

We will use the Community Edition of the PyCharm IDE (https://www.
jetbrains.com/pycharm/) in this course. It is a free, easy to use IDE that

26 CHAPTER 3. LECTURES

Figure 3.4: An overview of the PyCharm Community Edition IDE.

is specifically designed for Python development. It also has extensive online
documentation and video tutorials available at

https://www.jetbrains.com/pycharm/documentation/.

Figure 3.4 shows a screenshot of PyCharm in action. At first sight it looks
quite complicated but we will explain what all the various tabs, frames, pop-up,
etc. do later in the course. For the moment, here is a quick sense of what is
going on:

• Python code is being edited in the large panel in the top right. Vari-
ous keywords, such as with and open are coloured blue and strings are
coloured in green. We use the same colour scheme for syntax highlighting
in these notes. There is also a pop-up box showing that num l can be
auto-completed to num lines by pressing

☛✡ ✟✠Enter . You can press
☛✡ ✟✠Esc to

close the pop-up without auto-completing.

• The top left panel is a file browser showing the files in the current project,
including hello.py, the file being edited. If the files are not showing you
can double-click on the project name (just below the red, amber and green
window controls) to show the panel. Double-clicking on filename will open
that file for editing.

• The bottom left panel shows the result of executing the code (“Line
count: 3”). Blue text is status information added by the IDE.

• The bottom right panel shows which files are under version control and
have uncommitted changed. Display this panel using menu item VCS|Show

Changes View. You can get PyCharm to show you the difference between
your file and the last commit by right-clicking on the filename and choosing
Git|Compare With... from the context menu.

The layout of panels can be customized to your own liking. If you ever get
into trouble with the layout you can select Window|Restore Default Layout

3.3. LECTURE 3: SOFTWARE DEVELOPMENT BASICS—TOOLS AND EVIRONMENTS27

Figure 3.5: Screenshot showing how to set the default Python intrepreter in the
PyCharm IDE on a Linux system.

from the menu to get back to the standard environment. The same effect results
from holding down the Shift key and pressing F12 (denoted

☛✡ ✟✠Shift-F12). Such
key combinations are known as a hot keys or accelerator keys and appear next
to menu items.

Installing and configuring PyCharm

PyCharm is available for all major operating systems and can be downloaded
from https://www.jetbrains.com/pycharm/download/. See inline documen-
tation for detailed installation instructions for your operating system.

Run PyCharm like you would any other application on your system. On some
operating systems an icon may have been installed on your desktop. Otherwise
you will need to find where PyCharm was installed. On Linux and Mac OS X
you can start PyCharm from a command shell by executing pycharm.

The first thing you will want to do is configure PyCharm to use the Anaconda
distribution of Python, which we assume you have already installed on your
system (if not, see the installation instructions in Chapter 4). This can be done
on a per-project basis, but it is easiest if you set the default as follows:

• Select Configure|Settings or Configure|Preferences from the “Wel-
come to PyCharm” window. If you have already opened a project you can
modify the settings using the File|Default Settings menu item.

• Select Default Project > Project Interpreter from the Default Set-
tings window, which should have just appeared.

• In the drop-down list choose the Anaconda Python interpreter. A list of
packages installed with the distribution will appear. Figure 3.5 shows a
screenshot of what you should see.

• Click Apply and then OK. PyCharm may perform some preprocessing of
the Anaconda libraries, which may take some time.

28 CHAPTER 3. LECTURES

(a) (b)

Figure 3.6: (a) The PyCharm start up window allows you to create new projects,
open existing projects, or checkout a project from a version control system. (b) Giving
a new project a name and setting the interpreter.

Writing and running a program

PyCharm is a fully featured professional IDE. We will not be using all of its
features in this course. The main features that we will be interested in are:

• Starting a new project and re-loading an existing one

• Creating new Python files

• Editing files and features of the editor (syntax highlighting, auto-completion,
error detection, and in-built documentation)

• Running code and observing output

• Integration with version control systems (VCS)

Throughout this lecture we will use a running code example of reformatting
some text. Specifically, assume we are given a file of names in the form of
LASTNAME, Given Name. We want to process the file to produce a list with the
last name and first initial only. For example, given the input file

GOULD, Stephen

REID, Mark

...

we want to produce

S. Gould

M. Reid

...

Our first step is to create a new PyCharm project. From the PyCharm
start window select Create New Project. See Figure 3.6. We are asked to
give our project a location where it will be stored on the filesystem and select
an interpreter. Make sure the interpreter is set to the Anaconda 3 version of
Python. The last part (directory) of the location can be thought of as the
project name. Click the “Create” button.

The PyCharm code editor will appear with an empty project. Our second
step is to start adding files to the project. We will copy the input names file

3.3. LECTURE 3: SOFTWARE DEVELOPMENT BASICS—TOOLS AND EVIRONMENTS29

Figure 3.7: An empty PyCharm project and project with files already added and
source code open.

into the project location (using standard operating system file copying) thereby
adding it to the project. Next we will create a new Python file for writing our
code: Select File|New... (or press

☛✡ ✟✠Alt-Insert) and click “Python File”. Give
the file a name, say “reformat names.py.” Notice the .py extension indicating
that the file will contain Python source code. The editor will automatically
open the file for us to start editing.

Our third step is to write the code to perform the processing we want. Notice
how PyCharm highlights keywords, strings and comments in different colours
and styles. This is known as syntax highlighting, and many programmers find
it easier to read code highlighted in this way. The editor also performs code
completion and indicates pairs of matching brackets. This is particularly useful
on the last line where we have two closing brackets.

Python Code

1 # Example from Lecture 3 of reformatting names of RSCS academics

2 # retrieved from the web in the form of "LASTNAME , Firstname ".

3

4 with open("rscs_academics.txt") as fh:

5 for name in fh:

6 p = name.find(",")

7 if (p == -1): continue

8 lastname = name [0:p].strip (). title()

9 firstname = name[p+1:]. strip ()

10 print("{}. {}".format(firstname [0], lastname))

Our last step is to test our code by running it. Either right-click on the
code and choose “Run reformat names”

☛✡ ✟✠Ctrl-Shift-F10 from the context menu

or select Run|Run...
☛✡ ✟✠Alt-Shift-F10 from the main menu and choose “refor-

mat names”. If you make further edits and want to run the code again you
can simply press the Play button or hit

☛✡ ✟✠Shift-F10 . A panel will appear at the
bottom of the PyCharm window with the programs output. The message “Pro-
cess finished with exit code 0” tells you that the program finished normally, i.e.,
there were no errors.

Remember to save your edits often with File|Save All or
☛✡ ✟✠Ctrl-S .

30 CHAPTER 3. LECTURES

Figure 3.8: Running code in PyCharm and inspecting the output.

Using the Python console

As well as using the PyCharm IDE to write programs, the IDE can also let you
“play” with code snippets through the Python console. Like the CodeBench
environment that we use in this course, the console is a great place to experiment
with code and play with the examples in these notes.

To start the Python console from within PyCharm select Tools|Python

Console... from the main menu. A new panel will open up (usually at the
bottom of the PyCharm window). Click anywhere within the panel to start
interacting with the console. The console can be closed by clicking the red cross
(or pressing

☛✡ ✟✠Ctrl-F4) or hidden by clicking the Hide button at the top-right of

the panel header (or pressing
☛✡ ✟✠Shift-Escape). A hidden console retains it’s state.

Tip: the up and down arrow keys within the console window allow you to bring
back previous statements.

Throughout these notes we will use examples of interactions with the Python
console. An example of a console interaction is given below. Lines that are
entered by the user always begin with >>>. Lines that do not begin with >>>

show the value of the expression on the previous input line.

Python Console

1 >>> x = 10

2 >>> 2 * x

3 20

4 >>> 3 * x

5 30

In the above example a variable x was set to the value 10 on the first line. The
second line of user input asks the Python interpreter to evaluate the expression
2 * x (i.e., “2 times x”). The value of this expression is 20 and is shown on line
3. Similarly, line 4 shows the user entering the expression 3 * x and its value,
30, is shown on the last line.

3.3.2 Filesystems and Operating Systems

Operating systems, such as Windows, Mac OS X and Linux, manage the inter-
face between application programs and hardware resources. Part of an operating

3.3. LECTURE 3: SOFTWARE DEVELOPMENT BASICS—TOOLS AND EVIRONMENTS31

system is a filesystem which organises how persistent data is stored on the com-
puter. Filesystems for all major operating systems share a common hierarchy
of files and directories (sometimes called folders). When you write software the
source code is typically stored across multiple files within a directory for a given
project. You should become familiar with navigating the filesystem for your
operating system (either via a graphical interface or the command line).

Sandboxing

Because a software project lives within a directory on the filesystem you can have
multiple copies of the same project on a single machine (revision control systems
also allow you to be developing multiple concurrent branches of a project—more
on this later). This allows you to explore ideas without worrying about affecting
your main code development. For example, you may want to try changing an
algorithm or generate a series of experimental results. If things work out you
can merge your changes with the main source code. Otherwise you can simple
delete the directory. This concept of being able to work on different copies of
the code is known as sandboxing.

3.3.3 Code Versus Data

Many students new to programming get very confused about the distinction
between code (i.e., programs) and data. Let’s try dispel some of that confusion
with the following points:

• Source code is a textual description of a program in some programming
language. It is a mix of statements and comments that gets interpretted
by the computer to run the program.

• Source code, being text, is different from other types of documents you
may have come across, such as Word documents. The latter are typically
binary files in some proprietary format that describe, among other things,
how the document should be displayed. Text editors (or IDEs) are used
to view and modify source code. They cannot typically be used to view
and modify Word documents. Moreover, Word is not a good choice for
viewing and modifying source code.

• Programs often operate on input data. This can be anything from a user-
entered input to a set of files to an image or video stream. The program
run on different data may produce different output, itself data.

• Programs are typically parameterised in some way. For example, you
may be developing a WebApp and your software needs to know the URL
where the application deployed. This information is called configuration
data and differs from the input data that a program operated on. For
small programs (where you have access to the source code) configuration
data can be contained within the code (known as hardcoding). However,
for large projects it’s better practice to keep configuration data separate.

• Source code can sometimes be compiled into byte code or machine in-
structions, which is a binary representation of the program designed to be
executed by the machine. In this sense code can be thought of as data.

32 CHAPTER 3. LECTURES

3.3.4 Basic Revision Control in PyCharm

Revision control (or version control or source control) is a software engineering
practice supported by a set of tools for managing software development. In
particular, revision control systems keep track of changes made to source code,
facilitate collaboration and integrate issue tracking.Warning: Different revision

control systems may use
different terminology.

There are many different
revision control systems but they all provide the same basic functionality, and
many are integrated within the PyCharm IDE. The revision control system that
we will be using in this course is called Git (https://git-scm.com).

Central to a revision control system is a repository (or “repo” for short),
which stores files, mainly source code, and keeps track of changes. Files are
moved between the repository and a programmer’s working directory. Git differs
from many revision control systems in that it is distributed. This means that
every programmer has his or her own copy of the repository. Usually a central
remote repository also exists to allow programmers to collaborate on the same
code base. Remote repositories also provide off-site backup, which is another
important practice in software development. In this course the remote repository
is provided by a framework called GitLab, which also includes issue tracking,
wikis and a web portal for creating and managing projects. The portal can be
accessed at https://gitlab.cecs.anu.edu.au.

Setting up Git in PyCharm

• Select Configure|Settings from the “Welcome to PyCharm” window. If
you have already opened a project you can modify the settings using the
File|Default Settings menu item.

• Select Version Control > Git from the Default Settings window, which
should have just appeared.

• Click the Test button next to the “Path to Git executable” box. If the
test fails make sure that Git is installed on your system and that the path
is correct.

Working with Git Repositories

Creating. The first task to perform when working with revision control sys-
tems is to set up a repository. There are two basic ways to create a repository
in GitLab.2 The first way to create a repository is to fork an existing one (be-
longing to another user). This creates an new repository (in your account) by
copying over files and history from the existing repository. Importantly, any
further software development on the code in either repository will be indepen-
dent of the other. In a later lecture we will discuss how multiple programmers
can collaborate on the same repository.

In the GitLab web interface find the repository that you want to fork and
click the “Fork” button. After forking you’ll want to check the Visibility Level
in the project settings to make sure it’s Private (unless you want otherwise). By
default GitLab sets the visibility level to be the same as the existing project.

The second way to create a repository is to start a new one on the remote
server. Click the “New project” button on the GitLab desktop and enter infor-
mation for new repository. Once a remote repository is forked or created from

2More advanced methods for creating repositories, such as from existing files, will be dis-
cussed in Lecture 12.

3.3. LECTURE 3: SOFTWARE DEVELOPMENT BASICS—TOOLS AND EVIRONMENTS33

Local

(your computer)
Remote

(gitlab.cecs.anu.edu.au)

PyCharm
Your GitLab

Repo

update

check out from version control

Other GitLab
Repo

fork

commit and push

edit

Figure 3.9: Overview of the most common operations using GitLab version control
from within PyCharm.

34 CHAPTER 3. LECTURES

scratch you will need to get a local copy in your working directory before you
can add and modify files.

Cloning. The process of obtaining a local copy of a repository is known as
cloning. In PyCharm select Check out from Version Control from the start
screen or VCS menu, and choose Git. Enter the URL for the respository and the
directory where you want the code to be stored locally. PyCharm will usually
provide a suggestion for the local directory based on the repository name.

The URL for the Git repository can be found in GitLab and will have one
of the following forms:

git@gitlab.cecs.anu.edu.au:<user>/<project>.git

for authentication via SSH (see below), or

https://gitlab.cecs.anu.edu.au/<user>/<project>.git

for password authentication. The latter is easier and the suggested method for
this course.

Clicking “Clone” will connect to the remote server and pull down a local
copy of the repository for you to start working. An illustration of this process
and other common PyCharm version control operations is shown in Figure 3.9.

Editing. Once you have a cloned copy of the repository you can start editing
code. Git automatically keeps track of changed files—when you add a new file
to a project in PyCharm you will be asked if you want the file to be revision
controlled. You can also add a file later by choosing the Git|Add (

☛✡ ✟✠Ctrl-Alt-A)
option from the VCS menu.

Changes you make will not be reflected in the repository until you explicitly
commit them. This allows you to control how often changes are tracked. It
also allows you to easily undo changes (remember the sandboxing concept).
To compare your changes to the last commit (or any previous commit) select
Git|Compare with... from the VCS menu. You can rollback your changes by
pressing the “Revert” button (

☛✡ ✟✠Ctrl-Alt-Z), but be warned that once you revert
your changes will be gone.

Committing Changes. At some point you will want to update the remote
repository with your changes. This is done by performing a commit followed by
a push

☛✡ ✟✠Ctrl-K .The difference between
commit and push will be
addressed in a later lecture.

Whenever you commit you will be asked to provide a comment,
or commit message, that describes the changes you made. It is a very good
habit to provide meaningful descriptions. The GitLab web interface will show
you what files have been updated and also provide a commit history.

Updating Changes. If mutliple programmers are working on a project, or
if your developing across different machines, you’ll want to update your local
copy of the code with changes pushed to the remote repository from other com-
puters. This is known as a pull. In PyCharm choose VCS|Update Project...

(
☛✡ ✟✠Ctrl-T).

Sometimes Git will not be able to automatically merge changes from the
remote repository if you have been editing the same part of the source code.
This is known as a conflict. Dealing with conflicts and other more sophisticated
use of git revision control, such as branching, merging and rolling back code
across mutliple commits, will be covered in a later lecture.

Populating from Existing Files. If we’ve started a project in PyCharm
like we did at the beginning of the lecture before creating a GitLab repository we

3.3. LECTURE 3: SOFTWARE DEVELOPMENT BASICS—TOOLS AND EVIRONMENTS35

can still revision control the files. Instead of cloning the remote repository, we
import the local code into the repository. Choose VCS|Import into Version

Control|Create Git Repository. Select the directory which you want to add
to revision control (this will usually be the location of your project) and click
OK. Now manually add the files you want to keep in your repository. When
you next commit and push your changes PyCharm will ask you for the URL of
your remote repository (with the cryptic message “define remote”). Enter the
same form of URL as you would when cloning (i.e., copied from GitLab).

Project Visibility and Membership. GitLab projects can be made pub-
lic, private or internal (meaning that only users with an account on the system,
i.e., ANU students and staff, can see them). In general, you will want to make
your projects for this course private. You can change/check the visibility level
from Settings menu for the project.

Another important concept is project membership. One of the great things
about revision control is that it simplifies collaboration. Project members are
individuals who all have access to the project files. Different membership types
controls who gets what permissions (e.g., read-only). For now you and the
course staff will be the only members of your projects. Later in the course,
when you do group work, projects will have multiple members.

Setting up SSH Keys

Every time PyCharm performs a transaction with the remote repository (e.g.,
clone, push or pull) the interaction needs to be authenticated. The easiest way to
do this is via usernames and passwords (PyCharm will cache your credentials so
that you only need to enter them once). This is the method we recommend
in the course.

An arguably more secure method of authentication is via a cryptographic
protocol involving SSH keys. Briefly, a key pair is generated with one key (the
private key) stored securley on your computer and the second key (the public
key) stored on the server. Whenever Git needs to perform a transaction the keys
are used to authenticate the user instead of needing usernames and passwords.

The difficulty with SSH keys is that they can be cumbersome to set up the
first time (and each operating system has a slightly different way of generatring
and managing keys). We provide an overview of the steps involved in setting
up SSH keys here but recommend that you consult online documentation if you
plan to use keys.

• Generate public and private keys (typically via ssh-keygen -t rsa)

• Log in to GitLab, choose Profile settings (gear icon), then SSH Keys

• Click “Add SSH Key” (see Figure 3.10)

• Give your key a descriptive name (e.g., “home computer”) so that you can
recognise it later. You can store multiple keys on GitLab if you work on
multiple computers (e.g., desktop and laptop).

• Find where your public key is stored on your computer and copy it to
GitLab. Do not copy your private key.

• Click “Add key”

Don’t forget the git@gitlab.cecs.anu.edu.au:<user>/<project>.git form
for cloning repositories if you are using SSH keys.

36 CHAPTER 3. LECTURES

Figure 3.10: Screenshot of GitLab web interface showing SSH keys that are regis-
tered with the account. Assessible from https://gitlab.cecs.anu.edu.au/profile/

keys.

Dos and Don’ts of Revision Control

Revision control is a powerful tool and it is good to get yourself into the discipline
of using it for all your projects no matter how small and even if you’re not
collaborating with others. It may seem like a lot of overhead at first, but once
you starting using revision control you’ll find it saves a lot of time in the long
run. Here are a few tips on using revision control effectively.

• Commit and push code regularly

• Pull remote changes before you start editing to help avoid conflicts

• Don’t add very large data files to the repository, especially if they are not
changing and can be sourced from elsewhere

– However, do document where data you need for the project can be
obtained from

– and write scripts, which can be revision controlled, for automatically
retrieving it

• Don’t add files that can be regenerated from source

• Don’t forget to add new files before committing

3.3.5 Issue Tracking

Software development is often done in teams. The software engineer testing a
piece of software (and reporting bugs) is not necessarily the same person who
wrote it. Even when they are the same (i.e., you find and fix your own bugs),
there may not be time or resources to fix the bug immediately. Furthermore,

3.3. LECTURE 3: SOFTWARE DEVELOPMENT BASICS—TOOLS AND EVIRONMENTS37

Figure 3.11: Issue reporting interface in GitLab. Left shows interface for reporting
a new issue; right shows list of open issues.

even if the bug can be fixed straight away it’s prudent to keep a record of bugs
and solutions in case they reappear in the future—you will also want to write a
regression test for the bug (more on this in a later lecture). For all these reasons
issue tracking or bug tracking is an important part of the software development
process.

In addition to a description of the bug, issues can record and many other
aspects including who reported the issue, who is assigned to fixing it, the severity
of the issue, and any milestones (e.g., software release dates) affected by the
issue. As such issue tracking is not limited to bug fixing and can be used to
manage feature requests and track project milestones.

GitLab has an integrated issue tracking and milestone system that lets to
manage issues linked to a particular project. Figure 3.11 shows screenshots of
the GitLab issue reporting interface.

3.3.6 Next Lecture

• Variables and expressions

• Data structures

38 CHAPTER 3. LECTURES

3.4 Lecture 4: Data Structures I

Learning Outcomes

• Understand that variables are used to store (or reference) data in
a computer program and that variables can have different types.

• Understand that variables exist within a scope and what happens
when the contents of a variable are changed or copied.

• Understand that two variables can reference the same data.

• Appreciate conventions for naming variables and why descriptive
names are important.

• Recognise and practice using basic containers: strings, tuples, ar-
rays, and lists.

• Consider how problem data may be represented within a computer
program.

Overview
This lecture revisits variables and fundamental datatypes (booleans,
integers and floating-point numbers). Some basic data structures are
then introduced, including strings, tuples, and lists. The lecture ends
with a brief case study on representation and modeling.

3.4.1 Variables and Expressions

A variable is used to store or reference data. Unlike in mathematics where a
variable can refer to an unknown quantity (“find x?”), in imperative program-
ming the “value” of a variable must always be well defined.

A variable must be initialised (also known as defined or declared) before it
is used. In Python a variable is defined by assigning a value to it—in some
other programming languages you need to explicitly declare a variable before
assigning to it. So, in Python,

my_counter = 0

both defines the variable my counter and sets its value to zero. Likewise,

my_list = []

defines the variable called my list and initialises it to be an empty list (more
on lists and other data types later).

Once a variable has been defined we can use its value in expressions. So

print(my_counter)

will display the value stored in my counter and

my_second_counter = my_counter + 1

will declare a variable called my second counter and set its value to whatever
the value of my counter is plus one.

We can also modify the value of an existing variable by assigning a new value
to it. The old value of the variable is lost. Importantly, the expression on the
right-hand side of the equal sign is evaluated before assigning to the variable on

3.4. LECTURE 4: DATA STRUCTURES I 39

the left-hand side. This allows the old contents of the variable to be used in
assigning the new value. For example,

count = count + 1

increments a counter variable and is very common to see in programs.

Data Types

Associated with the data stored in a variable (or any object for that matter,
e.g., a literal value in an expression or the return value for the entire expression)
is a data type. This is very important because the data is interpretted differ-
ently depending on its type, and certain operations are only valid (or behave
differently) depending on the type. For example, integers and character strings
(words and sentences) are different types. It is possible to add two integers but
it is not possible to add an integer to a string. Python allows you to add two
strings with the result that the strings are concatenated.

Python Code

1 print (5 + 10) # legal

2 print("5 + 10") # legal

3 print("cat" + "dog") # legal

4 print("cat" + 5) # illegal

It should be clear from the above example that integers are specified by typ-
ing numbers whereas strings are surrounded by quotation marks (either single
or double). Importantly, 5 and "5" are different types (the first is an integer
and the second is a string) and behave differently. Furthermore, 5 + 10 is an
expression that evaluates to 15 whereas "5 + 10" is a literal string.

Other fundamental data types are Booleans, which hold values True or
False, and floating-point numbers (or floats). The latter are specified by in-
cluding a decimal point so 5 is an integer whereas 5.0 is a float. Integers and
floating-point numbers can behave differently during arithmetic. In Python 2,
integer division would floor to the nearest integer (so 5 / 2 would evaluate to
2). However, in Python 3 the behaviour was changed so that the result gets
automatically upgraded to a floating-point number.

Sometimes we need to explicitly convert between data types. Here Python
provides conversion functions. Most often this will be done to convert between
numerical data types and strings. For example,

Python Code

1 answer = 42

2 sentence = "The answer is " + str(answer)

More sophisticated string formatting will be discussed later.
The input function used to obtain user input returns a string. So often you

will see type conversion performed after obtaining some input. The conversion
can be nested:

Python Code

1 n = int(input("Enter a number between 1 and 10: "))

2 if not 1 <= n <= 10:

3 print("The number you entered is not between 1 and 10")

40 CHAPTER 3. LECTURES

Sometimes programmers like to add suffixes to variables to remind you of
their type (e.g., age int and height float). Not everyone likes this practice.

Note that a variable can change the type of data that it refers to during
execution of a program by assigning it a value of a different type. So the
following is perfectly legal (in Python).

Python Code

1 age = input("Enter your age:") # age holds a string

2 age = int(age) # age holds an integer

Swapping the Contents of Two Variables

It is often desireable to swap the contents of two variables so that at the end
of the swap each variable holds the contents that used to be held by the other
variable. A traditional way to do this is to introduce a new temporary variable.

Python Code

1 # swap contents of a and b

2 tmp = var_a

3 var_a = var_b

4 var_b = tmp

Python offers a convenient shortcut using multiple assignment. Here the
right-hand side of the equal sign is evaluated before assigning to the variables
on the left-hand side so the contents of the variables are correctly swapped.

Python Code

1 # swap contents of a and b

2 var_a , var_b = var_b , var_a

Modification Shortcuts

We saw above that we can modify the contents of a variable by assigning a
new value to it. Moreover, the old contents of the variable can be used in an
expression for defining the new value to be assigned. A very common operation
is to increment or decrement a counter variable by some fixed amount. For
example,

Python Code

1 up_counter = up_counter + 1

2 down_counter = down_counter - 1

Python (and many other programming languages) offers a shorthand way of
using the variable on the left-hand side as the first operand of an expression on
the right. This allows the above increment and decrement to be written as

Python Code

1 up_counter += 1

2 down_counter -= 1

The following table describes all the assignment operators.

3.4. LECTURE 4: DATA STRUCTURES I 41

Operator Description
= Simple assignment.
+= Add and assign.
-= Subtract and assign.
*= Multiply and assign.
/= Divide and assign.
%= Modulus and assign.
**= Exponentiate and assign.
//= Divide, floor, and assign.

Table 3.3: Assignment Operators in Python.

Scope

Not all variables that have been defined are available everywhere within a pro-
gram. There are good reasons for limiting the scope of a variable. It helps with
code design and maintainability, and preventing data corruption. The scope of
a variable is defined by the blocks of code (also namespace) where access to the
variable is valid. We will see this when we discuss functions. When a variable
goes out of scope it’s contents are, in general, lost. A variable with global scope
is accessible from anywhere.

Aliasing

We have been fairly informal in our discussion of variables so far by saying that
a “variable stores data”. Most of the time this way of thinking about a variable
is fine. Technically, however, a variable is a symbolic name that references
data (which exists separate to the variable name itself). This is an important
distinction because it means that two variables can reference the same data,
a situation called aliasing. Without understanding aliasing, your code could
appear to have unexpected side effects.

Consider the following example.

Python Console

1 >>> x = 13

2 >>> y = x

3 >>> y

4 13

5 >>> y = 42

6 >>> y

7 42

8 >>> x

9 13

The assignment to variables x and y behaves as expected (our view of variables
as storing data, in this case the numbers 13 and 42). Now contrast the previous
example with the following code, which modifies elements in a list. We discuss
lists in more detail later in this lecture.

42 CHAPTER 3. LECTURES

Python Console

1 >>> x = [1, 2, 3]

2 >>> y = x

3 >>> x

4 [1, 2, 3]

5 >>> y

6 [1, 2, 3]

7 >>> y[0] = 42

8 >>> y

9 [42, 2, 3]

10 >>> x

11 [42, 2, 3]

Surprisingly, modifying the first element of the y list results in a change in the
x list. What is going on here? The answer is aliasing. Both symbolic names
(variables) x and y reference the same underlying list (data), and the code
modifies that underlying list. The former code, on the other hand, changed the
data that variable y references.

The behaviour that was probably intended and perhaps more intuitive, i.e.,
modifying a different list stored in y, is demonstrated by the following code.
Note the invocation of the .copy() method on Line 2.

Python Console

1 >>> x = [1, 2, 3]

2 >>> y = x.copy()

3 >>> x

4 [1, 2, 3]

5 >>> y

6 [1, 2, 3]

7 >>> y[0] = 42

8 >>> y

9 [42, 2, 3]

10 >>> x

11 [1, 2, 3]

Side effects caused by aliasing happen frequently when passing variables
into functions or assigning a container data type to another variable without
the .copy() method. We will cover this topic again when we discuss functions
in a later lecture.

3.4.2 Strings

A string is a special data type that is used to store a sequence of characters.
In Python strings are of type str. Strings can be of any length (including
empty) and are defined by enclosing a sequence of characters in matching single
or double quotes.

Python Code

1 string_A = "Hello World" # valid string

2 string_B = ’Hello World ’ # valid string , same as string_A

3 string_C = "Hello World ’ # invalid string , mismatching quotes

Sometimes you will want to add special characters to a string. Most of the
time you can just type the character, but what happens when you want to in-
clude a quotation mark within a string? One solution is to use single quotes

3.4. LECTURE 4: DATA STRUCTURES I 43

to delimit a string that includes a double quote (e.g., ’"Hello World"’) and
double quotes to delimit a string that includes a single quote (e.g., "Alice’s
restaurant"). However, you can probably see that this solution has its limita-
tions.

The alternative, adopted by all programming languages, is to use an escape
character, usually a backslash (\), that changes the meaning of the character fol-
lowing. So we can now write "\"Hello World\"" and ’Alice\’s restaurant’.
If we want to include an actual backslash in our string we need to escape the
backslash itself (e.g., "\\"). Special non-printing characters can also be included
in this way. The two most common of these are the newline character \n and
the tab character \t.

String processing is something that computers are very good at, and a great
deal of programming concerns the manipulation of string. We will see lots of
examples and devote an entire future lecture to string processing. For now, we
cover some basic printing of strings.

In Python 3 print was
changed from a keyword,
part of the language, to a
function.

The simplest way to display information to the user is to print it to the
screen. Strings, integers, floats, and other objects can all be output using the
print function.

Python Code

1 print("The Craft of Computing")

2 print (1040)

A more sophisticated way to display output is by string formatting. Tech-
nically, format is a method called on a string that modifies the string. For
example,

Python Code

1 import math

2 print("The number pi is {:.2f}".format(math.pi))

prints the string “The number pi is 3.14”. Here the format specifier “:.2f” takes
the first argument of format, interprets it as a float, and displays it to two
decimal places. Some other formatting examples are shown below: To print braces within a

format string double them
up, i.e., {{}}.Python Code

1 print("{} and {}".format("Bart", "Lisa"))

2 print("{0} and {1}".format("Bart", "Lisa"))

3 print("{1} and {0}".format("Bart", "Lisa"))

4

5 for i in range (100):

6 print("{:4d}".format(i))

Individual characters in a string can be accessed using square brackets, [],
also known as the index operator. The following code prints out a string one
character at a time.

Python Code

1 message = "Hello World"

2 for i in range(len(message)):

3 print(message[i])

44 CHAPTER 3. LECTURES

Note that the first character in the string has index 0. A negative integer
within the square brackets indexes the string from the back, so message[-1]

accesses the last character in message. Other patterns are possible and will be
discussed in Lecture 7.

3.4.3 Basic Data Structures

Python (and many other modern programming languages) have a rich set of
data structures that can help store objects and solve problems. In this section
we discuss two of the most basic data structures: tuples and lists.

Tuples

A tuple is an immutable fixed-length ordered collection of elements. The ele-
ments of a tuple can be arbitrary objects of different types. A tuple is specified
as a comma separated sequence of expressions enclosed in pathentheses (round
brackets). The following example constructs a 2-tuple representing a particular
location on the unit circle:

Python Code

1 import math

2 theta = 2.0 * math.pi * 45.0 / 360.0 # 45 degrees in radians

3 point = (math.cos(theta), math.sin(theta))

We can also use the tuple keyword to cast from another data type, such as
a string, to a tuple. For example,

tuple("COMP1040")

produces the 8-tuple

(’C’, ’O’, ’M’, ’P’, ’1’, ’0’, ’4’, ’0’)

You can access invidual elements in a tuple using the index operator (square
brackets) in much the same way you would access individual characters in
a string. Remember that Python uses zero-based indexing—getting indexing
wrong is a very common source of error in programs. So in the example above
point[0] is the first element of the tuple stored in variable point.

Lists

A list is a mutable ordered collection of objects. Unlike a tuple a list can grow
and shrink in size after it has been created. You can also change the value
for elements in the list at any time. A list is specified as a comma separated
sequence of expressions enclosed in square brackets. Lists can also be built up
incrementally as the following example demonstrates.

Python Code

1 names = ["Bart", "List"] # construct a list with two elements

2 names.append("Maggie") # add a third element

3 print(names) # print the list

One really useful way to create lists in Python is via list comprehension. A
list comprehension builds a list by executing some operation over elements of

3.4. LECTURE 4: DATA STRUCTURES I 45

another sequence. The following example constructs a list whose elements are
the first 10 perfect squares:

Python Console

1 >>> perfect_squares = [(x + 1) ** 2 for x in range (10)]

2 >>> perfect_squares

3 [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

And here is another example of list comprehension:

Python Code

1 fullnames = [n + " Simpson" for n in names]

2 print(fullnames)

We will discuss iteration and show more examples of list comprehension
throughout the course. For now, it is enough to recognise the basic pattern.
Now let’s put strings, tuples, and lists together in an example program.

Example 3.4.1. An anagram is a word or phrase that can be made by re-
arranging the letters of another word or phrase. The meaning of the phrases
do not need to be related, but it can be amusing when they are. For example,
“listen” is an anagram of “silent” and “a decimal point” is an anagram of “I’m
a dot in place”.

In this case study we consider the problem of finding Twitter anagrams,
i.e., two tweets that are anagrams of each other. For simplicity we will ignore
non-alphabetic characters. So given two tweets (of at most 140 characters) how
would we go about determining if they are anagrams?

One approach would be to pre-process the tweets to remove non-alphabetic
characters, sort the letters in the resulting strings, and compare them. We will
call the final sorted string a signature for the tweet. This seems like a lot of
work (but can actually be done in a few lines of Python). Let’s have a look at
code for computing a signature from a tweet.

Python Code

1 import string

2

3 tweet = "Everything is always too good to be true!"

4 letters_only = ’’.join(filter(str.isalpha , tweet))

5 lower_case_only = letters_only.lower ()

6 sorted_lower_case = sorted(lower_case_only)

7 signature = ’’.join(sorted_lower_case)

The code can be written in a more compact way by feeding the output of
one step directly into the next step. Here is the code for comparing two tweets.

Python Code

1 import string

2

3 tweet_A = "Everything is always too good to be true!"

4 tweet_B = "I guess I have to try to go to bed early now."

5

6 sig_A = ’’.join(sorted(’’.join(filter(str.isalpha , tweet_A)). lower ()))

7 sig_B = ’’.join(sorted(’’.join(filter(str.isalpha , tweet_B)). lower ()))

8

9 if (sig_A == sig_B):

10 print("The tweets are anagrams")

11 else:

12 print("The tweets are not anagrams")

46 CHAPTER 3. LECTURES

This code is pretty good, but if we are searching through a very large number
of tweets it may be inefficient. Why?

An alternative is to represent a tweet (i.e., its signature) as a histogram of
letters. The histogram only needs to be 26 elements long (and each element
ranges between 0 and 140). We then compare histograms. Here is the code.

Python Code

1 import string

2

3 lower_case_A = ’’.join(filter(str.isalpha , tweet_A)). lower()

4 sig_A = [lower_case_A.count(i) for i in string.ascii_lowercase]

5

6 lower_case_B = ’’.join(filter(str.isalpha , tweet_B)). lower()

7 sig_B = [lower_case_B.count(i) for i in string.ascii_lowercase]

8

9 if (sig_A == sig_B):

10 print("The tweets are anagrams")

11 else:

12 print("The tweets are not anagrams")

The alternative signature is much smaller than in our first approach. Can
you think of an even better representation for comparing a very large number
of tweets? Hint: consider the frequency of letters in English.

Like strings, individual elements of a list can be accessed using the index
operator []. More complex patterns that address multiple elements within a
list, known as slices, are also possible and will be discussed in Lecture 7.

3.4.4 Representation and Modeling

The basic data structures just discussed come up all the time in solving problems
with programming. They are not simply useful containers for storing data. We
can also exploit their properties to make solving a problem easier, and will see
plenty of examples of this when we look at more data structures in a later
lecture. However, data storage is only one issue we face when solving problems.
Other aspects of representation and modeling are also very important as the
following example shows. Plenty of practice and experience will help you to
develop intuition into what representations and data structures work best for
different sorts of problems. This is a big part of the craft of computing.

Example 3.4.2. Consider the famous Birthday Paradox, which states that in
a small gathering of just 23 people there is 50% chance that two of the people
share the same birthday (ignoring the year). Now, suppose we wish to write a
program to experimentally verify the Birthday Paradox. We will run repeated
trials. In each trial we randomly sample 23 birthdays and then check whether
any two birthdays within the trial are the same.

We are left with one key question—how do we sample a birthday? One
way would be to represent a birthday as day and month (i.e., DD-MM) and first
sample the month followed by the year. This has two issues both due to the fact

3.4. LECTURE 4: DATA STRUCTURES I 47

that months contain a different number of days. First, there is not a uniform
probability of being born in any month. Second, once we sample the month we
need to sample the day knowing the number of days in the month. Ignoring
the first issue (and for simplicity also ignoring leap years) we end up with the
following code where we store birthdays in a list of 2-tuples.

Python Code

1 import random

2 month_days = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

3

4 number_of_trials = 1000

5 same_birthday_count = 0

6

7 for trial in range(number_of_trials):

8 birthdays = []

9 for i in range (23):

10 month = random.randint(1, 12)

11 day = random.randint(1, month_days[month - 1])

12 birthdays.append ((day , month))

13

14 if (len(set(birthdays)) < 23):

15 same_birthday_count += 1

16

17 p = float(same_birthday_count) / float(number_of_trials)

18 print("probability of same birthday is " + str(p))

Here we check for duplicate birthdays by converting the list of birthdays
into a set. Since a set discards repeated elements it’s size will be less than 23 if
duplicate birthdays were sampled. Thus all we need to do is check the size of
the resulting set.

An alternative is to represent birthdays in terms of day-of-year. This repre-
sentation is much better for the problem at hand and lets us write much more
succinct code (where again we have ignored leap years).

Python Code

1 import random

2 number_of_trials = 1000

3 same_birthday_count = 0

4

5 for trial in range(number_of_trials):

6 birthdays = [random.randint(1, 365) for i in range (23)]

7 if (len(set(birthdays)) < 23):

8 same_birthday_count += 1

9

10 p = float(same_birthday_count) / float(number_of_trials)

11 print("probability of same birthday is " + str(p))

Thinking about representation is very important both for ease of implemen-
tation and maintenence, and correctness of your code. A very famous bug known
as the Y2K Bug was caused by an inappropriate date representation. Many pro-
grams written before the year 2000 used two digits to represent the year, for
example, “97” represented the year “1997”. In the early 1990s programmers
realised that this was going to cause major errors with possible catastrophic

48 CHAPTER 3. LECTURES

consequences as the millenium approached and passed. An enormous amount
of effort and dollars went into re-writing programs and patching large computer
systems to avoid the bug. The Y2K Bug demonstrated the importance of a
good representation especially when code is used in large scale systems, varied
applications, and over long time periods.

3.4.5 Next Lecture

• Execution models

• Control flow

– Conditional execution

– Loops

• Catching runtime errors

3.5. LECTURE 5: EXECUTION MODELS AND CONTROL FLOW 49

3.5 Lecture 5: Execution Models and Control
Flow

Learning Outcomes

• Develop a mental model of program execution and be able to men-
tally step through the execution of a small piece of code.

• Understand that certain program instructions can control what
code gets executed depending on the result of some test or state
of the system.

• Recognise different control flow patterns, how they map onto lan-
guage constructs, and when to use them.

• Be able to write simple programs in python using if-then-else,
for, and while constructs.

Overview
In this lecture we develop the idea of a mental execution model and prac-
tice stepping through the execution of small programs. We introduce
the idea of conditional execution and repeated execution, and see how
they are expressed in Python using if-then-else, for, and while con-
structs. We also briefly discuss function calls and language constructs
for catching runtime errors.

3.5.1 Mental Execution Model of Programs

It is important to develop a mental model of how programs run and to be able
to manually step through the execution of a small piece of code to understand
what it is doing. Sometimes a graphical visualisation of how code runs can help.
The website http://pythontutor.com/ is an online python tutor developed by
Philip Guo that does just that.

In an earlier lecture we mentioned that a program is a sequence of instruc-
tions that get interpretted by a computer to achieve some computational task.
Some instructions will get executed by the program everytime it is run (on all
different inputs). But often, to obtain interesting outcomes, some instructions
are only executed if certain conditions are met, and other instructions otherwise.
This is known as conditional execution.

Let’s take as an example a small piece of code for computing the absolute
value of a number. Note that Python includes the built-in function abs so you
would never actually have to write code for this, but it makes a useful example.

Python Code

1 user_input = input("Enter a number: ")

2 x = float(user_input)

3 if (x < 0):

4 x = -x

5 print(x)

Executing this code in our heads we see that the first line of code prompts
the user to enter a number and stores what they type in a variable called
user input. The second line converts the user input from a string into a
floating-point number and stores the result in a variable called x. So if the

50 CHAPTER 3. LECTURES

user had entered 10 the variable x would now contain the floating-point value
10.0. The next line is where things get interesting. The code checks whether
in value stored in x is less than zero. On our example input 10 the test fails
and the sequence of indented statements (here only one) that follows the test is
skipped. The program proceeds to the final line and prints the value stored in
x, namely 10.0.

Now, let’s mentally run through the program again but this time enter -10
instead of 10. This time when we get to the negativity check on the third line
we will have the value -10.0 stored in x. The test succeeds and the program
proceeds to run the indented statement. This statement negates the value in x

and assigns the result back to x. The final line of the program is then executed
printing out the value 10.0.

Before showing you the code we explained that it would calculate the ab-
solute value of a number. Our mental execution of the code on two example
inputs verified that it does this. As always we could have written different code
that achieves the same outcome. An alternative is shown below.

Python Code

1 user_input = input("Enter a number: ")

2 x = float(user_input)

3 if (x < 0):

4 print(-x)

5 else:

6 print(x)

And another.

Python Code

1 user_input = input("Enter a number: ")

2 x = float(user_input)

3 print(-x if (x < 0) else x)

In English we would describe the code above as: A string is inputted from
the user and converted to a number. The program then negates and prints the
number if it is negative or just prints out the number otherwise.

We cover conditional execution and other forms of control flow below. For
now, determine what the following program does by mentally executing the
instructions on different input values.

Python Code

1 n = int(input("Enter a positive integer:"))

2 if (n % 2 == 0):

3 n = n / 2

4 else:

5 n = 3 * n + 1

The calculation done in the above code is the core calculation done to pro-
duce a sequence of numbers known as a Collatz Sequence—you get the next
number in the sequence by feeding the result back into the program. Try run-
ning the program repeatedly entering in the result of the previous run. Does
the sequence of numbers you get always end in an ever repeating cycle of 4, 2,
and 1? Later in the lecture we will see how to automate running the program
repeatedly.

3.5. LECTURE 5: EXECUTION MODELS AND CONTROL FLOW 51

3.5.2 Control Flow

Control flow refers to the order in which a program executes statements. With-
out control flow the program will just execute statements in the order in which
they appear in the code. Special instructions allow different paths through the
code to be followed. This may include:

• jumping to a different location in the code,
• executing a set of statements only if some condition is satisfied,
• repeatedly executing a set of instructions until some condition is met,
• halting execution of the program.

Logical (or Boolean) expressions are used to determine if some condition is
met. A logical expression returns a Boolean value (i.e., a value that is either
True or False). In some programming

languages a value of zero is
considered False and a
non-zero value is
considered True.

For example, if we want to test whether the value stored in a
variable is positive we could write

my_var > 0

This is an expression that returns either True or False. The return value can be
assigned to a variable or used within a control statement as we will see shortly.

One thing we need to be careful about is testing for equality. In Python (and
many other programming languages) the equals sign (=) is used for assignment
and two equals signs together (==) is used to test equality. Consider the following
two lines of code

var_a = var_b

var_a == var_b

The first line is a statement that assigns the value in var b to var a while the
second line is an expression tests whether the value stored in var b is equal to
the value stored in var a. When used in a control statement, Python will warn
you if you use = instead of ==. This is because assignment does not return a
value. Some other programming languages are not so friendly and accidentally
using = is a frequent source of difficult to detect bugs.

Other useful operators for testing various conditions are:

Operator Evaluates to True if . . . otherwise False
in the element (left) is a member of the container (right)
not in the element (left) is not a member of the container (right)
is the left and right operands point to the same object
is not the left and right operands do not point to the same
< the left operand is less than the right operand
<= the left operand is less than or equal to the right operand
> the left operand is greater than the right operand
>= the left operand is greater than or equal to the right operand
<> the left operand is not equal to the right operand
!= the left operand is not equal to the right operand
== the left operand is equal to the right operand

Table 3.4: Comparison operators.

Boolean expressions can be strung together using the logical operators and,
or, and not to form more complicated tests. Use parentheses to explicitly

52 CHAPTER 3. LECTURES

control the order in which operators are evaluated within an expression. For
example, the following two lines of code give different results for particular
combinations of Boolean variables a and b.

not a or b

not (a or b)

Python allows comparison operators to be chained. This is quite unique and
is not a feature of other programming languages. The most common place to
find operator chaining is when checking bounds on a variable. For example,

0 < my_int < 10

which is logically equivalent to

(0 < my_int) and (my_int < 10)

If-Then-Else

The if-then-else construct is perhaps the most widely used form of condi-
tional execution. We have seen this construct a number of times already. The
else part is optional. A useful extension is to include optional elif blocks
which implements switch or case statements found in other programming lan-
guages. Consider the following code snippet.

Python Code

1 day_of_week = int(input("Enter day of the week (1 -7): "))

2 if (day_of_week == 1):

3 print("Monday")

4 elif (day_of_week == 2):

5 print("Tuesday")

6 elif (day_of_week == 3):

7 print("Wednesday")

8 elif (day_of_week == 4):

9 print("Thursday")

10 elif (day_of_week == 5):

11 print("Friday")

12 elif (day_of_week == 6):

13 print("Saturday")

14 elif (day_of_week == 7):

15 print("Sunday")

16 else:

17 print("<unknown >")

Can you think of a better way of writing this particular piece of code?
Note our use of indentation in the example code above. The indentation not

only makes the code more readable, it is required by Python to define the block
of code that gets executed (or skipped) if the condition above is satisfied (or
not). Other programming languages use delimiters to mark blocks of such code.

In Python a block of code
at the same indentation
level is called a suite.

A sequence of statements at the same level of indentation is considered a block
and can be thought of as a unit of code that is always executed together.

Note that the order in which we test inputs is important in that the indi-
vidual conditions need not be mutually exclusive. As soon as a condition is
satisfied the corresponding code block is executed and all remaining code blocks
are skipped. So the following two code snippets produce different results.

3.5. LECTURE 5: EXECUTION MODELS AND CONTROL FLOW 53

if (x % 2 == 0):

print("x is even")

elif (x < 0):

print("x is negative")

else:

print("odd and positive")

if (x < 0):

print("x is negative")

elif (x % 2 == 0):

print("x is even")

else:

print("odd and positive")

Another example that produces different results to the two snippets above
but has the same flavour is:

if (x < 0):

print("x is negative")

if (x % 2 == 0):

print("x is even")

if not ((x < 0) or (x % 2 == 0)):

print("odd and positive")

For Loops and Iteration

Often we wish to perform some operation on each object in a collection. For
example, we may want to iterate over a list of assignment grades and count the
number of high distinctions. The for loop is ideal for exactly this scenario.

Python Code

1 grades = [65, 90, 70, 85, 92, 73, 62, 68, 81, 68]

2

3 num_high_distinctions = 0

4 for g in grades:

5 if g >= 85:

6 num_high_distinctions += 1

The way to read the for loop above is as follows: “for each grade denoted
by g in the list of grades check if its value is greater than or equal to 85. If so,
increment the count of number of high distinctions.”

The for construct can also be used to create a loop that runs for a fixed
number of iterations. We do this in Python by using the special range function.

In Python 2, range
returned a list. In Python
3, it returns an iterator.

Other programming languages have other ways to define looping for a given
number of iterations. A simple example illustrates the point.

Python Code

1 for i in range (10):

2 print(i)

One thing to be aware of is that the value of the iterator variable goes from
0 to n − 1 where n is the argument provided to the range function. So in
the code snippet above the number 10 is not printed. The function can take
other arguments that specify the starting value of the iterator and the amount
by which it increments on each iteration as demonstrated in the following code
which prints out the even numbers between zero and nine (inclusive).

Python Code

1 for i in range(0, 10, 2):

2 print(i)

54 CHAPTER 3. LECTURES

When a loop finishes the program continues executing immediately instruc-
tions following the loop.

Remember that indentation defines a code suite, so the following two code
snippets that sum numbers from 1 to 10 have very different behaviour.

sum_x = 0

for x in range(0, 10):

sum_x += x

print(sum_x)

sum_x = 0

for x in range(0, 10):

sum_x += x

print(sum_x)

Example 3.5.1. A substitution cipher is one of the earliest forms of cryp-
tography (now trivially broken) in which a plaintext message is converted to
ciphertext, i.e., encrypted, by substituting letters via a lookup table (e.g., “A”
is substituted for “M”, “B” for “K”, etc). The ciphertext is decrypted by per-
forming the reverse substitution. The forward and reverse lookup tables are the
encryption and decryption keys.

Assume our encryption key is a lookup table with one entry for each letter of
the alphabet (i.e., of length 26). Each entry tells us which letter the correspond-
ing location gets mapped to, so for example, encryption key[0] is the letter
that should replace “A” in our ciphertext—remember that indexing in Python
is zero based! We can easily construct a random encryption key as follows:

Python Code

1 import random

2

3 encryption_key = list(range (26))

4 random.shuffle(encryption_key)

Constructing the decryption key requires that we build a reverse lookup
table. This is a common coding pattern that you may use often.

Python Code

1 decryption_key = list(range (26))

2 for i in range (26):

3 decryption_key[encryption_key[i]] = i

Now let’s say we have an uppercase letter stored in variable letter and
we wish to find the substitute for that letter. We need to be able to index our
lookup tables starting from zero for “A”. Fortunately, the letters “A” to “Z” are
encoded consecutively in all character encoding schemes (specifically, UTF-8)
and Python provides us with a function called ord() which returns the ordinal
value for a single character. The function chr() takes an ordinal value and gives
us back the character. Finding the letter to substitute for is then easy:

Python Code

1 new_letter_index = encryption_key[ord(letter) - ord(’A’)]

2 new_letter = chr(new_letter_index + ord(’A’))

Given an arbitrary plaintext string we can encrypt it by just iterating over
each letter in the string and finding it’s substitute.

3.5. LECTURE 5: EXECUTION MODELS AND CONTROL FLOW 55

Python Code

1 ciphertext = ’’

2 for ch in plaintext.upper ():

3 if str.isalpha(ch):

4 ciphertext += chr(ord(’A’) + key[ord(ch) - ord(’A’)])

5 else:

6 ciphertext += ch

Note that we did not encrypt non-alphabetic characters. The decryption
code is identical except that we use the decryption lookup table instead.

While Loops

Rather than iterating over a collection of objects, if we want to repeatedly run
a certain segment of code until some condition is violated (not satisfied) then
we can use a while loop.

Remember the Collatz Sequence we introduced earlier in the lecture? Instead
of us having to manually re-run the code each time a new number in the sequence
is calculated, we can write a while loop to re-run the code for us. The loop
terminates when the sequence reaches the value 1.

Python Code

1 n = int(input("Enter a positive integer:"))

2

3 # check that a positive integer was actually entered

4 if (n <= 0):

5 exit()

6

7 # keep generating the next integer until we reach n == 1

8 print(n)

9 while (n != 1):

10 if (n % 2 == 0):

11 n = n / 2

12 else:

13 n = 3 * n + 1

14 print(n)

Nesting Loops

Loops can appear within other loops. This is called nesting. For example, the
code snippet below shows two nested loops (for printing the twelve times table).
The inner loop (over variable j) is executed in its entirety for each iteration of
the outer loop (over variable i). This is a classic example of an O(n2) algorithm.

Python Code

1 for i in range(1, 13):

2 for j in range(1, 13):

3 print("\t", i * j, end="")

4 print("\n")

56 CHAPTER 3. LECTURES

Breaking Out of a Loop Early

Programmers are lazy and sometimes it is cumbersome to explicitly write out
the termination condition for a loop. In the latter case code may be more
readable if we allow a loop to be exited from some arbitrary point within it.
It only makes sense to execute a break statement conditionally (i.e., within an
if-then construct).

An example may help to illustrate the point. The following code asks the
user to enter a list of positive numbers. A loop is used check that all numbers
in the list are positive.

Python Code

1 num_list = [int(v) for v in input("Enter list:"). split(’ ’)]

2 all_positive = True

3 for n in num_list:

4 if (n <= 0):

5 all_positive = False

6 break

Note, that for nested loops the break statement will jump out of the smallest
enclosing loop. In order to break out of nested loops you will usually need to
set a flag or re-write your code to make loop termination easier.

Returning to the Start of a Loop

Another useful construct for controlling program flow is to return to the start of
a loop early, i.e., before executing all of the statements inside the loop. When-
ever Python encounters a continue statement it immediately begins the next
iteration of a loop (or exits the loop if already on the last iteration).

The following code iterates through every file in the current directory. If the
file has extension “.txt” the code opens the file and prints out the first line.

Python Code

1 import os

2 for filename in os.listdir("."):

3 if (filename [-4:] != ".txt"):

4 continue

5

6 print(open(filename). readline ())

The Pass Statement

Python includes a special statement called pass, which essentially means “do
nothing”. This can be very useful when developing code because you often wish
to focus on the structure of the code and then fill in the details later. Since
Python requires that all loop bodies, if statements and functions be non-empty,
pass allows you to construct code that is syntactically correct but does nothing.
For example,

Python Code

1 for student in student_list:

2 # TODO: work out details later

3 pass

3.5. LECTURE 5: EXECUTION MODELS AND CONTROL FLOW 57

Function Calls

We have already seen many functions. They are indispensable constructs in
facilitating code reuse and making software more readable and maintainable.
Functions are probably the most powerful concept in a programming language.
When a function is called, the code within the function is executed and then,
once the function completes, control returns to the next instruction from where
the function was called.

Functions can take input parameters and return values (or objects). If a
mutable object is passed as an input parameter to a function then the function
can modify the contents of that object. Functions need not

explicitly return a value,
e.g., the print function.
In such cases Python
deems the function to have
returned the special object
None.

Details on defining functions will be
presented in a later lecture. For now it is important to be able to use functions
and recognise when they are being called within a piece of code. A classic
example is the input function, which waits for user input then returns execution
to the calling program.

Python Code

1 msg = input("Enter message:")

2 print("You entered " + msg)

Function calls can be nested. That is, a function can call another function
including itself—this called recursion and is an advanced programming concept
that will be treated in a later lecture.

3.5.3 Catching Runtime Errors

We have seen before that runtime errors can cause programs to crash (in the
best case) or produce the wrong output without you knowing (in the worst
case). Sometimes it’s okay for your program to crash, but often you will want
it to handle errors gracefully.

One way to handle runtime errors is to try anticipate every way in which
your program can go wrong and guard against each way (it is a useful exercise
to do this). This is fine if you can deal with the error locally but sometimes the
error occurs deep within your code and you want to handle it somewhere higher
up. Python provides a signalling mechanism called exceptions that allows
runtime errors to “bubble up” your code until they are caught and handled by
an exception handler.

Try-Except Construct

The try-except construct (sometimes called try-catch) can be used to intercept
exceptions and perform corrective actions rather than letting the program crash.
Sometimes the same effect can be achieved using conditional execution but
try-catch is more general and often easier to write.

if (denom != 0.0):

result = num / denom

else:

print("divide by zero")

try:

result = num / denom

except ZeroDivisionError:

print("divide by zero")

In general the code between try and except can be anything and the of-
fending code may be multiple function calls deep. An exception in Python

can be triggered by the
raise keyword.

58 CHAPTER 3. LECTURES

try:

run_some_code ()

except:

handle_exception ()

A very common use of exception handling is to recover from errors when
reading from a file (that possibly doesn’t exist).

Python Code

1 fh = None

2

3 try:

4 fh = open("data_file.txt", "r")

5 for line in fh:

6 print(line)

7

8 except:

9 print("error reading from file")

10

11 finally:

12 if fh:

13 fh.close ()

There are many more options and subtleties in raising and dealing with ex-
ceptions which we will not go into in this course. Suffice to say that knowing
about exceptions will help you understand when your code fails and program-
ming defensively is a good strategy for preventing incorrect results.

3.5.4 Control Flow Summary

The following table summarises the five basic control flow mechanisms discussed
in this lecture.

3.5. LECTURE 5: EXECUTION MODELS AND CONTROL FLOW 59

if-then-else

if <condition>:

<do something>

elif <condition>:

<do something else>

else:

<do yet something else>

for loop
for <variable> in <iterable>:

<do something>

while loop
while <condition>:

<keep doing something>

function call
<variable> = <function call>

<function returns here>

try-catch

try:

<do something>

except:

<handle error>

finally:

<always do this>

3.5.5 Next Lecture

• Data formats

• Reading and writing files

60 CHAPTER 3. LECTURES

3.6 Lecture 6: Data Formats and Files

Learning Outcomes

• Know that persistent data is stored in files on computer systems.

• Understand the distinction between text and binary data, and
that binary data (such as images, audio, and video) need to be
encoded before stored in a file.

• Understand the separation of code and data.

• Recognise some standard file formats including HTML and CSV.

• Be able to read and write text files in Python.

Overview
In this lecture we discuss different file formats. We talk about pars-
ing files (particularly text files) to extract information needed in a data
processing context, and show how this can be done in Python. We also
discuss markup languages and show how they can be created program-
matically, which is useful for a number of tasks. We briefly touch on
binary file formats used for encoding audio, images, and video.

3.6.1 Text versus Binary Files

A file is a sequence of bytes (data) that persists on a disk, or more correctly,
within a filesystem. For example, source code for a Python program is stored
in a file, as are PDF documents, Powerpoint presentations, email attachments,
digital photographs, etc. Files can be created, read, written, and modified.

An important distinction between files is whether they are text or binary.
Text files are human-readable—they contain letters, numbers and symbols. For-
mally, data in a text file is encoded in some unicode character set, which defaults
to UTF-8, which controls how the characters are displayed. But, in general, you
can “look” into a text file and read it’s contents.

A binary file, on the other hand, uses some other encoding scheme. If you
just “look” at the contents of a binary file it will appears as random characters.
The reason for storing data in binary files is that it often results in a more
efficient format for both storage and processing. The downside is that special-
purpose code is required to read, modify and write the data (although this is
probably the case anyway for lots of binary data like images and video).

Reading and Writing Text Files in Python

Python interacts with files through a file handle or stream. In order to read or
write a file you first need to open the file in a particular mode (read or write).
This creates a file handle, which you can use for subsequent operations on the
file. After you have finished working on a file you should close the file handle.
Multiple files can be open simultaneously.

The following code snippet reads the entire contents of a file into a string
variable. We assume the file is called “foo.txt” and is in the same directory
where our code is running.

3.6. LECTURE 6: DATA FORMATS AND FILES 61

Python Code

1 fh = open("foo.txt", "r")

2 file_contents = fh.read()

3 fh.close ()

However, a more typical scenario would be to read a file line by line as shown
in the next code snippet, which reads lines from a file and printing them on the
screen. Of course, you would usually do some more interesting processing of the
file contents.

Python Code

1 fh = open("foo.txt", "r")

2 for line in fh:

3 print(line , end="")

4 fh.close ()

Note that in our code snippet above we added end="" to our print statement.
This stops Python from printing an additional newline character at the end of
each line since one already exists within the string read from the file (and stored
in variable line).

Writing a file is just as simple:

Python Code

1 fh = open("bar.txt", "w")

2 for i in range (10):

3 fh.write(str(i) + "\n")

4 fh.close ()

Files can be opened in various different modes as summarised below.

Mode Description
r Opens a file for reading. Raises an exception if the file does not exist.
w Opens a file for writing. Clears contents of existing files.
a Opens a file for appending. Contents of existing files are retained.
r+ Opens a file for reading and writing. Written data overwrites existing.
w+ Opens a file for reading and writing. Existing files are cleared.
a+ Opens a file for reading and writing. Written data is appended.

Table 3.5: Different modes in which a file can be opened.

Back to our Lecture 3 example of wanting to reformat names from an input
file rscs academics.txt, we can now produce a new output file containing the
reformatted names as follows

62 CHAPTER 3. LECTURES

Python Code

1 # Example of writing reformatted names of RSCS academics to a new file

2

3 with open("rscs_academics.txt", "r") as fin:

4 with open("formatted_names.txt", "w") as fout:

5 for name in fin:

6 p = name.find(",")

7 if (p == -1): continue

8 lastname = name [0:p].strip (). title()

9 firstname = name[p+1:]. strip ()

10 fout.write("{}. {}\n".format(firstname [0], lastname))

which uses the with construct for closing files instead of the explicit fh.close()
used above.

3.6.2 Markup Languages and Data Exchange Formats

A markup language is a system for annotating a text document in order to
encode typesetting instructions or semantic tags. A classic example is the Hy-
perText Markup Language (HTML) used to encode documents on the Web. A
simple HTML document is shown below.

<!doctype html>

<html lang="en">

<head>

<meta charset="utf -8">

<title >Example Page</title >

</head>

<body>

Some formatted text.

</body>

</html>

It’s important to be able to recognise and programmatically manipulate doc-
uments formatted in a markup language for two reasons. First, you may want
to extract or modify data from one or many documents, such as webpages. Un-
derstanding the format allows you to quickly parse the document and extract or
modify the information you need. The following example shows you how to read
an HTML document and modify the <title>. More sophisticated parsing and
modification is possible using the HTMLParser from the html.parser module.

Python Code

1 # rewrite title line in an html document

2 fout = open("index_new.html", "w")

3 with open("index.html", "r") as fin:

4 for line in fin:

5 if line.find("<title >"):

6 line = "<title >All Your Base Do Belong to Us </title >"

7 fout.write(line)

8

9 fout.close()

3.6. LECTURE 6: DATA FORMATS AND FILES 63

Note again the use of the with statement and the line-by-line processing of the
file. The above code also only works if the <title> and </title> tags appear
on a line by themselves. Again the HTMLParser class can be used to make the
code more robust. We omit details here but will give an example in a Lecture
7.

Second, you may wish to produce a document that shows experimental out-
put or analysed results in a convenient format. Consider, for example, an ex-
periment that produces lots of images and writes them to a directory. Now
let’s assume that you wish to visually compare the images from two different
experimental runs (two different directories). The following code snippet pro-
duces an HTML document to compare the images from two different directories
side-by-side. The document can be viewed in a web-browser.

Python Code

1 import glob

2 import os

3

4 # open HTML document and print header information

5 fh = open("my_report.html", "w")

6 fh.write("<html >\n<head ><title >My Results </title ></head >\n")

7 fh.write("<body >\n")

8

9 # Read all .png files from one directory and assume that

10 # a file with the same name appears in the second directory.

11 # Display the images in a table.

12 fh.write("<table >\n")

13 fh.write("<tr><th >name </th ><th >dir_1 </th ><th >dir_2 </th ></tr >\n")

14 for imgfile in glob.glob("dir_1 /*.png"):

15 basename = os.path.basename(imgfile)

16 fh.write("<tr>")

17 fh.write("<td>" + basename + "</td >")

18 fh.write("<td></td>")

19 fh.write("<td></td>")

20 fh.write(" </tr >\n")

21

22 fh.write(" </table >\n")

23

24 # print footer information and close HTML document

25 fh.write(" </body >\n")

26 fh.write(" </html >\n")

27 fh.close ()

XML

XML (Extensible Markup Language) is another very widely used markup lan-
guage for storing and communicating data. Unlike HTML, in XML users can
define their own tags. The following is an example of an XML document for
storing student grades for a course.

64 CHAPTER 3. LECTURES

<student>

<name>Homer Simpson</name>

<asgn1>10.0</asgn1>

<asgn2>50.0</asgn2>

<asgn3>30.0</asgn3>

<exam>45.0</exam>

</student>

<student>

<name>Marge Simpson</name>

<asgn1>70.0</asgn1>

<asgn2>65.0</asgn2>

<asgn3>80.0</asgn3>

<exam>75.0</exam>

</student>

XML can be cumbersome to work with, especially for something simple like
storing student grades. Fortunately, many languages, including Python, come
with libraries for manipulating XML files. In Python, these libraries are grouped
in the xml package. You are welcome to explore this package and use it in your
projects but we will not cover XML further in this course.

JSON

Another useful data format—not strictly a markup language—for exchanging
data is JSON, which stands for JavaScript Object Notation. JSON was devel-
oped as a way to store and communicate data objects as attribute-value pairs
in the JavaScript programming language. Since then libraries that read and
write JSON files have been developed for a number of programming languages
including Python and the format has been embraced by many programmers. In
Python the json package provides an API for encoding and decoding objects as
JSON strings. The following is an example JSON file for storing student grades
akin to the XML example above.

[

{

"name": "Homer Simpson",

"asgn1": "10.0",

"asgn2": "50.0",

"asgn3": "30.0",

"exam": "45.0"

},

{

"name": "Marge Simpson",

"asgn1": "70.0",

"asgn2": "65.0",

"asgn3": "80.0",

"exam": "75.0"

}

]

3.6. LECTURE 6: DATA FORMATS AND FILES 65

3.6.3 Space Delimited and CSV Files

Comma-separated value (CSV) and space delimited files are very common for
storing tabular data in a text file format. Many popular software packages, such
as Microsoft Excel, are able to read and write CSV files. A example of a CSV
file is shown below where we are storing the student grades for a course. The “Save As...” dialogue

in Excel allows you to save
spreadsheets in Comma
Separated Value format
(with a .csv file extension)
or Tab Separated Value
format (with a .txt file
extension).

Name,Assignment 1,Assignment 2,Assignment 3,Exam

Homer Simpson,10.0,50.0,30.0,45.0

Marge Simpson,70.0,65.0,80.0,75.0

Bart Simpson,15.0,90.0,40.0,55.0

Lisa Simpson,100.0,95.0,100.0,99.0

Maggie Simpson,0.0,10.0,5.0,20.0

Carl Carlson,60.0,70.0,70.0,75.0

Ned Flanders,65.0,80.0,75.0,70.0

Barney Gumble,15.0,45.0,40.0,50.0

Lenny Leonard,15.0,45.0,40.0,60.0

Otto Mann,90.0,85.0,80.0,85.0

Seymour Skinner,95.0,90.0,100.0,40.0

Now let’s say we wish to calculate each student’s final grade for the course.
We would need to read the file, combine the marks for each assessment, and
output the final grades. Fortunately, Python provides a module called csv for
reading and writing CSV files that will simplify our task:

Python Code

1 import csv

2

3 # initialise list of final grades

4 final_grades = []

5

6 # read student file and compute final grades

7 fh = open("student_grades.csv", "r")

8 reader = csv.reader(fh)

9 next(reader) # skip the first row

10 for row in reader:

11 student_name = row[0]

12 student_grade = 0.25 * sum([float(i) for i in row [1:]])

13 final_grades.append ([student_name , student_grade])

14

15 fh.close ()

16

17 # write grades to a new file

18 fh = open("final_grades.csv", "w", newline="")

19 writer = csv.writer(fh)

20 writer.writerow (["Name", "Final Grade"])

21 for row in final_grades:

22 writer.writerow(row)

23

24 fh.close ()

Note that we could just have stored the student grades in Python code files
directly as the following example shows. Why might this be a bad idea?

66 CHAPTER 3. LECTURES

Python Code

1 student_grades = [

2 ["Homer Simpson", 10.0, 50.0, 30.0, 45.0] ,

3 ["Marge Simpson", 70.0, 65.0, 80.0, 75.0] ,

4 ["Bart Simpson", 15.0, 90.0, 40.0, 55.0]

5]

JSON

As a further example we show code for computing the final grades for the case
where the student data is stored in a JSON format (for example, if extracted
from a database) as discussed in the section above. However, in the case of
student grades a CSV file is arguably more convenient than a JSON file. The
code is:

Python Code

1 import json

2

3 # initialise list of final grades

4 final_grades = []

5

6 # parse JSON file

7 with open(’student_grades.json’) as fh:

8 students = json.load(fh)

9 for student in students:

10 student_name = student["name"]

11 student_grade = 0.25 * (float(student["asgn1"]) +

12 float(student["asgn2"]) +

13 float(student["asgn3"]) +

14 float(student["exam"]))

15 final_grades.append ([student_name , student_grade])

16

17 # print grades

18 for name , grade in final_grades:

19 print("{}\t{}".format(name , grade))

3.6.4 Binary Files

Binary data, such as images and music, needs to be encoded in some way when
stored in a computer. This tells the computer how to interpret the data. For
example, an image should be interpreted as a table of RGB values, one of each
pixel, and a music data should be interpreted as an audio waveform. Without
an agreed upon encoding scheme there is no way for the computer to know how
to display or play the data.

A file format defines how data in a file is encoded. Binary data is also
encoded when it is sent across a communication channel, such as the Internet,
and storing a data on a computer’s disk drive can be modeled in the same way.
Here the disk drive acts as the channel and the “transmission” is across time
rather than space, i.e., at some later time the data will be read back from the
disk and decoded. Figure 3.12 shows a generic model of this process.

Most binary file formats compress the data to reduce storage space on disk or
transmission time when sending across a network. They also incorporate error
checking and recovery mechanisms that allow the decoder to recover from (a

3.6. LECTURE 6: DATA FORMATS AND FILES 67

data
encoder

communication
channel or storage

data
decoder

binary data,
e.g., an image

received
binary data

Figure 3.12: Illustration of a communications channel.

0 2000 4000 6000 8000 10000
−1.5

−1

−0.5

0

0.5

1

1.5
x 104

time (s)

am
pl

itu
de

Figure 3.13: An image an audio waveform are just numbers stored in memory. The
way these numbers are interpreted allows us to view images and play audio files.

small amount) of random corruption of the data that may occur during storage
or transmission.

There are a multitude of schemes for representing different types of binary
data and we’ll only discuss a few formats here. Different formats are identified by
the operating system through file extensions (e.g., “.png”) and magic numbers
(the first few bytes) within the file. However, both these mechanisms can be
fooled. Most formats include checksums to detect errors in decoding, either
caused by data corruption or incorrect determination of the file format.

Images and Video File Formats

Images and videos contain are large and contain a lot of redundant informa-
tion. Consider, for example, the large uniform coloured patches in the image
in Figure 3.13. One of the main things that an image file format tries to do is
compress the amount of data needed to represent the image by encoding this
redundancy in an efficient way.

Image an video file formats can be divided into lossy and lossless. Lossless
formats compress the data in a way that allows exact recover of the original
image when decoded. For example, long sequences of the same colour can be
encoded efficiently using run-length coding where instead of storing the full
sequence we store just two numbers, a value and a repetition count. The PNG
image format uses this type of encoding (on top of a preprocessing step to further
remove redundancy).

Lossy formats compress the data in a way that does not allow for exact re-
covery of the original image—information is lost. Usually the difference between
the decoded image and original image is imperceptible to the human eye. Such
formats often result in smaller files than lossless schemes. The JPEG format is
a typical example.

There are various Python libraries for reading images. One such library is
matplotlib, which we will encounter again later in the course for visualising
data in the form of plots and charts. The following code shows an example of
loading and displaying an image.

68 CHAPTER 3. LECTURES

Python Code

1 import matplotlib.pyplot as plt

2 img = plt.imread("example_image.png")

3 print("image is {}-by -{}".format(len(img[0]), len(img)))

4 plt.imshow(img)

5 plt.show()

Once loaded the image is represented as a multi-dimensional array of RGB
values. The red, green and blue values for a pixel at the r-th row and c-th
column in the image can be extracted as

Python Code

1 red = img[r][c][0]

2 green = img[r][c][1]

3 blue = img[r][c][2]

Given this, the following shows a fun example of swapping the red and blue
colour channels.

Python Code

1 import matplotlib.pyplot as plt

2 img = plt.imread("example_image.png")

3

4 # swap red and blue colour channels

5 for r in range(len(img)):

6 for c in range(len(img[r])):

7 img[r][c][0], img[r][c][2] = img[r][c][2], img[r][c][0]

8

9 plt.imshow(img)

10 plt.show()

Note that matplotlib provides many functions for manipulating image
channels so you can swap two channels using less code than shown in the
code snippet above (e.g., try img[:, :, 0], img[:, :, 2] = img[:, :, 2],

img[:, :, 0]. Nevertheless the example does demonstrate some useful con-
cepts in iterating over pixels.

Audio Formats

Like images audio signals contain a large amount of redundancy and file formats
have been developed to exploit this redundancy to reduce the amount of data
stored. MP3 and WAV are two very common formats.

The wave module in Python provides functionality for reading and writing
WAV audio files. For other audio formats you will need to find and install
additional libraries (e.g., audiolab).

3.6.5 Next Lecture

• String processing

3.7. LECTURE 7: STRING PROCESSING 69

3.7 Lecture 7: String Processing

Learning Outcomes

• Understand basic string manipulation such as slicing, concatenta-
tion, splitting, joining, and capitalisation.

• Write basic parsers for extracting values from, e.g., comma or
whitespace separated lists.

• Be aware of different encodings for characters (ASCII, UTF-8,
etc.) and know that, by default, all Python 3 strings are Unicode.

Overview
This lecture covers how to inspect and process strings using a variety of
inbuilt Python methods and briefly discusses how strings are encoded
and decoded.

3.7.1 String Indexing and Slicing

As we saw in Section 3.4.2, the data structure most commonly used to represent
words or text in Python is a string. A string is just a sequence of characters
which can be accessed like elements in a list. Characters in strings in

Python 3 can be any
Unicode symbol, including
letters from alphabets of
various languages and
other symbols, e.g., ’á B ç’
is a valid string.

Characters are accessed by spec-
ifying the index of the character inside square brackets after the string. Note
that just like lists, the first character in a string has index 0, not 1.

The following example shows how characters from a string containing the
lowercase English alphabet can be accessed. Note that negative numbers can be
used as indices. In this case, the index represents the position of the character
from the end of the string: -1 is the last character, -2 the second last, and so
on. Using an index that is too large for the string results in an error.

Python Console

1 >>> alphabet = ’abcdefghijklmnopqrstuvwxyz ’

2 >>> alphabet [0]

3 ’a’

4 >>> alphabet [9]

5 ’j’

6 >>> alphabet [-1]

7 ’z’

8 >>> alphabet [-3]

9 ’x’

10 >>> alphabet [30]

11 IndexError: string index out of range

12 >>> alphabet [-27]

13 IndexError: string index out of range

Just as with lists, strings can be sliced using the string[start:end] notation.
In the following example, the slice notation is used to pull out the first four
characters, the last four characters, and the middle three characters of the phrase
’Cats & Dogs’.

70 CHAPTER 3. LECTURES

Python Console

1 >>> phrase = ’Cats & Dogs’

2 >>> phrase [:4] # From start up to (and including) character 4

3 ’Cats’

4 >>> phrase [4:] # From just after character 4 to the end

5 ’ & Dogs’

6 >>> phrase [4:7] # From just after character 4 to character 7

7 ’ & ’

You can even combine slicing with negative indexing, as in the next example.

Python Console

1 >>> phrase = ’Cats & Dogs’

2 >>> phrase [-4:] # From 4th from end of string to end of string

3 ’Dogs’

4 >>> phrase [:-4] # From start up to just before 4th from end

5 ’Cats & ’

6 >>> phrase [-7:-4] # From 7th last to before 4th last

7 ’ & ’

This mixing of slicing and negative indexing can be pretty confusing at first.
The diagram shown in Figure 3.14 can help remember how indexing and slicing
work with both positive and negative values. The key trick is that when you
index a string the number count boxes from the start or end of the string, while
in slicing the numbers count the gaps from the start or the end.

The easiest way to get used to these conventions is by playing around with
some examples of your own in a Python console.Slicing can also take an

optional step parameter,
e.g., phrase[0:5:2] takes

every second character
between gap 0 and gap 5.

Try this with negative
steps. What happens? � � � � �� �� � � �

� � � �� � � � � � � �� �

� ��� �� �� �� �� �� �� �� �� �� �

� � � � �� �� � � �

� � � � � � � � �

��� �� �� �� �� �� �� �� �� �����

����

���������������� ��������������

�����������

���������

Figure 3.14: An index for a string (or list) counts the number of boxes from the
start (positive index) or end (negative index) whereas in slicing the numbers count the
number of gaps from the start or end with : denoting a boundary.

3.7.2 Converting Between Objects and Strings

[TODO: the string is not the object; difference between 42 and ’42’;
difference between (10, 5) and ’(10, 5)’]

3.7.3 String Methods

Testing String Properties

There are a number of standard functions on strings that allow you to test
various properties. For example, whether a string is in uppercase or lowercase,
or whether certain substrings are present.

3.7. LECTURE 7: STRING PROCESSING 71

A very basic property of a string (that also applies to lists) is its length, that
is, the number of characters in a string. In Python, the length of a string can
be obtained by using the len function.

Python Console

1 >>> alphabet = ’abcdefghijklmnopqrstuvwxyz ’

2 >>> len(alphabet)

3 26

4 >>> phrase = ’Cats & Dogs’

5 >>> len(phrase)

6 11

7 >>> len(phrase [:4])

8 4

9 >>> len(phrase [-4:])

10 4

Characters in written English and other languages can be either uppercase
(e.g., ’A’, ’T’) or lowercase (e.g., ’a’, ’t’). Characters can also be classified as
alphabetic (e.g., ’a’, ’b’) or numeric (e.g., ’6’, ’0’) or whitespace (e.g., spaces,
tab and newline characters). Unsurprisingly, there are a number of functions in
Python that let you test whether the characters within a string have these prop-
erties. These include islower and isupper for testing upper and lower case,
islapha and isdigit for testing whether characters are letters or numbers, and
isspace for testing whether characters are whitespace. As the examples below
show, these functions test whether all characters in a string are of a certain
type.

Python Console

1 >>> ’a’.islower ()

2 True

3 >>> ’A’.islower ()

4 False

5 >>> ’73’.isdigit ()

6 True

7 >>> ’3F’.isdigit ()

8 False

9 >>> ’ \tHi\n’.isspace ()

10 False

11 >>> ’ \t \n’.isspace ()

12 True

There are many more string methods for testing properties that have not
been mentioned here. The table below gives a brief summary of those above
and some others you may find useful.

Method Description
s.count(c) Count how many times string c appears in s.
s.islower() True if all characters in s are lower case.
s.isupper() True if all characters in s are upper case.
s.isalpha() True if all characters in s are alphabetic (e.g., ’a’, ’Q’, ’ñ’).
s.isdigit() True if all characters in s are digits (e.g., ’1’, ’2’, etc.).
s.isspace() True if all characters in s are whitespace (i.e., space, tab, newline).
s.find(w) Return the first index of string w in s or -1 if w is not in s.

Table 3.6: String methods for property testing.

72 CHAPTER 3. LECTURES

We will now briefly look at how property testing, indexing and slicing can
be used to process data. As we saw in Lecture 6, it is common for data to be
stored in text files using what is known as “Comma-Separated Values” format
(or CSV for short). The Python csv module should always be your first choice
for working with these sorts of files, but it is instructive to consider how we
might implement a very simple version of csv.reader using string operations.

Example 3.7.1. Let’s suppose we had to separate the following single line
from a CSV file into a list.

Homer Simpson,10.0,50.0,30.0,45.0

One approach to doing this is to use find to get the index of the first comma
in the string, take the characters up to that index, and repeat the process on
the characters after the comma.

Python Code

1 row = ’Homer Simpson ,10.0 ,50.0 ,30.0 ,45.0 ’ # Row to split

2 columns = [] # The list to put the columns into

3

4 # Loop through the row by repeatedly finding the next comma index

5 next_comma_index = row.find(’,’)

6 while next_comma_index >= 0:

7 # Pull out the next column and append it to the list

8 column = row[: next_comma_index]

9 columns.append(column)

10

11 # Focus on the remainder of the row (the +1 skips the comma)

12 row = row[next_comma_index +1:]

13 next_comma_index = row.find(’,’)

14

15 # Append the remain part of the row as the final column

16 columns.append(row)

17

18 print(columns)

Try to mentally execute the above code as it processes the string in row by
keeping track the value in row, columns, and next_comma_index.

Processing Strings

As well as methods for testing string properties, there are a number of string
methods that let you process a string by returning a new string with certain
characters changed or removed. The process that was implemented in Exam-
ple 3.7.1 using find and slicing is also available as a method called split:

Python Console

1 >>> row = ’Homer Simpson ,10.0 ,50.0 ,30.0 ,45.0’

2 >>> row.split(’,’)

3 [’Homer Simpson ’, ’10.0’, ’50.0’, ’30.0’, ’45.0’]

Table 3.7 describes some of the other string processing methods. For your
own benefit, it is worthwhile browsing the documentation for other common

3.7. LECTURE 7: STRING PROCESSING 73

string functions available in Python 3: https://docs.python.org/3.1/library/
stdtypes.html#string-methods. Try reading through this with a Python con-
sole open and playing with the various functions so as to get familiar with them.

Method Description
s.lower() Convert all characters in s to lower case.
s.upper() Convert all characters in s to UPPER CASE.
s.title() Convert all characters in s to Title Case.
s.strip() Remove all surrounding whitespace from s.
s.split(c) Split s into a list using the string c as a delimiter

(or space if c is not given).

Table 3.7: String methods for property testing.

3.7.4 Characters and Unicode

We have been saying that strings are sequences of characters, but what are
characters exactly? Thanks to the complexity of human languages and the way
they are written there is not a simple answer to this. Fortunately, a lot of work
has gone into encapsulating this complexity in Python 3 and most of the time
you will not have to worry about how a character is represented. However, if
you encounter strange symbols or bugs when processing text files it is useful to
know a couple of things about character representations so you can search for
and understand techniques for fixing these sorts of problems.

Characters in Python 3 are represented as Unicode. The built-in Python
functions ord and chr

convert to and from
Unicode codepoints.

This is a standard that
assigns every glyph that is used in any written human language a unique code-
point. Each codepoint is a number that is usually written as ’U+NNNN’ where
’NNNN’ is four hexadecimal digits. For example, the character ’A’ in the En-
glish (and other) alphabet has the code point ’U+0041’. The character ’日’ from
written Japanese or Chinese is assigned the codepoint ’U+2F47’. It is important
to stress that these codepoints are not bytes or any other computer represen-
tation — they are just numbers. How these numbers are represented on your
computer depends on the encoding used to represent the Unicode codepoints.

A Brief History of Character Encoding

Before diving into the way Unicode characters are encoded, it is useful to un-
derstand a small part of the history that led to the development of Unicode.

Due to memory constraints, early attempts at encoding characters tried to
use as few bits as possible. Since there are 26 upper case, 26 lower case, and a
handful of punctuation and other special or control characters, at least 7 bits
(i.e., 128 different binary strings) per character were needed for encoding. Two
separate standards for encoding characters at appeared in the 1960 to specify
how to encode characters as bit strings: EBCDIC and ASCII. Several different
encodings appeared for other languages, for example, KOI8 for the Russian
(Cyrillic) alphabet and Latin1 for French, appeared later.

ASCII became the standard and was widely used for English text until the
mid 2000s when Unicode became the dominant encoding. One big reason for
the switch to Unicode was interoperability. Using ASCII was fine for English

74 CHAPTER 3. LECTURES

but what if you needed to write a Russian phrasebook for English speakers?
As the world wide web became increasingly popular and more and more text
was represented digitally there was a need for a single character representation
worked for all languages.

Work on what is now the Unicode standard began in 1988. Originally, it
was designed to handle up to 16,384 characters — enough to encode all modern
languages. However, in 1996 this was revised so that over a million characters
could be specified. This enabled the inclusion of older characters such as those
from Egyptian hieroglyphics and rare Chinese characters and leaves room to
include other old languages and changes to existing ones that may be needed in
the future.

The Unicode is not a static standard. New versions appear regularly with
new characters. As recently as June 2015, the standard was updated to version
8.0, and then again to 9.0 in June 2016.

Encodings

Unicode is only an assignment of characters to codepoint. It is not, by itself, an
encoding into bytes that can be stored in a computer’s memory or disk. Indeed,
there are several way codepoints can be translated to and from bytes. These
are called Unicode encodings.

The most common encoding of Unicode is called UTF-8 which is short for
“Universal Coded Character Set + Transformation Format—8-bit”. It is report-
edly used for over 84% of all web pages.For example, see the

W3Techs surveys at
http://w3techs.com/.

It is an encoding that neatly trades off
space and flexibility by using 8 bits per character for a base set of 256 English
and other characters but is able to specify that additional bytes are needed for
other characters, such as Chinese. The UTF-16 encoding is similar in that it
can specify when extra bytes are needed but uses 2 bytes for a larger base set of
over 16,000 characters. In contrast, the UTF-32 encoding uses 4 bytes for every
character which can represent over 4 billion different numbers and so does not
need to be able to declare when extra bytes are needed.

The following example show how the character ’A’ is represented in UTF-8,
UTF-16 and UTF-32. Note that the ’b’ prefix in front of the output indicates
that what follows it are bytes (e.g., \\xc3 represents the bits 11000011). The
Python encode and decode methods are used to convert Unicode to and from
bytes.

Python Console

1 >>> s = ’A’

2 >>> s.encode(’utf -8’)

3 b’A’

4 >>> s.encode(’utf -16’)

5 b’\xff\xfeA\x00’

6 >>> s.encode(’utf -32’)

7 b’\xff\xfe\x00\x00A\x00\x00\x00’

8 >>> b’\x40’.decode(’utf -8’)

9 ’@’

One downside of UTF-32 is that, for English text files, the file size can be
four times larger than necessary. Another downside is that UTF-16 and UTF-32
encodings are complicated by the fact that the order in which bytes are stored
need to be taken into account when encoding or decoding each character. UTF-8

3.7. LECTURE 7: STRING PROCESSING 75

does not have this problem.
Once again, when you do basic string processing in Python 3 you will likely

not have to worry about any of these technical details and things will “just
work”... except in the rare instance when they don’t. These notes are meant to
help you get started in solving problems should you encounter weird characters
or error messages involving string encodings.

Further Reading

A longer discussion of Unicode in Python can be found here: https://docs.

python.org/3/howto/unicode.html.
If you plan on working with strings on a regular basis, you may want to

read more on the details of Unicode and its encodings here: http://www.

joelonsoftware.com/articles/Unicode.html.

3.7.5 Next Lecture

• Functions

• Advanced concepts

– Recursion

– Callbacks

76 CHAPTER 3. LECTURES

3.8 Lecture 8: Functions

Learning Outcomes

• Understand that a functions encapsulate a task within a program
and are used to help organise code and avoid repeated code.

• Understand the difference between a built-in function and a user-
defined function.

• Be able to write small functions in Python.

• Be able to use member functions and recognise the difference be-
tween different ways to invoke a function (specifically “.” (dot)
notation for member functions).

Overview
In this lecture we introduce the concept of a function in a programming
language. We discuss how functions are declared and invoked in Python,
and that variables defined within a function have local scope. We also
distinguish between general functions and member functions.

The concept of a function in a programming language is similar to the con-
cept of a function in mathematics. In mathematics a function defines a mapping
from some input space to some output space, i.e., it takes input arguments and
returns output values. Similarly, in programming languages a function performs
a computation on its inputs and (optionally) produces some output. We have
already seen numerous examples of functions, e.g., the function len takes as
input a list and returns as output the length of the list.

The are many reasons why functions are useful. The main reasons are to:

• abstract away low-level details and allow the programmer to focus on
solving the problem at hand;

• improve code organisation, testing and maintenence; and

• avoid code repeation and facilitate better sharing and reuse.

3.8.1 Inputs and Outputs

At its simplest a function is a block of code that takes in inputs (also called pa-
rameters) and computes outputs (also called a return value). When we provide
a specific input to a function parameter we call the input an argument. We will
see later that in special situations a function can also modify its arguments. It
is also possible for a function to not have a return value but to have other side
effects (e.g., the print function). The general pattern for calling a function is

return_value = function_name(arguments)

A concrete example is the built-in function sorted, which takes as input a
sequence and returns a sequence with the elements in sorted order as output.

3.8. LECTURE 8: FUNCTIONS 77

Python Console

1 >>> a = [42, 10, 40, 5]

2 >>> b = sorted(a)

3 >>> b

4 [5, 10, 40, 42]

5 >>> a

6 [42, 10, 40, 5]

Objects (which we will discuss more in a later lecture), like lists, can have
functions associated with them, and which operate on the object itself. Such
functions are called methods (or sometimes member functions). Instead of pro-
viding the object as an input argument a method is invoked using the following
pattern,

object_name.method_name(arguments)

Methods can also have return values, but their main purpose is to modify the
object calling the method. (Methods also have access to private data held by the
object and are aware of implementation details so can be made more efficient
than regular functions in some cases).

It turns out that Python lists have their own sort method as the following
code demonstrates.

Python Console

1 >>> a = [42, 10, 40, 5]

2 >>> a.sort()

3 >>> a

4 [5, 10, 40, 42]

Note that unlike the sorted function, the sort method reorders the elements
of the original list.

Some functions also take optional parameters. If an argument is not given for
the parameter then a default value is used. Parameters can also be explicitly
named. Back to our built-in sorted function we show an example of both
optional and named parameters.

Python Console

1 >>> a = [42, 10, 40, 5]

2 >>> b = sorted(a, reverse=True)

3 >>> b

4 [42, 40, 10, 5]

The print function is another example of a function with optional parame-
ters that you may use often. The following code snippet shows a simple example
of printing out a matrix.

Python Code

1 matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

2 for row in matrix:

3 for entry in row:

4 print(entry , end="\t")

5 print ()

78 CHAPTER 3. LECTURES

3.8.2 Mental Execution Model

A good mental model of function execution is captured by the following steps:

• the expressions for each argument are evaluated and assigned to the cor-
responding function parameters;

• code within the function body is executed;

• the expression for the return value is evaluated and assigned to the output
variable, if present;

• the program continues running at the statement immediately following
the function call.

Once a function has been defined it can be called as many times as you like
from anywhere in the code, each time following the same process as outlined
above. This is one of the most powerful concepts in programming as it allows
you to better organise your code at the same time as facilitating reuse.

Note that some functions may have state or result in side effects, meaning
that they (may) produce different output even if called with the same input.
In general this is to be avoided, but it can sometimes be useful (e.g., when
generating psuedo-random numbers).

3.8.3 Defining a Function

The Python language itself defines many built-in functions. Others are provided
from libraries and modules. These may suffice for simple scripts, but for any
significant piece of code you will want to define functions of your own.

Remember our example of computing final course grades from data stored in
a CSV file. Let’s now convert those numerical grades to a letter grade. First, we
will write a function to do the conversion. Note the indentation of the function
body.

Python Code

1 def convert_to_letter_grade(grade):

2 """ Converts from a numerical grade to a letter grade."""

3

4 if (grade >= 85.0): return "HD"

5 elif (grade >= 75.0): return "D"

6 elif (grade >= 65.0): return "CR"

7 elif (grade >= 50.0): return "P"

8 else: return "F"

Putting it all together.

3.8. LECTURE 8: FUNCTIONS 79

Python Code

1 import csv

2

3 # open input and output files

4 fin = open("student_grades.csv", "r")

5 fout = open("final_grades.csv", "w", newline="")

6 reader = csv.reader(fin)

7 writer = cvs.writer(fout)

8

9 # deal with first row

10 next(reader)

11 writer.writerow (["Name", "Final Grade", "Final Letter"])

12

13 # for each student compute the final grade

14 for row in reader:

15 student_name = row[0]

16 student_grade = 0.25 * sum([float(i) for i in row [1:]])

17 student_letter = convert_to_letter_grade(student_grade)

18 writer.writerow ([student_name , student_grade , student_letter])

19

20 # close input and output files

21 fin.close()

22 fout.close()

A more general-purpose version of the above could would replace Line 16
with the following to allow it to work on an arbitrary number of grades (not
just four):

Python Code

1 student_grade = sum([float(i) for i in row [1:]]) / (len(row) - 1)

Recall back in Lecture 2 we said that a variable needs to be initialized before
it can be used. The parameter list for a function declares the input variables
for that function. They are initialised (with the input expression) each time the
function is called.

Return Values and Mutable Parameters

The return keyword within a function provides an expression for evaluating
the return value and instructs Python to exit the function and go back to where
it was called from. A function can have multiple return statements, as we
have seen, and each can have a different expression. The first return statement
executed determines the value returned.3

When a mutable object (like a list) is passed as an argument to a function the
contents of the object may be modified by the function. Integers and strings are

immutable in Python.
Typically this should

be avoided as it introduces unexpected side effects, which can be difficult to
debug. Consider the following example.

3If a function ends without a return statement, e.g., by closing the indentation block, the
function is assumed to return the special value None.

80 CHAPTER 3. LECTURES

Python Code

1 def f(x):

2 """ Return the sum of elements in x."""

3 sx = 0

4 while (len(x) > 0):

5 sx += x.pop()

6 return sx

7

8 def g(x):

9 """ Return the sum of elements in x."""

10 sx = 0

11 for i in x:

12 sx += i

13 return sx

14

15 grades = [10.0, 50.0, 30.0, 45.0]

16

17 print(g(grades)) # prints 135.0

18 print(g(grades)) # prints 135.0

19 print(grades)

20

21 print(f(grades)) # prints 135.0

22 print(f(grades)) # prints 0.0

23 print(grades)

Optional Parameters

In addition to the mandatory parameters of a function (listed as a comma-
delimited list of local variable names) can be optional parameters. These are
specified in the parameter list as a variable name followed by an expression. If
an argument is not provided for an optional parameter, the expression is used
to provide a default value.

The following code extends our student grade example from above.

Python Code

1 def convert_to_letter_grade(grade , pass_fail=False):

2 """ Converts from a numerical grade to a letter grade.

3

4 The optional parameter pass_fail can be set to True to

5 return just a pass or fail letter grade. Otherwise the

6 grades HD , D, CR, P and F are used."""

7

8 if pass_fail:

9 if (grade >= 50.0): return "Pass"

10 return "Fail"

11

12 if (grade >= 85.0): return "HD"

13 elif (grade >= 75.0): return "D"

14 elif (grade >= 65.0): return "CR"

15 elif (grade >= 50.0): return "P"

16 else: return "F"

Now the convert to letter grade function can be invoked to produce either
the standard letter grades (the default) or a pass/fail grade.

3.8. LECTURE 8: FUNCTIONS 81

Python Code

1 convert_to_letter_grade(student_grade , True) # Pass or Fail

2 convert_to_letter_grade(student_grade , False) # HD, D, CR , P, or F

3 convert_to_letter_grade(student_grade) # HD , D, CR , P, or F

Named Arguments

Usually arguments will be passed to a function in the order in which the cor-
responding parameters are defined (known as positional arguments). However,
there are situations where we may want to specify arguments out-of-order. Typi-
cally this occurs when there are multiple optional parameters and we only want
to override a few of them. Named arguments provide a mechanism for such
situations. The idea is best illustrated through an example.

Python Code

1 def bracket(text , pre="(", post=")"):

2 return pre + text + post

Python Console

1 >>> print(bracket("hello"))

2 (hello)

3 >>> print(bracket("hello", post=")!"))

4 (hello)!

5 >>> print(bracket("hello", post=" :)", pre=""))

6 hello :)

7 >>> print(bracket("hello", "", "!"))

8 hello!

3.8.4 Variable Scope

The parameters and any variables defined within a function body fall within the
function’s namespace. That is, they have local scope and cannot be accessed
outside of the function.

Python Code

1 def double(x):

2 y = 2 * x

3 return y

4

5 z = double (5)

6 print(z)

7 print(y)

8 print(x)

Whenever a local variable has the same name as a global variable, the local
variable hides the global one. The global keyword can be used to override
this behaviour. However, using global variables is considered bad programming
practice and should be avoided if possible.

82 CHAPTER 3. LECTURES

Python Code

1 def scale(x):

2 global a, y

3 y = a * x

4 return y

5

6 a = 2

7 z = scale (5)

8 print(z)

9 print(y)

10 print(x)

3.8.5 Documenting Functions

In many programming languages a function’s behaviour is documented by writ-
ing comments in the source code. Python provides a very elegant and helpful
mechanism for documenting functions through a so-called docstring (or docu-
mentation string), which both acts as a comment and provides runtime access
for introspection.Use docstrings to explain

how to use code; use
comments to explain why

and how code works.

A docstring is defined by including a string literal as the first
statement in the function body. Since the documentation string is usually long
and spans multiple lines a triple-quoted string is often used as we have already
seen. The docstring can be accessed via the function’s doc attribute. For
example,

Python Code

1 def triple(x):

2 """ Returns three times its argument."""

3 return 3 * x

4

5 print(triple.__doc__)

Within the Python console we can also use the help function:

Python Console

1 >>> help(triple)

2 triple(x)

3 Returns three times its argument.

As a minimum a docstring should provide a concise description of the func-
tions purpose. Longer docstrings may include more details about the function
including a description of the parameters, preconditions, return value, any side
effects, and usage examples and references. It is convention for paragraphs to
be separated by an empty line.

Always keep documentation and comments up-to-date. Incorrect or mislead-
ing comments are worse than no comments at all. So whenever you change the
code make sure you change the documentation and comments too.

3.8.6 Advanced Concepts

Recursion

It should be fairly obvious that functions can call other functions. What is not
so obvious is that functions can call themselves. This is known as recursion.

3.8. LECTURE 8: FUNCTIONS 83

Generating the n-th Fibonacci number is perhaps the most classic (and poorly
given) example.4

Python Code

1 def fib(n):

2 """ Return the n-th fibonacci number by recursion."""

3

4 if (n == 0) or (n == 1):

5 return 1

6

7 return fib(n - 1) + fib(n - 2)

8

9 def fib2(n):

10 """ Return the n-th fibonacci number without recursion."""

11 a, b = 1, 1

12

13 for i in range(n):

14 a, b = b, a + b

15

16 return a

17

18 print(fib (10))

19 print(fib2 (10))

Recursive functions always need one or more base cases that stop the recursion.
Every recursive algorithm can be replaced by an (often more efficient) iterative
one. However, an algorithm expressed by recursion can sometimes be simpler
to implement. Examples include computing the greatest common divisor of two
numbers or solving the famous Towers of Hanoi problem (but not computing
Fibonacci numbers).

Callbacks

Callback functions used in event-driven programming is another advanced con-
cept that will come up again when we discuss visualisation and animation.

Callbacks are also called
event handlers and are very
common in GUIs and
network programming.

Briefly, a callback function is a function that gets invoked whenever some event
occurs, such as a mouse-click or a timer expiring. The event is said to trigger
the callback. A registration process tells the program which callback to invoke.

Callbacks are sometimes be implemented as member functions within classes
(more on classes in a later lecture). A good example is the HTMLParser class in
the html.parser module. Here is some example code that pulls out the current
temperature for capital cities from the Bureau of Meteorology website.

4A Fibonacci sequence is generated by by starting from 1 and 1, and then generating each
successive number by summing the previous two in the sequence. The first few Fibonacci
numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

84 CHAPTER 3. LECTURES

Python Code

1 import urllib.request

2 from html.parser import HTMLParser

3

4 # query the BOM main page using urllib

5 URL = "http :// www.bom.gov.au"

6

7 response = urllib.request.urlopen(URL)

8 html = str(response.read ())

9 response.close ()

10

11 # class to parse the website derived from HTMLParser

12 class BOMHTMLParser(HTMLParser):

13 """ Parser to extract capital city temperature from the

14 main BOM webpage."""

15

16 # member variables

17 insideH3Tag = False

18 insideNowTemp = False

19 lastCityName = ""

20 lastTemperature = ""

21

22 def handle_starttag(self , tag , attrs):

23 if (tag == "h3"):

24 self.insideH3Tag = True

25 if (tag == "p") and (len(attrs) > 0) and (attrs [0][1] == "now"):

26 self.insideNowTemp = True

27

28 def handle_data(self , data):

29 if self.insideH3Tag:

30 self.lastCityName = data

31 if self.insideNowTemp:

32 self.lastTemperature = data

33

34 def handle_endtag(self , tag):

35 if (tag == "h3"):

36 self.insideH3Tag = False

37 if (tag == "p") and self.insideNowTemp:

38 self.insideNowTemp = False

39 print("{}\t{}".format(self.lastTemperature , self.lastCityName))

40

41

42 # parse HTML to extract temperatures

43 parser = BOMHTMLParser ()

44 parser.feed(html)

3.8.7 Next Lecture

• Binary and Boolean Logic

• Computer Architecture

• Basic Complexity Analysis

3.8. LECTURE 8: FUNCTIONS 85

15.7 Sydney

13.1 Melbourne

17.1 Brisbane

14.2 Perth

17.6 Adelaide

10.5 Hobart

12.6 Canberra

29.9 Darwin

Figure 3.15: Bureau of Meteorology website for 9 July 2015 and correspodning
output of our HTMLParser example code.

86 CHAPTER 3. LECTURES

3.9 Lecture 9: Computer Architecture

Learning Outcomes

• Understand basic computer architecture and the main components
of a computing system (CPU, memory, disk, I/O, operating sys-
tem, network)

• Understand the distinction between volatile versus non-volatile
storage.

• Understand that everything in a computer is stored and processed
in binary.

• Appreciate the use of logic and arithmetic in computing systems,
and that computer hardware operates at the level of machine in-
structions.

• Understand basic rules of Boolean algebra and their relationship
to logical expressions.

• Understand the stored program concept.

• Understand that algorithms can be characterized in terms of run-
ning time and memory requirements.

• Understand that two algorithms can perform the same function
but run in a very different amount of time.

• That this is independent of the specifics of how the algorithm is
implemented (or what programming language it is implemented
in).

• That running time and memory requirements often depend on the
size of the input.

• Analyze the asymptotic running time of a simple algorithm in
big-O notation.

Overview
This lecture combines two very different topics. First, it provides an
overview of basic computer architecture and discusses how computer
hardware interprets and then executes program instructions written in
software. Second, it presents a brief tour of complexity theory and the
analysis of algorithms.

3.9.1 Binary

Everything in a computer—all data and all programs—is stored, communicated,
and processed as numbers. Your favourite song, the picture of your cat, the
latest movie, and this document, to a computer are all just numbers. So how
exactly does the computer know to take a sequence of numbers and play your
favourite song? More on this later. For now let’s talk about number systems.

Inside a computer numbers are represented in binary. So instead of writing
the decimal number 42 as

4210 = 4× 101 + 2× 100

3.9. LECTURE 9: COMPUTER ARCHITECTURE 87

we write it as

1010102 = 1× 25 + 0× 24 + 1× 23 + 0× 22 + 1× 21 + 0× 20

= 3210 + 810 + 210

where we have used subscripts to represent the base. The reason numbers are
represented in binary is because it is easier for the computer hardware to work
with two different states “1” and “0” (or “on” and “off”) rather than ten dif-
ferent states (for each of the digits from 0 to 9). Each of the zeros and ones
is called a bit (for binary digit). Bits are grouped together into fixed lengths
usually of size 8, 32, or 64. An 8-bit sequence is often called a byte, while 32-
and 64-bit sequences are called words. Continuing our example, 42 would be
represented in a computer as the byte

00101010

where we interpret the rightmost bit (also called the least significant bit) as the
units, the next bit as the twos, etc.

We are most used to the decimal system and so the primary format for
entering and displaying numbers in (almost) all programming languages is as
decimal numbers. However, binary representations and whether specific bits are
1 or 0 has a place in some applications.

Entering and reading numbers represented in binary can be cumbersome.
Two alternatives that are often used are hexadecimal (base 16) and octal (base
8). Hexadecimal uses symbols

“0” to “9” and “A” to “F”
for numbers 0 to 9 and 10
to 15, respectively.

The number 42 in hexadecimal and octal is

2A16 and 0528

Note that each hexadecimal and octal symbol encodes four and three bits, re-
spectively,

0010����
2

1010����
A

and 00����
0

101����
5

010����
2

So two hexadecimal symbols and three octal symbols form a byte.

In Python you can enter hexadecimal, octal and binary numbers by prepend-
ing 0x, 0o, and 0b, respectively.

Python Console

1 >>> 0b0010101

2 42

3 >>> 0x2a

4 42

5 >>> 0x2A

6 42

7 >>> 0o052

8 42

Because 210 = 1024 is
close enough to one
thousand a kilobyte is
often used to refer to 1024
bytes, keeping with the
binary representation.
Likewise, a megabyte is
often defined as 220, or
1, 048, 576, bytes.

The size of data in a computer is measured in terms of the number of bytes.
For example, a one megabyte file (abbreviated 1MB) is a file that contains one
million bytes.

88 CHAPTER 3. LECTURES

Text

Older computer systems used to encode text (letters of the alphabet, digits,
and common symbols) as a sequence of bytes where each byte represented one
symbol. In modern systems multiple encoding system exist to support different
languages and character sets. See Section 3.7 for details.

Arithmetic

Consider the addition of integers 4210 and 910. In decimal we first add the units
9 and 2 and find that we have a result of 1 unit and a carry of 1, which we add
to 4 to give the answer 5210. The same process of addition with carry can be
performed in binary:

00101010 +
00001001
00110011

where the 1 + 1 in the 23 column (fourth from the left) results in a 0 and carry
of 1. Subtraction is performed in a similar way.

Thus far our discussion has been focused on positive integers. With an 8-bit
byte we can represent integers in the range [0, 255]. If we try to add numbers
that fall out of this range the operation results in overflow (or underflow)—a
consequence of finite precision of the machine.

We can also encode negative integers using a representation known as two’s
complement.5 Using two’s complement integer addition and subtraction can be
performed without modification.

When it comes to real numbers (i.e., fractional numbers) there are two com-
mon options. The first is a fixed-point representation, where a decimal (or more
correctly binary) point is assumed at some fixed position within the binary rep-
resentation. For example, if we set the binary point at the second bit position
then

001010102 = 001010.102

= 23 + 21 + 2−1

= 10.5

The second option is known as floating-point. Here a number is represented
by a sign bit, exponent (say, 8 bits) and mantissa, i.e., the fractional component
following the decimal point (say, 23 bits). To decode a floating-point number
we separate the binary word into sign, exponent and mantissa to express the
number

0.(mantissa)× 2(exponent)

In Python, the data type float is used for floating-point numbers.

5Essentially to represent a negative integer we start with a positive integer negate each
bit in the binary representation and add one. For example, we get −110 = 11111112 in
two’s complement by taking 1 = 000000012 negating the bits to get 111111102 and adding 1.
Now, consider adding 000000012 to 111111112. The answer is 0, confirming that 111111112
represents the number −1.

3.9. LECTURE 9: COMPUTER ARCHITECTURE 89

3.9.2 Boolean Algebra

The bits (1s and 0s) in a computer can be considered as representing logical val-
ues True and False. And since all operations inside computer hardware involve
the manipulation of bits its operations can be formalised via Boolean algebra,
i.e., a set of rules for operating on truth values.

The basic operations in Boolean algebra are and (conjunction), or (disjunc-
tion), and not (negation) defined by the following rules:

P Q P ∧Q P ∨Q ¬P
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

In computer hardware these are often implemented via the universal6 nand
(not and) or nor (not or) operations:

P Q P nand Q P nor Q
0 0 1 1
0 1 1 0
1 0 1 0
1 1 0 0

De Morgan’s Laws

Augustus De Moragn, a 19th-centuary mathematician came up with a set of
useful pair of rules for transforming Boolean expressions. Formally, these are
written as

¬ (P ∧Q) ⇐⇒ (¬P) ∨ (¬Q)

¬ (P ∨Q) ⇐⇒ (¬P) ∧ (¬Q)

Informally we say “the not of an and is the or or the nots” and “the not of an
or is the and of the nots.”

Consider the following Python example where we are iterating through a list
of first and last names. Assume we wish to perform some operation for everyone
who is not “Bart Simpson”. We could use an if statement like the following:

Python Code

1 if not ((first_name == "Bart") and (last_name == "Simpson")):

2 do_somthing ()

or using De Morgan’s laws we could also use

Python Code

1 if (first_name != "Bart") or (last_name != "Simpson"):

2 do_somthing ()

which is logically equivalent.

6All logical operations can be defined in terms of these. For example, not(P) = nand(P, 1).

90 CHAPTER 3. LECTURES

Figure 3.16: Technicians Gloria Ruth Gordon and Ester Gerston “programming”
the ENIAC computer by plugging in wires.

3.9.3 Logic Circuits

Boolean and arithmetic operations inside a computer are performed using a
combination of logic circuits and lookup tables. At the physical level the binary
symbols 0 and 1 are encoded using different voltage levels within the electronic
circuitry.

Logic gates take electrical inputs representing 1s and 0s and output an elec-
trical signal representing 1 or 0 depending on the logical function implemented
by the gate. Logic gates are wired together (inside integrated circuits) to create
more complex operations, e.g., addition.

3.9.4 The Stored Program Concept

Early computers were hardwired to perform some fixed function. For example,
ENIAC, one of the first electronic computers, was programmed by wiring up
circuits. See Figure 3.16.

It wasn’t until the 1940s that engineers started to think about the stored
program concept—program instructions and data are stored in (random access)
memory and the computer performs its function by executing the instructions.

The stored program concept allowed programs to be easily changed and
promoted the development of general purpose hardware (CPUs), which can be
customised for any application. This in turn gave rise to modern computer ar-
chitectures (such as the von Neumann architecture) and the separation between
hardware and software (further divided into operating system and application
software). With this clear separation engineers were able to update hardware
and software somewhat independently resulting in the exponential growth in
computing power and capabilities that we have seen over the last 50 years.7

7The shrinking of transistors, the building blocks of logic circuits, has been a significant
driver of faster and more powerful hardware, but by itself does not account of advances that
have also been made on the software side independent of the hardware.

3.9. LECTURE 9: COMPUTER ARCHITECTURE 91

3.9.5 Basic Complexity Analysis

Suppose you have implemented a program to do some data analysis and run
it on a small development set. Everything seems to be working fine. Now you
run your program on the much larger full set of data. You leave the program
running over night expecting to see some results in the morning. But when you
wake up the program is still running. It’s taking forever, much longer than you
expected. What has gone wrong?

One explanation is that your code has implementation issues. There could be
a bug that only gets triggered by some bad data, which causes it to run slowly
or loop forever. Or your program could be running out of memory causing
everything to slow down. But programming bugs may not be the only reason
for the observed slow down.

Not all algorithms run at the same speed. Achieving the same result in two
different ways can take dramatically different amounts of time. Sometimes this
is due to the way an algorithm is implemented—an experienced programmer will
write more efficient code than a novice—but often it is something fundamental
to the algorithms themselves. This is especially true when comparing different
algorithms (even when implemented by the same programmer).

A useful way to characterise an algorithm is via complexity analysis, which
roughly measures the amount of time (or space) an algorithm takes to complete
as a function of the input size. For example, when sorting a list of names into
alphabetical order we would expect the sorting algorithm to run for longer on
lists with more names than lists with less names. (We may also expect it to
take longer if we give it the list in random order compared to if we give it the
list in nearly sorted order. But in complexity analysis we only care about how
an algorithm scales with the size of the input, not other characteristics of the
input.) The big question then is how much longer?

Trying to characterise how much longer in terms of real running time (i.e.,
seconds) is a difficult problem because we would need to take into account the
specific implementation, the specific machine that the code is running on, other
applications that may be running at the same time, etc. A more useful measure
is by how much the running time changes in a relative sense. For example,
does doubling the length of the list of names provided as input also double the
amount of time it takes to sort the list? Such an algorithm would be called linear
and would be a very good algorithm indeed—the best known sorting algorithms
grow slightly more than linear so doubling the length of the input would cause
the algorithm to run for slightly more than twice as long.

Big-O Notation

We only consider “big-O” notation here, which measures the asymptotic, or
limiting, upper bound on running time. Other characterisations of programs
and analysis methods are covered in more advanced Computer Science courses
on algorithms.

Let us consider a simple example of determining whether a name exists in
an already sorted list of names, e.g., a guest list for a party. Assume that the
names are stored in a variable called guest list and the name we’re looking
for in query. The most basic solution is, perhaps, to search through the entire
list of names looking for a match:

92 CHAPTER 3. LECTURES

Python Code

1 name_found = False

2 for name in guest_list:

3 if (name == query):

4 name_found = True

5

6 if name_found:

7 print("{} is a guest".format(query))

8 else:

9 print("{} is not on the guest list".format(query))

We can now ask the question: for an arbitrary name, how long does the
above piece of code take to run? As mentioned above, answering this question
in terms of actual time (e.g., seconds) depends on a number of factors. However,
we can answer the question in terms of the length of the list of names being
scanned (i.e., the number of guests on the guest list). Mentally running through
the program reveals that it compares the query name to every name in the list.
So for a guest list with n names the code will do n comparisons, and we would
say the algorithm has O(n) running time.

Can we do better? Well, yes we can. Notice that our code keeps making
comparisons even once it has found a name on the list. If the algorithm stops
as soon as it finds a match, as implemented in the following code, it can save a
bit of time on average.

Python Code

1 name_found = False

2 for name in guest_list:

3 if (name == query):

4 name_found = True

5 break

Analysis of the modified code shows that in the worst case (where a name
does not appear in the list or appears as the last entry in the list) it would per-
form n comparisons, but sometimes less. (The average number of comparisons
will be 1

2n if the name is somewhere in the list and exactly n if not). In terms
of big-O notation we say that the algorithm is still O(n). The notation ignores
constants and drops lower-order terms—so if an algorithm performs 3n2−5n+10
operations we would call it an O(n2) algorithm.

Our implementation so far has not taken into account the fact that the guest
list is already sorted in alphabetical order. We can make use of this fact and
implement a faster algorithm known as binary search.

Python Code

1 lower_bound = 0

2 upper_bound = len(guest_list) - 1

3 while (upper_bound > lower_bound):

4 middle_index = int((lower_bound + upper_bound) / 2)

5 if (query > guest_list[middle_index]):

6 lower_bound = middle_index + 1

7 else:

8 upper_bound = middle_index

9

10 name_found = (query == guest_list[lower_bound])

3.9. LECTURE 9: COMPUTER ARCHITECTURE 93

nn0

f(n)c·g(n)

Figure 3.17: Illustration of big-O notation.

It can be shown that binary search runs in O(log n) running time for an
input (guest list) of size n. Roughly speaking, this means that everytime we
double the length of the list we see a linear increment in the running time. Or
put another way, the time difference between searching a list of 100 names and
200 names is the same as the time difference between searching a list of 1000
names and 2000 names.

A more formal definition of big-O notation can be given as follows: a function
f(n) is said to be O(g(n)) if there exists positive constants c and n0 such that
0 ≤ f(n) ≤ cg(n) for all n ≥ n0. The definition is exemplified by the plot in
Figure 3.17. Note that big-O notation defines an upper bound so every O(n)
algorithm is also an O(n2) algorithm. In general, we are interested in the tightest
upper bound on running time.

In this lecture we have covered the very basics of complexity analysis. A
more rigorous coverage of complexity theory and asymptotic analysis is studied
in courses on algorithms and computation theory. We conclude with a brief
discussion of one of the main unsolved problem in computer science.

Does P = NP?

One of the most famous questions in theoretical computer science concerns the
equivalence of different complexity classes, that is, different categories for how
fast certain problems can be solved (or how much memory they use). A problem
is said to be in class P if there exists a polynomial time algorithm that solves the
problem. Roughly speaking this means that there is a polynomial function f(n)
that bounds the number of seconds that a program for solving the problem will
take to run for any size input n. Another class of problems, known as class NP,
are those that have algorithms that can verify a given solution in polynomial
time. For example, given the question “what is the square root of 1081600?”
its easy to verify that 2 is not the solution and that 1040 is, even if finding the
solution in the first place may be difficult. To verify that 1040 is a solution
we simply multiply it by itself and compare to 1081600. The big theoretical
question is then, “is every problem in NP also in P?” or more simply “does

94 CHAPTER 3. LECTURES

P = NP?” For an entertaining discussion of complexity analysis and P = NP
see the following YouTube video:

https://www.youtube.com/watch?v=YX40hbAHx3s

3.9.6 Next Lecture

• Advanced Data Structures: queues, stacks, sets, dictionaries.

• Trees and Graphs

3.10. LECTURE 10: DATA STRUCTURES II 95

3.10 Lecture 10: Data Structures II

Learning Outcomes

• Understand the concept of a container for holding data.

• Define the operations and behaviours of standard containers:
queues, stacks, sets, dictionaries.

• Understand how to build and parse trees and graphs.

Overview
This lecture introduces the concept of a container for storing data of
a particular type. The abstract data types queues, stacks, sets, and
disctionaries are defined, and examples given on when these data types
can be used. The lecture also covers trees and graphs.

3.10.1 Containers

Containers in a programming language are objects that are used to hold col-
lections of other objects. We have already seen some simple containers. For
example, a list of names is a list container that stores string objects. Contain-
ers can even be used to hold other containers, for example, a list of lists.

A typical program will insert objects into a container, not necessarily all
at once. The program will then iterate over the object in the container and
perform some opertion on them. Different containers behave in different ways
(for example, the order in which data is stored and rules for how data can be
accessed) and are optimised for different uses. Often the right choice of container
can make the solution to a problem simpler and more efficient.

Queues

Queues are used to process data in the same order in which the data is received
(or inserted into a queue). This is in stark contract to

a list or tuple which allows
access to any element at
any time—a property
known as random access.

For exmaple, a network device driver may insert
network packets into a queue for processing by the operating system. This
ensures that data (say a large file) is processed in the same order in which is
was sent. Queues are sometimes calles FIFOs for “First In, First Out”.

The two most important queue operations are enqueue and dequeue, which
add and remove items from a queue, respectively. These operations are illus-
trated in Figure 3.18. Other operations include creating (initialising) the queue,
clearing the queue, and checking whether a queue is empty.

73

11

22 enqueue

73

11

22

73

11

22

dequeue

Figure 3.18: Illustration of pushing data onto and pulling data off a queue.

96 CHAPTER 3. LECTURES

In Python the deque data type implements a so-called double-ended queue.
It can be used to implement both queues and stacks (which we discuss next).
The following code shows example usage.

Python Console

1 >>> from collections import deque

2 >>> q = deque ([11, 73]) # initialise (alt. enqueue twice)

3 >>> q.appendleft (22) # enqueue (alt. append)

4 >>> q

5 deque ([22, 11, 73])

6 >>> q.pop() # dequeue (alt. popright)

7 73

Note that a list object can be implement the same behaviour as a deque

but is not optimised for frequent append and pop operations.
A variant of the queue data type is a priority queue, which associates a

score, or priority, with each item. The item with highest priority remaining in
the queue is dequeued first irrelevant of when it was added.

Stacks

In contrast to a queue, a stack is a data structure that implements a LIFO policy
for “Last In, First Out”. Think of a pile of books or a stack of plates. Items
can only be added to the top of the stack and items can only be removed from
the top. These actions correspond to push and pop operations, respectively, as
illustrated in Figure 3.19.

73

11

22 push

73

11

22

73

11

22pop

Figure 3.19: Illustration of pushing data onto and popping data off a stack.

Both the Python deque and list data types can implement a stack. We
show an example using a list:

Python Console

1 >>> stack = [73, 11]

2 >>> stack.append (22) # push

3 >>> stack

4 [73, 11, 22]

5 >>> stack.pop() # pop

6 22

Most implementations of stacks and queues have a maximum size. If you
try to push an item once the maximum size is reached then an exception will
be raised. Likewise, if you attempt to pop an item from an empty stack (or
queue) an exception will be raised. In general you should check that a stack is
not empty before popping the top of the stack.

3.10. LECTURE 10: DATA STRUCTURES II 97

Sets

Sets are containers that are used to hold unique items, i.e., duplicate elements
are not allowed in a set. Moreover, the elements of a set are unordered unlike
elements of a list, but that does not stop us from being able to iterate over
them. We will see later that sets are very useful for detecting duplicates in lists.

The important operations on a set are insertion, deletion, membership test
and iteration. Figures 3.20 and 3.21 illustrate examples of inserting a new
and existing element into a set, respectively. The following code snippet shows
examples of the aforementioned set operations.

73

22 insert

7322
,

Figure 3.20: Illustration of inserting a new element into a set.

7322
,

22 insert

7322
,

Figure 3.21: Illustration of inserting an existing element into a set.

Python Code

1 >>> s = set ([73]) # s = set(); s.add (73)

2 >>> s.add (22) # add an element to the set

3 >>> s

4 {73, 22}

5 >>> s.add (22) # add a duplicate element

6 >>> s

7 {73, 22}

8 >>> 22 in s # membership test

9 True

10 >>> 43 in s # another membership test

11 False

12 >>> for item in s: # iteration printing elements squared

13 ... print(item * item)

14 ...

15 5184

16 484

17 >>> s.remove (22) # set deletion

18 >>> s

19 {73}

Variants of the set container include the multiset, which allows duplicate
elements to be added to the set, and the Python Counter object, which is
useful for counting the number of times each item is seen. As we will see, a
Counter can be easily implemented using a dictionary.

98 CHAPTER 3. LECTURES

Dictionaries

A dictionary is a data structure that stores values referenced by a key. That
is, we provide the dictionary with a key, such as an integer or a string, and the
dictionary returns a value associated with that key. Thus a dictionary can be
conceptually thought of as a list of key-value pairs with the important proviso
that keys must be unique. Dictionaries are also called maps, associative arrays
or hash tables.

Dictionaries are optimised to perform lookups on keys. Keys must be im-
mutable objects, such as numbers, strings and tuples. Lists and sets cannot
be used as keys, for example. But values can be anything (and we will show
an example of a set value later). What makes key lookups fast is the way in
which the key-value pairs are stored. Keys are hashed to produce a fixed length
hash value (say, an integer)—for example, a string can be hashed by adding up
the encodings of all its characters and ignoring integer overflow. Once hashed
a key can be addressed in (near) constant time. The only thing we need to
be careful about are collisions, i.e., two different keys which produce the same
hash. Good hash functions are designed to avoid collisions but collisions are
inevitible. Dictionaries work by first hashing a key to determine a bucket for
the key and then searching for the exact key within the bucket.

73

22 insert

7322
,

“Y” “Y”“M”

,
“M”

keys

values

Figure 3.22: Illustration of inserting a new key-value pair into a dictionary.

7322
,

“Y”“D”

7322
,

“Y”“M”

22 insert
,

“D”

keys

values

Figure 3.23: Illustration of changing the value associated with a given key.

Important operations on a dictionary include setting and retrieving the value
for a given key, checking if a key exists in the dictionary (membership), and
iterating over items in the dictionary.A dictionary can be

constructed using braces
{} or dict().

These operations are demonstrated in
the code below.

3.10. LECTURE 10: DATA STRUCTURES II 99

Python Console

1 >>> d = {73: "Y"}

2 >>> d

3 {73: ’Y’}

4 >>> d[22] = "M"

5 >>> d

6 {73: ’Y’, 22: ’M’}

7 >>> d[22] = "D"

8 >>> d

9 {73: ’Y’, 22: ’D’}

10 >>> len(d) # number of keys in the dictionary

11 2

12 >>> 22 in d # (key) membership test

13 True

14 >>> "D" in d

15 False

Usually we will want to iterate over keys stored in a dictionary and perform
some function on their corresponding values. The following code snippet gives
two examples where we simply print out key-value pairs. In what situation
would we prefer one example iteration method over the other?

Python Console

1 >>> for k in d:

2 ... print("key {} has value {}".format(k, d[k]))

3 ...

4 key 73 has value Y

5 key 22 has value M

6 >>>

7 >>> for k, v in d.items ():

8 ... print("key {} has value {}".format(k, v))

9 ...

10 key 73 has value Y

11 key 22 has value M

A more elaborate use of dictionaries is given below.

Example 3.10.1. Let us put some of our newly learned data structures to
work in solving an interesting problem. Given a file containing a number of
phrases, e.g., tweets, we would like to find phrases that are anagrams of each
other. We assume that each line in the file is a separate phrase.

Our first step is to define a function to construct an anagram signature for
a given phrase. We use the code developed in Lecture 4.

Python Code

1 import string

2

3 def anagram_signature(text):

4 """ Converts a string into a tuple of letter counts."""

5 lc = ’’.join(filter(str.isalpha , text)). lower ()

6 return tuple ([lc.count(i) for i in string.ascii_lowercase])

Now we are ready to parse the file in order to find anagrams. We will write
the code as a command line script, which will allow us to provide a filename as

100 CHAPTER 3. LECTURES

a command line argument. (More about command line scripts in Lecture 3.25).
As we read in each line we will compute its anagram signature and use this as a
dictionary key. The value stored in the dictionary will be a set of phrases with
matching key (i.e., anagram signature).

Python Code

1 import sys

2

3 # check command line arguments

4 if len(sys.argv) != 2:

5 print("USAGE: python " + sys.argv [0] + " <filename >")

6 exit()

7

8 # open file and hash signatures into dictionary

9 anagram_sets = dict()

10 for line in open(sys.argv [1]):

11 line = line.rstrip(’\n’) # remove line ending

12 sig = anagram_signature(line) # create signature

13 if sig not in anagram_sets: # if new signature add to dict

14 anagram_sets[sig] = set()

15 anagram_sets[sig].add(line) # add to set with same signature

It is now a simple matter of iterating over dictionary keys and pulling out the
set of anagrams associated with that key. Since the keys are anagram signatures
all phrases associated with the key will are anagrams of each other. We only
print the phrases if there are more than one in the set.

Python Code

1 # find all anagram sets of size greater than one

2 for sig in anagram_sets.keys ():

3 if len(anagram_sets[sig]) > 1:

4 print("-" * 80)

5 for line in anagram_sets[sig]:

6 print(line)

3.10.2 Graphs and Trees

Graphs (and trees and forests) are pervasive in computer science. They are used
in representing and solving many classical problems including search, game play,
navigation and route planning, social networks, etc. Formally, a graph is defined
as a tuple G = �V , E� where V is a set of nodes (or vertices) and E ⊆ V × V is a
set of edges (or arcs) between nodes.Graphs can have many

other properties including
edge directedness, weights,

cyclicity, etc.

A graph with no cycles is called a tree.
A very common operation that is performed on a graph or a tree is to be

able to traverse the nodes. For example, in playing games such as chess or tic-
tac-toe, a game tree could be constructed where each node represents the game
states and edges represent valid moves from one game state to another (e.g.,
moving a piece in chess) as illustrated in Figure 3.24. In this case traversing the
game tree amounts to simulating a game being played.

There are no built-in graph or tree data structures in Python, but there are
plenty of libraries (e.g., networkx which we saw in Lecture 1). However, for
simple graphs, like game trees, it is quite simple to implement your own tree

3.10. LECTURE 10: DATA STRUCTURES II 101

Figure 3.24: Illustration of a partial tic-tac-toe game tree. Image courtesy of http:
//scienceblogs.com/goodmath/2007/09/16/games-and-graphs-searching-for/.

data structure—you just need to keep track of parents and children for each
node. Moreover, often you do not need to represent the tree explicitly at all as
we demonstrate in the following search problem.8

Example 3.10.2. A polyomino is a geometric shape composed of joining one
or more squares, connected orthogonally. For example, the popular Tetris game
involve fitting falling tetrominoes (shapes composed of four squares). Some
examples are shown in Figure 3.25.

8Warning: the programming in the polyominoes example is rather advanced. You are not
expected to be able to write code like this from scratch at this point. However, you should be
able to follow the logic of what is being done.

Figure 3.25: Example tetrominoes.

102 CHAPTER 3. LECTURES

An amusing puzzle involves packing a pre-defined set of polyominoes into
a fixed grid (allowing only rotation and translation of the polyominoes pieces)
without any overlap. This is a puzzle in which computers excel. In this case
study we develop code for searching over polyomino placement in order to fit
ten tetrominoes (those in Figure 3.25 and their mirror images) into a 5-by-8
grid. The code we develop is illustrative; it can be made much more efficient
but that is beyond the scope of this case study.

Our first step is to define the problem. We specify the size of the grid by
defining variables for number of rows and columns.

Python Code

1 ROWS = 5

2 COLS = 8

Next we define the tetromino pieces. Each piece is defined as a 4-tuple of
(x, y) pairs indicating the shape of the piece. The first (x, y) pair is the reference
cell and always (0, 0). For example, an L-shaped piece would be defined by the
tuple ((0, 0), (0, 1), (0, 2), (1, 2)) to represent

(0,0)

(1,2)

(0,2)(0,1)0

1

0 1 2

The code defining the pieces is:

Python Code

1 PIECES = [

2 ((0, 0), (0, 1), (0, 2), (0, 3)), # straight

3 ((0, 0), (0, 1), (1, 1), (1, 0)), # square

4 ((0, 0), (0, 1), (0, 2), (1, 1)), # tee

5 ((0, 0), (0, 1), (0, 2), (1, 2)), # ell

6 ((0, 0), (0, 1), (-1, 1), (-1, 2)), # ess

7 ((0, 0), (0, 1), (0, 2), (0, 3)), # straight

8 ((0, 0), (0, 1), (1, 1), (1, 0)), # square

9 ((0, 0), (0, 1), (0, 2), (1, 1)), # tee

10 ((0, 0), (0, 1), (0, 2), (-1, 2)), # jay

11 ((0, 0), (0, 1), (1, 1), (1, 2)) # zed

12]

When placing pieces we are allowed to rotate them (by increments of 90
degrees), so let’s write a function that will rotate a given piece.

Python Code

1 def rotate(piece):

2 """ Rotate a piece by 90 degrees anti -clockwise."""

3 rotated_piece = [(p[1], -p[0]) for p in list(piece)]

4 return tuple(rotated_piece)

Now that we have rotation defined we can generate all possible shapes for
packing into our grid. We know that after rotating by 90 degrees four times we
are back to the starting shape of a piece. However, some pieces are symmetrical
and require less rotations to get back to the start. So in addition to defining

3.10. LECTURE 10: DATA STRUCTURES II 103

the pieces we will specify the number of 90-degree rotations a piece can be
turned before matching its original shape. This is not strictly necessary but will
allow us to speed up the search by not having to consider rotations that result
in a shape already attempted. For the pieces defined in PIECES we have the
corresponding number of rotations:

Python Code

1 ROTATIONS = [2, 1, 4, 4, 2, 2, 1, 4, 4, 2]

In considering the representation of the board a two-dimensional array (or
list of lists) seems most appropriate where each cell in the array indicates the
identity of the piece occupying that location on the board. An empty board can
then be initialised as

Python Code

1 board = [[None for y in range(ROWS)] for x in range(COLS)]

Our search strategy will be to incrementally place pieces on the board to
occupy free locations. If we cannot place a piece we will backtrack (i.e., remove
pieces) and try a different location and orientation. We can place pieces by
writing a function that takes the specification for the (rotated) piece and a
reference cell on the board. The function will then check whether the piece
fits on the board and does not overlap with any existing piece. If so we mark
the cells on the board occupied by the new piece with the index (or tag) for
that piece and return the new board. Otherwise the function will return an
indication that the proposed placement is not allowed—in our implementation
we use the None value to indicate that placement failed. The function looks as
follows:

Python Code

1 def place_piece(board , ref_point , piece , tag):

2 """ Add a new piece to the board at the given reference point

3 and return the new board. Returns None if the piece could not

4 be added at the given location."""

5

6 # Check that reference location is free.

7 if (board[ref_point [0]][ref_point [1]] is not None):

8 return None

9

10 # We need to make a deep copy of the board , otherwise we will

11 # be modifying the input.

12 new_board = deepcopy(board)

13 for p in piece:

14 x = ref_point [0] + p[0]

15 y = ref_point [1] + p[1]

16 if (0 <= x < len(board)) and (0 <= y < len(board [0])) and

17 (board[x][y] is None):

18 new_board[x][y] = tag

19 else:

20 return None

21

22 return new_board

At this point we can informally test our implementation to make sure our

104 CHAPTER 3. LECTURES

code works as expected.

Python Console

1 >>> board = [[None for y in range(ROWS)] for x in range(COLS)]

2 >>> place_piece(board , (0, 0), PIECES [0], 0) # place a piece

3 [[0, 0, 0, 0, None], [None , None , None , None , None], ...

4 >>> place_piece(board , (3, 4), PIECES [0], 0) # illegal position

5 >>>

Having the board display in a more intuitive way would be helpful. Let’s
write a display board function:

Python Code

1 def display_board(board):

2 """ Displays the given board configuration."""

3

4 for x in range(len(board)):

5 print(" ".join(str(board[x])))

We are almost ready to start our search. Our search can be thought of as
building a tree. We start with an empty board as the root node. We then at-
tempt to place the first piece in our list at all possible locations and orientations
on the board. Successful placements become the children of the root node. We
then proceed by attempting to place the next piece in the list on each of the
new boards. We call this process expanding a node in the tree. Included in each
node is the identifier of the next piece to place. Instead of explicitly storing the
tree our code will maintain a list of nodes not yet expanded. This list will be
known as the frontier, and as we expand nodes their children get added to the
frontier. If we are able to expand nodes all the way to the bottom of the tree
(i.e., place the last piece) we are done and the corresponding leaf will contain
our solution.

Here is the code for expanding a node:

Python Code

1 def add_piece_to_search(frontier , board , tag):

2 """ Expands a node by adding all possible moves for a piece with

3 the given tag to the frontier."""

4

5 for x in range(COLS):

6 for y in range(ROWS):

7 p = PIECES[tag]

8 for rotations in range(ROTATIONS[tag]):

9 new_board = place_piece(board , (x, y), p, tag)

10 if (new_board is not None):

11 frontier.append ([new_board , tag + 1])

12 p = rotate(p)

We can now write the code to perform the search. As stated we will start
with an empty board and add the first piece to all possible locations. This
becomes our frontier. Then, while the frontier is not empty (i.e., there are
unexpanded nodes) and we have not yet found a solution, we take a node off
the frontier and expand it. Note that we have a choice on the order in which
we select a node from the frontier to expand. We will adopt a depth-first-search

3.10. LECTURE 10: DATA STRUCTURES II 105

policy, which expands the last node added to the frontier at each iteration (i.e.,
it treats the frontier as a stack).

Python Code

1 # initialise stack of expanded nodes

2 frontier = []

3

4 # try first piece (expand root node) on empty board

5 board = [[None for y in range(ROWS)] for x in range(COLS)]

6 add_piece_to_search(frontier , board , 0)

7

8 # iteratively remove nodes from the stack and expand them

9 nodes_popped = 0

10 while (len(frontier) > 0):

11 board , tag = frontier.pop()

12 nodes_popped += 1

13

14 # check if we’ve added all the pieces

15 if (tag >= len(PIECES)):

16 display_board(board)

17 exit()

18

19 if (nodes_popped % 10 == 0):

20 print("..." + str(nodes_popped), end="\r")

21 add_piece_to_search(frontier , board , tag)

As soon as we are able to successfully place all pieces the code prints the
solution and exits. We could modify the code to not exit and show all possible
solutions. If the frontier becomes empty and we have not been able to place the
last piece then the puzzle is impossible.

Here is the solution found for the 5-by-8 puzzle. A solution also exists for
a 4-by-10 grid. How would you modify the code to find the solution to this
puzzle?

[6 , 6 , 8 , 8 , 8]

[6 , 6 , 8 , 7 , 5]

[9 , 9 , 7 , 7 , 5]

[4 , 9 , 9 , 7 , 5]

[4 , 4 , 3 , 3 , 5]

[2 , 4 , 3 , 1 , 1]

[2 , 2 , 3 , 1 , 1]

[2 , 0 , 0 , 0 , 0]

106 CHAPTER 3. LECTURES

3.11 Lecture 11: Objects and Classes

Learning Outcomes

• Understand what object-oriented programming means and how it
can be used to encapsulate design concepts in your code.

• Become familiar with how Python uses classes and objects in many
of its libraries.

• Understand the terms class, object, constructors, fields, and meth-
ods and be able to identify them in a Python program.

• Write code that constructs objects for existing classes to that can
be interacted with through their fields and methods.

• Write a simple class in Python.

Overview
This lecture gives a very brief overview of object oriented programming.
We cover how classes are implemented in Python and discuss how to
use objects within programs.

Python supports an approach to designing software called “object-oriented
(OO) programming”. Although this is a widely used and important approach
to building large systems, we will focus on how to understand and use code that
has be developed in an OO style and only briefly discuss how you might write
your own code in this style.

3.11.1 Classes and Instances

In object-oriented programming, data is typically organised into objects that
have predefined properties and ways of accessing and modifying those properties.

While this type of organisation can be done with combination of data struc-
tures such as dictionaries and lists, there are several advantages to “hiding” the
details of these structures and only allowing them to be accessed through the
methods (functions) that the class defines.

Object-orientation can be a useful way to think about programming as we are
predisposed to think about the world in terms of categories and sub-categories.
For example, we can consider the class of animals as the collection of things that
have (amongst other things) an age. Figure 3.26 shows how specific instances
of animals can be thought of as instances of the class of animals and how their
various properties differ.

3.11.2 Classes and Objects in Python

In Python these properties are called fields and the functions used to manipu-
late or inspect an object are called methods. In other programming languages
these might be called member variables and member functions, respectively. A
collection of fields and methods is what defines a class. Instances of a class are
constructed from this class definition.

It is sometimes said that “everything in Python is an object”. What this
means is that integers, strings, lists, even functions, are all members of different
classes and all those classes are subclasses of the top-level “object” class.

3.11. LECTURE 11: OBJECTS AND CLASSES 107

Figure 3.26: Specific animals such as a 5 year old dog can be thought of as “instances”
of the “class” of animals.

At a terminal or in the PyCharm console, you can determine the class of
anything using the type function.

Python Console

1 >>> type(’Some words ’)

2 <class ’str’>

3

4 >>> type (17)

5 <class ’int’>

6

7 >>> type ([1,2 ,3])

8 <class ’list’>

You would have already used several methods belonging to the string and
list classes, such as sort and append on lists and islower, split, and format

on strings. The slightly unusual thing about these very common types is that
their constructors are “built-in” to the Python language: lists can be build with
the [1,2] syntax and strings by surrounding text with single- or double-quotes.

Constructors, Methods, and Fields

Normally, if MyClass is a class, its constructor is called like so: x = MyClass()

or, if parameters are used, like so: x = MyClass(param1, param2). By convention, class names
are in “CamelCase”.

The in-
stance of MyClass assigned to the variable x will then have all the methods
and fields declared in the definition of MyClass. As we saw in Lecture 3, the
methods belonging to x can be called like function by using the “dot” nota-
tion: x.somemethod(). Fields are access using the same “dot” convention but
without the parentheses: x.somefield.

We will see several more examples of constructors, methods, and fields, as
well as how to define them, in the remainder of this lecture.

108 CHAPTER 3. LECTURES

3.11.3 Why Use Classes?

As mentioned earlier, classes enable a programmer to hide implementation de-
tails and present a coherent interface for working with a particular “shape” of
data. Being able to abstract away parts of a system that are not important to a
programmer outside that system is one of the central programming tools when
developing, managing, and reasoning about large software systems.

Case Study: Calendar Dates

To make this point more concrete, let us consider how we might handle working
with calendar dates in software.

The rules for the number of days in each month (especially in February!)
are fairly complicated and is the type of thing that should be “solved” (i.e.,
programmed and tested) once and then not worried about any more. This is
exactly what the datetime library in Python does.

Python Console

1 >>> from datetime import date , timedelta

2 >>> d = date (2015 ,1 ,12)

3 >>> d + timedelta (15 * 7)

4 datetime.date (2015, 4, 27) # April 27th , 2015

You can see here that we are able to construct a date object d representing
the 12th of January, 2015, and then add 15 weeks (15× 7 days) to work out the
result (April 27th, 2015).

Most languages come with some kind of calander or date and time library as
standard and so you should never need to work with dates “by hand”. However,
it is instructive to consider just how much complexity is hidden in this class.

We can consider at least three different approaches to working with date
calculations like the one above if we were not allowed to use datetime.

1. Represent each date as the number of days since January 1st 1970 :In computing lore, this
date is common as a
reference point and is

called the “UNIX epoch”.

One
advantage of this representation is that doing calendar arithmetic is easy
— you just add or subtract the number of days from the date you have.
The downside is that convert to or from this representation is hard. For
example, how would you work out what date 10,000 days from Janurary
1st, 1970 corresponded to?

2. Use different variables for year, month, and day : The updside of this
representation is that it does not require any data structures or data con-
version. The downside is that it is up to you to keep the values in those
variables in sync (e.g., if month = 4 (April) and you add one to day = 30

then month needs to be incremented to 5 (and day should become 1).

3. Use a dictionary with keys ‘year’, ‘month’, and ‘day’ : This makes it pos-
sible to keep the variables from the previous approach together and would
make it possible to write functions like addDays(date, days) that takes
and returns this dictionaries. However, there is no guarantee with dictio-
naries that the values associated with the keys represent valid dates to
begin with.

3.11. LECTURE 11: OBJECTS AND CLASSES 109

Classes provide several advatnges over all the above approches. Construc-
tors can be used to guarantee that only valid dates are built (e.g., by raising
an error if someone tries to create “the 30th of February”). Multiple ways of
constructing dates can be provided. The method on the class can then hide
the details of calculations such as adding and subtracting weeks or days. Meth-
ods that convert between different representation can also be provided (e.g.,
d.daysSinceEpoch() could return the number of days from 1 Jan. 1970 to d).

The nice thing about the existence of libraries like datetime in Python is
that, since someone has already thought about and made these trade-offs, you
can just make use of the resulting class in your own programs without having to
worry about all the messy details. All you have to do is read the documentation
for the class to understand how to create and work with its instances.

3.11.4 Writing Your Own Classes

To write your own class in Python, you need to define the constructor for its
instances and its methods. The basic template is shown below for a class called
ClassName.

Python Code

1 # The Class syntax

2 class ClassName:

3 # Class variables

4 cvar = some_value

5

6 # Constructor

7 def __init__(self , arg1 , arg2):

8 # Setting an instance variable

9 self.ivar = arg1 + arg2

10

11 # A method

12 def method1(self , arg1):

13 return self.ivar / cvar

The first thing to note is that all of the components of the class are indented
so that they sit “under” the class declaration class ClassName. This is yet
another situation where spacing is important in Python.

On line 4, we see what is called a class field, which is a variable that is
shared between all instances of a class. This is in contrast to instance fields
which always appear within a class prefixed by self (more on this below).

A class’s constructor (line 7 above) is always called __init__ and, like other
methods (such as method) in this class, are defined in the same way functions
are defined elsewhere in Python. The double-underscore

convention is used to
indicate methods that play
special roles within Python.

Although the constructor method is called
__init__, you never call this method by this name outside the class itself. If
you want to create an instance of this class and assign it to x you would write
x = ClassName(1,2). This has the effect of calling __init__(self, 1, 2)

and creating a new instance of ClassName with the field ivar set to 3 (i.e.,
arg1 + arg2).

The key thing to note with class methods is that the first argument to every
method is self which can be followed by any other arguments to the method.
This self variable is used within the definition of the method to refer to the
instance the method was called on.

110 CHAPTER 3. LECTURES

More concretely, suppose we created the instance x = ClassName(1,2) as
above and then invoked x.method1(7). What Python does is call the function
method1(self, 7) where self is set to the same instance that x refers to.
This is a little confusing at first but you do eventually get used to mentally
substituting a call like x.method() into method(x) as the execution passes into
the class. The following example will hopefully make this clearer.

Example 3.11.1. In this example we want to be able to incrementally sum-
marise collections of numbers by their mean and variance. Recall that the mean
of a collection of n numbers x1, x2, . . . , xn is defined to be

x̄ :=
1

n

n�

i=1

xi

and the (biased) variance for that sample is

σ̂2 :=
1

n

n�

i=1

(x− x̄)
2
.

For example, if n = 3 and the numbers are 1, 2, 3 then the mean will be 1
3 (1 +

2 + 3) = 2 and the variance will be 1
3

�
(1− 2)2 + (2− 2)2 + (3− 2)2

�
= 2

3 .
Given a list of numbers it would be easy to write functions that calculate

these statistics. However, we would like some way of keeping track of statistics
as more and more numbers are added. The follow class lets us do exactly that
by keeping all numbers it has been presented with in a list and then calculating
the statistics on the entire list whenever they are needed.

Python Code

1 class Summary:

2 """

3 A summary incrementally keeps track of key statistics such as

4 the number , mean , and variance of a collection of numbers.

5 """

6 # A class variable that keeps track of the number of instances

7 num_summaries = 0

8

9 def __init__(self):

10 """ Create a empty summary with a unique ID."""

11 self.numbers = []

12

13 Summary.num_summaries += 1

14 self.id = Summary.num_summaries

15

16 def add(self , x):

17 """

18 Add x to this summary and update the statistics.

19 :param x: The number to add.

20 """

21 self.numbers.append(x)

22

23 def addAll(self , xs):

24 """

25 Add a list of numbers to this summary.

26 :param xs: A list of numbers.

27 """

28 for x in xs:

29 self.add(x)

30

31 def statistics(self):

32 """

33 Returns the count , mean , and (biased) sample variance of the

34 numbers added to this summary.

35 :return: The triple (count , mean , variance).

36 """

37 n = len(self.numbers)

38 mean = sum(self.numbers) / float(n)

39 var = sum ([(x-mean)**2 for x in self.numbers]) / float(n)

40 return (n, mean , var)

3.11. LECTURE 11: OBJECTS AND CLASSES 111

This class can now be used as follows. Notice that new points can be added to
a summary using addAll or add and that the ID of each summary is incremented
whenever a new summary is created.

Python Console

1 >>> s = Summary ()

2 >>> s.addAll ([1 ,2,3])

3 >>> "Summary #{}: {}".format(s.id , s.statistics ())

4 ’Summary #1: (3, 2.0, 0.6666666666666666) ’

5 >>> s.add (4)

6 >>> "Summary #{}: {}".format(s.id , s.statistics ())

7 ’Summary #1: (4, 2.5, 1.25) ’

8 >>> s2 = Summary ()

9 >>> s2.addAll ([1,1,1,1,1])

10 >>> "Summary #{}: {}".format(s2.id , s2.statistics ())

11 ’Summary #2: (5, 1.0, 0.0)’

Let’s walk through what the above console commands do.
When s = Summary() is called the method __init__(self) inside the

Summary class is called and the numbers field is initialised to an empty list
in line 12. The class field Summary.num_summaries is incremented by one on
line 14 and then its value is stored in the instance field id in line 15. This means
the value of s.id is 1 after the constructor finishes.

When s.addAll([1,2,3]) is called the method addAll(self,[1,2,3]) on
line 24 is called within the Summary class and self is assigned to the same object
as s. You can see that this method loops through the values in xs and calls the
method self.add(x) for each. This, in turn on line 22, appends the value of
each x to the list that is referred to by the instance field numbers.

Finally, when s.statistics() is called, you can see on lines 38–40 that
the statistics for the list of numbers in numbers is computed and returned as a
triple.

The above example shows how a particular functionality can be encapsulated
in a class. All a user of this class needs to know is how to create instances with
the constructor and what the methods for adding new numbers and calculating
statistics do.

In the next example, we will see how we can leave the interface to this class
exactly as it is but improve the way the various methods are implemented.

Example 3.11.2. The implementation of summaries in Example 3.11.2 is a
good first attempt but it has several drawbacks. The major among these is
that if we were to use it for a large number of samples we would quick run
into problems with memory and the time it takes to compute and recompute
statistics.

In this second implementation of the same class, we rely on the fact that the
mean and variance can be computed incrementally. The mean because it is just
a sum and the variance because its definition can be manipulated You might want to try to

prove this fact yourself.
to prove that

σ̂2 :=
1

n

n�

i=1

x2
i − [x̄]

2
.

112 CHAPTER 3. LECTURES

This means that we can compute the mean and variance if we keep track of n
(the number of samples), the sum of the values (for the mean), and the sum of
the squares of the values. The following code does exactly this.

Python Code

1 class Summary:

2 """

3 A summary incrementally keeps track of key statistics such as

4 the number , mean , and variance of a collection of numbers.

5 (This version requires constant space and time).

6 """

7

8 # A class variable that keeps track of the number of instances

9 num_summaries = 0

10

11 def __init__(self):

12 """ Create an empty summary."""

13 self.count = 0

14 # Keep track of sum and sum of squares.

15 self.sum = 0.0

16 self.sum_squares = 0.0

17

18 Summary.num_summaries += 1

19 self.id = Summary.num_summaries

20

21 def add(self , x):

22 """

23 Add x to this summary and update the statistics.

24 :param x: The number to add.

25 """

26 self.count += 1

27 self.sum += x

28 self.sum_squares += x**2

29

30 def addAll(self , xs):

31 """

32 Add a list of numbers to this summary.

33 :param xs: A list of numbers.

34 """

35 for x in xs:

36 self.add(x)

37

38 def statistics(self):

39 """

40 Returns the count , mean , and (biased) sample variance of the

41 numbers added to this summary.

42 :return: The triple (count , mean , variance).

43 """

44 n = self.count

45 mean = self.sum / float(n)

46 var = self.sum_squares / float(n) - mean **2

47 return (n, mean , var)

What the previous two examples show is that classes are a practical way to
“hide” implementation details from developers who use your class. All they need
to understand is how the interface to a class works—that is, the constructor,
fields, and methods. Of course, the implementation details (such as the time

3.11. LECTURE 11: OBJECTS AND CLASSES 113

Figure 3.27: The classes “Dog”, “Bird”, and “Cat” can be thought of as subclasses
of the class “Animal”.

and space complexity of the methods) matter as well but it is sufficient to put
these concerns in the documentation of a class so anyone using it is aware of
them without having to read through the code.

3.11.5 Subclasses and Inheritance

Another way objects can be used to structure your code using classes is through
inheritance. This is when one class (the “subclass”) derives or inherits some
of its properties from another class (the “superclass” or “parent class”). An
analogy that might be useful here is shown in Figure 3.27. Dogs, cats, and birds
are all subclasses of animals that inherit properties like age, noise, and legs from
the parent class Animals. Note, however, that the subclasses can set properties
that are common to all the instances in the subclass (e.g., all dogs make the
noise “Woof!”).

In Python, subclasses are created by adding the name of the superclass in
parentheses in the subclass’s definition. For example, if we wanted the class Dog
to inherit from the class Animal we would write:

Python Code

1 class Dog(Animal):

2 # Class definitions go here ...

In the following example, we show how the summary class we built earlier
in this lecture can be extended to add a name property to each summary. The
thing to notice here is how little extra code is need to add this feature. All of
the definition of the parent class is available in the subclass “for free”.

Example 3.11.3. Suppose we wanted to add names to the instances of Sum-
mary that we create. One way to achieve this would be to edit the definition of
the Summary class to add an extra name field that can be set in the constructor.

114 CHAPTER 3. LECTURES

However, if the Summary class was defined in another library that we did not
want to modify, we can still easily add extra features such as a name by taking
advantage of subclassing in Python.

The following code shows how we can write a new NamedSummary class that
extends the Summary class. To do so, all we need to do is put Summary in
parentheses in the first, class definition line, and then provide a constructor
that takes in a name argument and stores it.

Python Code

1 class NamedSummary(Summary):

2 """ Extension of the Summary class that adds a name to each

3 summary."""

4

5 def __init__(self , name):

6 """ Create a new summary with the given name."""

7 super (). __init__ () # Initialise fields in Summary

8 self.name = name # Store the given name

There is one critical step in the definition of this constructor. To ensure
that all of the fields in the original Summary class are correctly initialised, the
__init__() constructor for the Summary class must be called from within the
NamedSummary constructor. This is done by using the built-in super() method
in line 7.

3.11.6 Classes and Variable Namespaces

We saw in Lecture 4 that variables have a scope, that is, are accessible in some
parts of your code and not others. Moreover, namespaces are used to avoid
collisions (two different variables having the same name). This can get very
confusing when dealing with classes because of the various namespaces (class,
instance, function, etc). Here we demonstrate a piece of code with multiple
different variables all called name.

Python Code

1 class ANewClass:

2 """A simple class to demonstrate variable scoping rules."""

3

4 # define a class variable (accessible from all classes)

5 name = "class variable"

6

7 def __init__(self , name):

8 # define an instance variable and assign it the given name

9 self.name = name

The first variable is the class variable name defined on Line 5. This vari-
able is common to all instances of class ANewClass. The second variable is
the constructor argument name, which only exists within function __init__().
The third variable is the instance variable self.name, which only exists in in-
stances of this class. In fact, each instance of the class will have its own copy
of self.name as we show in the following code.

3.11. LECTURE 11: OBJECTS AND CLASSES 115

Python Code

1 # create a global variable and two instances of ANewClass

2 name = "global variable"

3 instance_one = ANewClass("name for first instance")

4 instance_two = ANewClass("name for second instance")

5

6 # print out the contents of each "name" variable

7 print(name)

8 print(ANewClass.name)

9 print(instance_one.name)

10 print(instance_two.name)

The code above also includes a fourth variable name with global scope. This
variable is accessible everywhere unless masked by a local variable with the same
name.

The confusion that this example creates can be alleviated by giving the
variables different names, as shown in the following code. Within class methods
the instance variables are still referenced using the self. prefix, but outside the
class they are accessed using the variable for the given instance.

Python Code

1 class ANewClass:

2 """A simple class to demonstrate variable scoping rules."""

3

4 # define a class variable (accessible from all classes)

5 class_name = "class variable"

6

7 def __init__(self , arg_name):

8 # define an instance variable and assign it the given name

9 self.instance_name = arg_name

Python Code

1 # create a global variable and two instances of ANewClass

2 global_name = "global variable"

3 instance_one = ANewClass("name for first instance")

4 instance_two = ANewClass("name for second instance")

5

6 # print out the contents of each "name" variable

7 print(global_name)

8 print(ANewClass.class_name)

9 print(instance_one.instance_name)

10 print(instance_two.instance_name)

3.11.7 Beyond Simple Classes

There are many more nuances to consider when writing classes, using inheri-
tence, and following general OO programming principles. These are all covered
in more advanced programming courses.

116 CHAPTER 3. LECTURES

3.12 Lecture 12: Tools and Practices

Learning Outcomes

• Appreciate the value of being able to “sandbox” code and data,
i.e., creating independent, isolated copies that can be discarded so
as to allow for “fearless” exploration.

• Understand how distributed revision control systems (such as git)
work and enable several concurrent developers to contribute to the
same code.

• Be aware of issue tracking systems (such as GitLab’s) and how to
use these effectively to report problems with or make suggestions
to improve other people’s code.

• Understand how to write and run unit tests using Python’s testing
framework and how tests can be used to isolate errors and support
making changes to code.

Overview
In this lecture we cover standard software development tools and prac-
tices. We discuss sandboxing, revision/version control, issue tracking
and testing. We assume that students have been exposed to all of these
topics earlier but will give the topics a more formal treatment here.

3.12.1 Revision Control with Git

In Lecture 3, we saw how to manage getting code from GitLab using PyCharm.
You saw how to fork a repository on the GitLab server to your own account,
clone it to your own computer, edit the code and commit the changes, and
finally how to push those changes back to your GitLab account.

In this lecture we will go into some more detail about these operations so
that you understand more about what is going on when you work with revision
control systems like git. Having seen some of the concepts behind distributed
revision control systems such as git should make it easier for you to find help
should you run into trouble when using these systems. A later lecture will cover
even more advanced topics such as branching and merging.

Repositories, Working Directories, and Staging

When you first saw how to work with repositories, a distinction was made
between “local” repositories and “remote” repositories. This distinction is still
valid but the code and edits you make on your local machine can actually move
between several places as you work on it. Figure 3.28 shows three conceptual
“places” that your code can move between:

• Working Directory: This is a directory on your computer where you
can open files, edit them, and save them.

• Local Repository: This is where all the history of the changes to your
code is recorded on the same machine as the working directory.

3.12. LECTURE 12: TOOLS AND PRACTICES 117

Figure 3.28: Operation in git move code changes between various places. Some are
“local” (i.e., on your computer) while others are “remote” (i.e., on a server).

Figure 3.29: Forking copies a remote repository to a new remote repository. Cloning
copies a remote repository to a local repository.

• Staging Area: This is an “in between” space where you can organise
how you commit the changes you have made to the files in the working
directory before saving them in the local repository.

We will clarify how these different places are used when we discuss the various
operations for working with your code below.

Forking and Cloning

Forking and cloning are both ways to copy the contents of a repository (i.e., its
files and commit history) from one repository to a new one. The main difference
between the two operations is where the new repository is created. Figure 3.29
shows the difference diagrammatically.

Forking is an action that happens on a server such as GitLab, GitHub, or
BitBucket and is typically done through a web interface. It is used to duplicate
the contents and commit history of a repository in one person’s account on the
server and make a new copy of that repository in the account of the person who
requested the fork.

After you have forked a repository it is like any other repository on the server

118 CHAPTER 3. LECTURES

that is under your control.There is one difference:
you can make “pull

requests” to the repository
you forked. More on this in

a later lecture.

You can clone it (see below) and make changes to it
without affecting the repository that it was forked from. This is useful for when
you want to work on someone else’s code without pushing your changes back to
the original repository.

Cloning also copies the entire contents and history of a repository but the
difference is that it copies it to a repository on your laptop or desktop (i.e., it
makes a “local” copy). Cloning also copies all the latest versions of the files in
the repository into your working directory so you can begin editing them.

Example 3.12.1. Suppose Jane has put a project of hers up on GitLab and
has called it “Data Analysis”. If you wanted to build upon that code you could
first fork it, thereby making a new project in your GitLab account with all
the files and history from Jane’s version of the project. You could then use
PyCharm (or other tools) to clone the repository you just created using the
fork to your laptop. Once you do this, you will have a copy of all the files from
the “Data Analysis” project on your laptop and you can begin editing them.

Add, Commit, and Push

Once you have some code in your working directory you can start editing it.
Every time you save a change, git keeps track of the differences between the
files in the working directory and those in the local repository. Once you have
finished editing and want to save the changes you made into the local repository
you must first “stage” the changes you want to commit. The reason for this is
sometimes during an editing session you may make several different changes to
a variety of files. For example, you may have fixed a bug in one function and
added a new class to build a new feature for another part of your code. Staging
allows you to record these changes separately. That is, you can save the bug fix
edits separately to the edits that added the new class. This makes it easier for
both you and other who might look at your repository to see how the code has
changed over time.

Once the changes you wish to save are organised in the staging area, you
can record them to the local repository using the commit command. The files
that had their changes committed are no longer marked as modified in your
IDE or on the command line.Command line interfaces

will be covered in a later
lecture.

Once all outstanding modifications are added and
committed the repository and working directory are said to be “up to date”.
Figure 3.30 shows these operations as a diagram.

Note that in PyCharm, the add and commit steps are handled together
by the user interface. When you select files in PyCharm to commit you are
effectively adding them. Once you add a commit message and hit the “Commit”
button these are written to the local repository.

Often you will want your changes to be reflected in the remote repository.
This has several advantages. First, it provides a backup should something un-
toward happen to your machine. Second, it makes your code accessible to other
developers (or from other machines). To do this you need to “Push” your
changes to the remote respository. PyCharm provides a convenient “Commit
and Push” option which both commits changes to the local repository and then

3.12. LECTURE 12: TOOLS AND PRACTICES 119

Figure 3.30: After you make edits, the add operation stages your changes. The
commit operation saves these to your local repository. Performing a push sends the
changes to the remote repository.

Figure 3.31: Performing a checkout copies files from the local repository to your
working directory.

pushes those changes to the remote repository in one operation.

Checkout

The final operation we will cover in this lecture is the checkout command. This
operation copies files from the local repository to the working directory. This
can be useful if you have made changes to your files since your last commit that
you do not want to keep. Being able to make changes without destroying the
original versions of the files is a useful way to implement “sandboxing”.

Checking out a version of your code from the local repository is shown in
Figure 3.31

3.12.2 “Sandboxing”

Sandboxing is a general term used to describe a way of marking off an area
to “play” in. When applied to programming, this means making a copy of
your code so that you can make changes to it without worrying about loosing
existing, working code. The idea here is to be able to play with new ideas,

120 CHAPTER 3. LECTURES

experiment with your code and data, and generally try things out. Once you
have finished experimenting, you can “move out” of the sandbox and return to
the code exactly as it was before you started experimenting.

The simplest way to make a sandbox is to simply use your operating system
to make a copy of the directory that holds all your code. You can then work on
the files in the new directory without modifying the originals. When you want
to go back to the original files, just pull up the original directory.

Copying directories or files is a perfectly good way to sandbox. However,
version control systems and their support in IDEs provide several advantages.
These include being able to go back and forth “through time” to different ver-
sions of your code, and the ability to easily compare the current state of your
files with older versions.

Sandboxing in PyCharm

The simplest way to practice sandboxing in PyCharm is to simply add and
commit the current state of your code. Once this is done, the local repository
has a copy of the code that you can go back to at any time in the future.In later lectures we will see

how branches let you keep
multiple versions of your

code history.

Any
changes you make to the code after it has been committed with be displayed in
the “Version Control” tab (use VCS → Show Changes View in the menu).

If you wish to go back to the original version of your code, you can use the
revert command within PyCharm to do so. This command simply executes the
git checkout operation described in the previous section. An easy way to run
the revert command is right-click on a file in the “Version Control” panel and
choose “Revert...” (you can also right-click on a file in the “Project” view on
the left of the IDE and select “Git → Revert...”).

Once you have selected “Revert...” you will be shown a list of modified files
with the one you selected checked. When you press the “Revert” button the
selected files with go back to the state they were in at the most recent commit.

IMPORTANT: Reverting files will permanently discard your most recent
changes! If you wish to keep these changes you should add and commit them
to the local repository.

3.12.3 Issue Tracking

Much of software development is about communication. Programmers regularly
interact with each other through social media, blogging, technical forums, email,
etc. When developers have problems with specific projects or collections of code
a form of communication usually takes place through issue trackers and many
(public and private) issue trackers are integrated into code management tools
such as GitLab, GitHub, JIRA, and Mozilla’s BugZilla.

There are two main types of issue when it comes to software projects. A
feature request is made by a user of a software project when he or she wants
the project’s code to behave differently or in some new way. Typically, these
changes are fairly incremental, for example, adding an extra button or field to a
web page’s sign up form. The more common type of issue is a bug report. These
are made when a project’s code is broken in some way or not behaving as a user
expects. Both types of issue are essentially a request for the owner or owners of
the project to modify the code. Owners of projects can also raise issues, which

3.12. LECTURE 12: TOOLS AND PRACTICES 121

can be a useful way to organise development (and document and remember to
fix bugs that they themselves find).

Several different types of issue tracker exist, but at their core they all offer
the ability for users or developers to:

• Open an issue on a particular project.

• Discuss an open issue.

• Close or resolve an issue.

Issue Etiquette

When reporting a bug or requesting a feature the most important thing to keep
in mind is that you are asking someone to give up their time to help you. Most
developers are happy to receive reports and requests as it helps them to improve
their code for themselves and for others. However, for most projects you will
find on the web, these developers work on their projects for free so try to do the
following:

• Be specific: Describe what OS, language version, and libraries you are
using as part of your bug report or feature request. Where possible, de-
scribe the steps you took to manifest the bug or exactly what you would
like your new feature to do.

• Be courteous: Many developers create and support their code in their
free time without pay so please treat them politely and with respect. If
you are reporting a bug, don’t get angry at the developer — bugs happen
and if you get a developer offside, the chances are he or she will not want
to fix your problem. Finally, Don’t forget to say “thank you”!

• Be helpful: Try to help the developer as much as possible. Download
the code in question and try to fix it or add the feature yourself. Failing
that, try to write some test or example code for the issue you have.

3.12.4 Unit Testing

Unit tests are small pieces of code that are run to check whether other parts
of your code are working as expected. So as not to introduce bugs into your
tests, the aim is to keep the unit tests as small as possible. Usually, this involves
applying the function to some known inputs and checking whether the output
of that function is correct for those inputs. For example, if you had a function
double(x) that doubled the value of x then your unit tests might check that
double(2) == 4, that double(0) = 0, and that double(-1) = -2. In this
case the implementation of double is so simple you would not bother writing a
test, but for more complicated functions they become an incredibly useful tool
for writing — and maintaining — good code.

The Python unittest Library

You can write a simple collection of tests just like the example above where
== was used to test the output of double on known inputs. However, Python

122 CHAPTER 3. LECTURES

comes with a simple unit testing library called unittest that makes it easy to
organise and run your tests.

The unittest library provides a class called TestCase along with a number
of methods to help write and run your tests. To create a collection of test, you
start by extending the TestCase class and then defining methods on that class
with tests in them, like so:

Python Code

1 import unittest

2 class MyTests(unittest.TestCase):

3

4 def test_double(self):

5 self.assertEqual(double (2), 4)

6 self.assertEqual(double (0), 0)

7 self.assertEqual(double(-1), -2)

The above code runs the same test cases as described in the earlier example.
The main advantage of writing tests this way is that they can be run and
checked more easily. For example, in PyCharm, you can run all the tests in a
collection (or suite) by right-clicking on the class name MyTests and choosing
the “Run Unittests” command. You can also run individual tests within the
class by sleecting the name of the test (e.g., test_double) and choosing the
“Run Unittest” command from the menu.

In the above example we only used the assertEqual method. This takes in
two arguments and tests whether they are equal. There are a number of other
methods in the TestCase class that you can use to write tests, including:

• assertNotEqual(a,b): Test whether a and b are not equal.

• assertTrue(expr) and assertFalse(expr): Test whether the expression
evaluates to True or False, respectively.

• assertIsNone(x), assertIsNotNone(x): Test whether x is/is not the
value None.

• assertIn(x,xs), assertNotIn(x, xs): Test whether x is/is not in the
collection xs.

The details of how to use unittest and its other methods can be found
here: https://docs.python.org/3/library/unittest.html

3.13. LECTURE 13: READING SOURCE CODE 123

3.13 Lecture 13: Reading Source Code

Learning Outcomes

• Appreciate the importance of being able to read code effectively.

• Know how to find a good starting point when reading a codebase.

• Know how to read code actively by writing small examples and
adding debugging statements in unfamiliar code.

• Understand how IDEs can help in navigating a large codebase.

• Understand what programmers expect to see when reading code
and how to make your code readble.

Overview
This lecture covers the important skill of reading and understanding
source code written by someone else. We give some hints on how to go
about exploring a large codebase, and how you should write your own
code to make it easy for someone else to navigate.

3.13.1 The Importance of Reading Code

Like other many other disciplines, spending time understanding good examples
of your craft is a great way to improve. The craft of programming has been
continually evolving ever since early programs were punched into cards: ma-
chine code was replaced by assembler then FORTRAN, C, and later languages
like Python. The direction of this change has been almost invariably towards
making programming languages easier to understand by humans. As Abelson
and Sussman note in the beginning of their classic book The Structure and In-
terpretation of Computer Programs, “Programs must be written for people to
read, and only incidentally for machines to execute.”

A paper from the 2006 International Conference on Software Engineering
titled Maintaining Mental Models: A Study of Developer Work Habits studied
the way in which 157 Microsoft employees approach programming. It showed
that professional programmers spend as least as much time trying to understand
code as editing, writing, or designing it. Of the time spent understanding code,
over 40% is spent simply reading code.

Although some of the characters are the same, reading code is very different
process to reading a novel or textbook since code is usually not written to be
read from start to finish. Instead, different parts of a program are spread across
files and groups according to the data they work on or whether they do similar
things. This means reading code is not going to be a linear process, and so it is
import to know how to find a way into code that you are planning to read.

Don’t panic! You should not expect to understand a piece of code in
a single read through it. It takes time, thought, and usually several passes
through some code before it begins to make sense. This is especially true in
large codebases where the role of one piece of code may not start to make sense
until you have read several other pieces.

124 CHAPTER 3. LECTURES

3.13.2 Strategies for Reading Code

There are many ways to read code effectively and how you approach reading
code will often depend on what you are hoping to achieve. If you are trying
to use a library, you made only need to understand and tweak a couple of
examples snippets of code and ignore the rest. If you are planning on making
a significant contribution to a large, existing codebase then you will need to
carefully understand how various pieces of code fit together.

What follows are some general tips you may want to use to help you approach
reading code. Ultimately though, you should figure out what works best for you.

Where to start?

Most software projects and libraries have some kind of presence of the web. This
can range from a repository on GitHub or BitBucket with a short README
file to a dedicated web site with many learning resources.

If you are planning to use or modify some code, it is worthwhile quickly
searching the web to see whether there are some examples or tutorials that
can help you find a good starting point. Occasionally, a project may have
a “quickstart” guide that walks you through downloading and installing the
software, testing that it works, and then presenting some code that makes use
of its main features.

If the code you want to read does not have a tutorial or quickstart guide,
have a look for any other documentation for the code such as an API Reference.
These typically explain how to use functions or classes in the codebase and can
sometimes include examples that you can use.

If the project only presents the code without any introductory material then
you should try to find where the “top” of the codebase is. This is sometimes
the file that you must import to use the library or the script you must run to
make the software work. From this starting point you can try to understand
what classes and functions are called first and then track down the files they
reside in.

Mental Modeling

Once you have found a piece of code that you want to understand, you will need
to read it and its documentation carefully to understand what it does and how
it is to be used. A good first step here is to make a note of what type of input
the function of class constructor requires. Numbers? Strings? Lists of objects?
Instances of certain classes? Figuring this out may require reading other parts
of the codebase to figure out how to correctly build a collection of arguments
to the function you want to use.

For example, if you want to use a plotting function but set the colours
yourself, you may see that one of the arguments to the plotting function is a
ColorMap. In order to build a ColorMap you will have to track down its code
or documentation to find out how it is constructed.

Once you have figured out what inputs are required, you can mentally step
through what you expect the code you are reading will do with those inputs.
For some pieces of code, this will require some effort and cross-referencing of
documentation of functions and methods across several files.

3.13. LECTURE 13: READING SOURCE CODE 125

Active Reading

If you are having trouble understanding what a piece of code is supposed to do
by mentally executing it, you can try actually executing it!

Open a new file and try to build a small, simple use case of the code you
want to use by setting up the required inputs and then calling the function.
You will very likely get some error messages the first time you try this but don’t
despair. Try to understand what the error messages are saying (searching the
web for the text of an error message can help here) and then fix it. Common
errors here include: not importing a required library, not initialising an instance
properly, or using the wrong type of input.

If you are still struggling to understand a piece of code after trying it like
this then you may want to try modifying the code your are reading by adding
print statements or other debugging methods to try to understand how the code
is being executed.

Ask Questions

So you’ve read through the code you want to understand, written some simple
use cases for it, run it, added print statements, and you still don’t know why
things are not working? Then ask for help! Even asking the question

to yourself out loud can
help. This is sometimes
called “rubber ducking” as
some programmers find
explaining their problems
to a rubber duck or some
other toy can help
understand a problem
better.

One important tip before asking for help is to have a very clear idea of
what the problem is you want to solve, what you’ve tried, and why you think
it is not working. It is worth trying to step back and write down answers to
these questions before you look for help. Sometimes the process of clarifying
the problem in this way will make the solution apparent.

Once you have a clear idea of what you are stuck on, there are many people
you can ask: fellow students, tutors, lecturers, friends, etc. However, the quick-
est approach may be to use a search engine with a query that includes aspects of
your problem (e.g., “python plotting set own colours”). Don’t forget to include
the name of the language and/or the name of the library you are using as this
can help narrow down the results of the search. We will discuss other strategies
for getting help in a later lecture.

3.13.3 Writing Readable Code

“Any code of your own
that you haven’t looked at
for six or more months
might as well have been
written by someone else.”
— Eagleson’s law

This flip-side of understanding how to read code is ensuring that the code
you write is easy to understand. While this is particularly important when you
are working with other people, it is still good practice even if you think only
you will ever look at your code.

Documentation and Comments

Code documentation and code comments are two distinct ways of telling a reader
about your code. In a nutshell, documentation should focus on what your code
does at the level of modules, classes, methods, and functions, whereas comments
explain how or why certain parts of your code are implemented the way they
are.

Whenever you are writing code that you intend to look at later, it is good
practice to add at least the following documentation to your code:

126 CHAPTER 3. LECTURES

• README.txt: This file should sit at the top level of your repository
and briefly explain what your code is for and how to configure and run it
(if applicable).

• File descriptions: At the top of each of your source code files, add a
short description of what the code in the file is for. This is also good place
to add your name and possibly license information and contact details.
For example, the Python code below shows the start of the NetworkX
graph.py class (see https://github.com/networkx/).

• Class and function docstrings: These are the triple-quoted strings
that appear after class and def declarations. These docstrings should
describe what the associated class or function does, the arguments and
parameters it takes in, and what it returns.

Python Code

1 """ Base class for undirected graphs.

2

3 The Graph class allows any hashable object as a node

4 and can associate key/value attribute pairs with each undirected edge.

5

6 Self -loops are allowed but multiple edges are not (see MultiGraph).

7

8 For directed graphs see DiGraph and MultiDiGraph.

9 """

10 # Copyright (C) 2004 -2015 by

11 # Aric Hagberg <hagberg@lanl.gov >

12 # Dan Schult <dschult@colgate.edu >

13 # Pieter Swart <swart@lanl.gov >

14 # All rights reserved.

15 # BSD license.

In constrast to documentation which, ideally, is comprehensive and appears
after every class and function, comments in code are best used sparingly and
concisely. The aim of good code comments is to act as guideposts and warnings
about how your implemented your solutions. For example, if setting up a plot
requires several lines of code to configure the colours, label the axes, add the
data, etc. Then a short comment like # Setting up a plot of the data

above those lines is appropriate and lets the reader know he or she can skip
over that block if it is not considered important. An example of comments as
warnings would be to flag a bit of code that seems strange at first glance but is
actually correct. The comment # Add 1 to index to skip first element

would be appropriate just before a loop to let the reader know that the usual
indexing from 0 is not used and why.

You should avoid adding comments that just mirror what the code is telling
you anyway. For example, if you have some code like x += 1, a comment above
it like # Increment x is completely redundant since it is clear from the code
what is happening.

As Steve McConnell puts it: “Good code is its own best documentation. As
you’re about to add a comment, ask yourself, ’How can I improve the code so
that this comment isn’t needed?’ Improve the code and then document it to
make it even clearer.”

3.13. LECTURE 13: READING SOURCE CODE 127

Coding with Style

Finally, if other people are to read your code, it is just as important to “polish”
your code as it is to fix up drafts of essays. As with essays and other forms of
writing, whoever reads your code will find it much easier if you use a consistent
style. For example, using single-quotes for strings, appropiately spacing and
indenting code, and having a convention for naming variables and functions.

Be sure to use meaningful names for your variables, classes, and functions.
Good choices of names will make it much easier to understand the intent of
your code. For example, calling a variable username will make it much easier
to guess that the variable is a string than a variable like un.

128 CHAPTER 3. LECTURES

3.14 Lecture 14: Libraries and APIs

Learning Outcomes

• Appreciate that collections of code can be organised into libraries
that present an Application Programming Interface (API).

• Understand how Python uses modules and packages to organise
collections of code into libraries.

• Know where to find API documentation and how it is typically
presented.

• Be able to organise Python code into modules and packages.

Overview
This lecture covers organisation of code into software libraries. In
Python this is done through packages and modules. We discuss Ap-
plication Programming Interfaces (APIs), which defines the interface to
a library and abstracts away the implementation.

As you start writing larger and larger programs it becomes important to be
well organised in terms of how you structure your code. You will also want to
use code from other programmers or distribute code yourself. For these reasons
(code organisation and sharing) libraries are very important.

3.14.1 Modules and Packages

In Python libraries are called modules. A module contains a set of Python
statements and function definitions in a single file. There are hundreds of built-
in modules that come with Python (e.g., the math and string modules, which
we have already seen many times). Modules can be grouped together into
packages.Packages are organised in

directories containing a set
of files (modules) and the
special init .py file.

A large number of useful packages come bundled with the Ana-
conda Python distribution and an even larger number are available over the
web through sites like GitHub and BitBucket.

Modules

To use the code in a module you need to import it into your code. For example,
to use the mathmodule include the following command at the top of your Python
program

Python Code

1 import math

You can now start using functions from that module,

Python Console

1 >>> import math

2 >>> math.sqrt (2.0)

3 1.4142135623730951

Notice how we had to prepend “math.” to the square-root function in the
above example. This is because Python uses namespaces to avoid problems
(i.e., collisions) when multiple modules define the same function or variable.

3.14. LECTURE 14: LIBRARIES AND APIS 129

Prepending the function name (or variable name) with the module name allows
Python to determine exactly which function (or variable) you mean.

It is often convenient to rename a module (or more specifically rename the
namespace for a module) when importing it to save typing as the following
example shows.

Python Console

1 >>> import math as m

2 >>> m.sqrt (2.0)

3 1.4142135623730951

However, make sure you pick meaningful names and follow conventions to avoid
confusion in larger programs.

You can even import functions into the global namespace as in,

Python Console

1 >>> from math import sqrt

2 >>> sqrt (2.0)

3 1.4142135623730951

but be very careful that you do not re-define existing functions with the same
name.

Packages

Packages are collections of modules and/or other packages. Large libraries, such
as the plotting library matplotlib, do many different things (e.g., 2D plotting,
3D plotting, animation, image manipulation) and so have a large number of
related modules. Packages provide a way to organise these modules so they can
be shared and used as a single library.

If a module called mymodule is part of a package mypackage then within
Python the module would be referred to by mypackage.mymodule. In particular,
if you wanted to import and use functions from mymodule you would do so like
this:

Python Code

1 import mypackage.mymodule

2 mypackage.mymodule.some_function ()

Just like with unpackaged modules, you can assign a shorter name to a
packaged module when you import it by using the as command:

Python Code

1 import mypackage.mymodule as mypm

2 mypm.some_function ()

This type of renaming of unweildy names is very common. You will often
see statements like import matplotlib.pyplot as plt whenever the pyplot

module from the matplotlib package is used.

130 CHAPTER 3. LECTURES

Figure 3.32: A screenshot of the Python 3 module index.

3.14.2 Application Programming Interfaces (APIs)

As stressed in earlier lectures, one of the most powerful tools a programmer has
is abstraction. That is, the ability to hide away aspects of a subproblem that
are not relevant to solving a larger problem. For example, when you want to
read in a CSV file to get access to some data, you do not care how your data
file is loaded and parsed. You only care about what format the data will be in
after it has been loaded by the library. In this case, the process of reading and
parsing a CSV file has been abstracted away and all you really care about is the
interface to the functions that let you read in the file you want.

Modules and packages, such as the csv module, promote abstraction by
allowing collections of code that solve a particular problem to be organised and
presented as a library. The collection of classes and functions within a library
is sometimes called an Application Programming Interface or API since when
you are writing code for a particular application and want to use a library, all
you care about is its interface.

3.14.3 Module and Package Documentation

A crucial part of a software library is its documentation, since this is one of the
places where a prospective user will go to understand its API.

There is a fairly common style to Python modules and packages. Both the
in-built libraries and third-party libraries typically have web pages that list
all the modules, classes, and functions within a package, along with a general
overview of what the package is for, and sometime with examples of how it is
to be used.

A list of Python 3 modules that come with its standard distribution can
be found at this address: https://docs.python.org/3/py-modindex.html.
Figure 3.32 shows a snippet of this page with a few of the 100 or more modules
that come standard. Each of the links from this page goes to the API reference
documentation for a specific module.

For example, the page for the array module documents a number of func-
tions for efficiently creating and working with large arrays of numbers and char-

3.14. LECTURE 14: LIBRARIES AND APIS 131

Figure 3.33: A portion of the API documentation for the array module.

Figure 3.34: Packages are directories and modules are files in Python.

acters in Python. Figure 3.33 shows the documentation for a few of the functions
in this module. This style of documentation is typically automatically generated
from the docstrings in the code that are associated with each of the classes and
functions within a module.

3.14.4 Making Your Own Modules and Packages

Compared to some other languages, Python makes it very easy to organise your
code into modules and packages. In a nutshell, modules are just files with
Python code in them and packages are directories containing modules or other
packages. Figure 3.34 shows how the hierarchical structure of packages and
modules is mapped onto the file system.

The only catch is that package directories must always include a file named
__init__.py. This file can be empty but can also contain Python code for or-
ganising, renaming, and presenting collections of modules. We won’t go into the
details of that configuration here as we will not need it in this course. However, if
you are interested, the Python documentation on modules and packages provides
a good introduction: https://docs.python.org/3/tutorial/modules.html.

The following Example shows how code from a single file can be split into a
file containing “application” code — that is, code that is to be run directly —
versus library code which is put into a package.

132 CHAPTER 3. LECTURES

Example 3.14.1. In this example we show how a very simple program can be
split into application code and library code that lives in a package.

The starting point is the following Python program which repre-
sents a numerical table as a list of lists of numbers and has a
few functions for displaying such a table and summarising its rows.

Python Code

1 def format_table(table):

2 """

3 Convert a table into an aligned , formatted string.

4 :param table: A list of list of numbers

5 :return: A string representation of the table

6 """

7 result = ""

8 for row in table:

9 row = [str(entry) for entry in row]

10 result += ’\t’.join(row) + ’\n’

11

12 return result

13

14 def sum_rows(table):

15 """

16 Sum the rows of the given table.

17 :param table: A list of lists of numbers.

18 :return: A list with the sums of the table ’s rows

19 """

20 if not table: return None

21

22 sums = []

23 for row in table:

24 sums.append(sum(row))

25

26 return sums

27

28 #-------

29 # Try out the functions on an example table.

30 table = [

31 [0,0,0,0,0],

32 [1,2,3,4,5],

33 [2,4,6,8,10],

34 [3,6,9,12,15]

35]

36

37 print(format_table(table))

38 print(sum_rows(table))

You could imagine the two functions written above being part of a larger
set of functions for working with tables represented in this way. There could
be several different functions for formatting tables and some extra functions for
summarising them, say by column, or for taking averages, etc.

For the purposes of this example, we will now split this single program
file into three parts. The first, main.py, will set up the table variable and
runs the tests at the end of the code above. The other two will be modules:
format.py, containing the format_table function; and summary.py, containing
the sum_rows function. These two modules will live in a package called tables

which will contain an empty __init__.py file.

3.14. LECTURE 14: LIBRARIES AND APIS 133

The format.py file will be put in the tables directory:

Python Code

1 # Contents of tables/format.py

2 def format_table(table):

3 """

4 Convert a table into an aligned , formatted string.

5 :param table: A list of list of numbers

6 :return: A string representation of the table

7 """

8 result = ""

9 for row in table:

10 row = [str(entry) for entry in row]

11 result += ’\t’.join(row) + ’\n’

12

13 return result

The file summary.py in the tables directory:

Python Code

1 # Contents of tables/summary.py

2 def sum_rows(table):

3 """

4 Sum the rows of the given table.

5 :param table: A list of lists of numbers.

6 :return: A list with the sums of the table ’s rows

7 """

8 if not table: return None

9

10 sums = []

11 for row in table:

12 sums.append(sum(row))

13

14 return sums

Finally, here is the contents of the resulting main.py file:

Python Code

1 # main.py

2 import tables.format

3 import tables.summary

4

5 # Try out the functions on an example table.

6 table = [

7 [0,0,0,0,0],

8 [1,2,3,4,5],

9 [2,4,6,8,10],

10 [3,6,9,12,15]

11]

12

13 print(tables.format.format_table(table))

14 print(tables.summary.sum_rows(table))

Notice that the only difference between the above code and the original,
single file example is the addition of the import statements at the top and the
qualified reference of the functions (e.g., tables.format.format_table instead
of just format_table).

134 CHAPTER 3. LECTURES

3.15 Lecture 15: Searching for Help

Learning Outcomes

• Recognise that help can be found from various places including
code comments, inline and API documentation, and technical web
forums.

• Appreciate that, while the Internet is a great source of informa-
tion, the quality of that information varies.

• Develop skills for searching for help effectively.

Overview
There are many places you can turn to for help when developing code.
This lecture covers some of the key skills needed in searching for, and
interpretting, help from reading API documentation to visiting online
technical forums to searching the web.

Software development is a complicate process and efficiently searching for
help is a very important skill that you will continue to use even as an experienced
programmer. We categorise getting help into four buckets:Donald Rumsfeld, US

Secretary of Defense under
President George W. Bush

used these categories to
excuse the lack of US

intelligence regarding the
existence of weapons of
mass destruction during

the 2003 Iraq war.

• Known Knowns. You don’t need any help.

• Unknown Knowns. You’ve forgotten sonthing and need a reminder.

• Known Unknowns. You are aware that a solution exists but know
nothing about it.

• Unknown Unknowns. You are not even aware that help is out there.

3.15.1 Before You Look for Help

The famous physicist Richard Feynman when asked how he solves problems was
quoted as saying, “First, I write down the problem. Then I think very hard.
Finally, I write down the solution.” When you get stuck on a problem there is
a natural temptation to search for help immediately or to try random things in
the hope that something will work. Resist these temptations.

Insetad, take 30 seconds to look away from the computer screen and describe
to yourself what it is that you are stuck on.This is sometimes called

rubber duck
debugging. See the
associated Wikipedia
article for the story.

The better you can articulate the
problem the easier it will be to find a solution. Next write down a plan for what
you will try next. The plan does not have to be elaborate—just a few key points
will do. This will allow you to approach problem solving in a systematic and
structured way. And it just might help you find the solution without looking
for external help.

3.15.2 Inline and API Documentation

Inline documentation can be accessed via the PyCharm IDE and is a excellent
quick reference to remind you of the exact name of a function or its calling
convention (i.e., argument order). Just start typing and PyCharm will help

3.15. LECTURE 15: SEARCHING FOR HELP 135

Figure 3.35: PyCharm’s inline help provides suggestions as you type.

complete your code by offering suggestions (see Figure 3.35). Hit
☛✡ ✟✠Enter to

accept the current suggestion; just keep typing or hit
☛✡ ✟✠Esc to cancel inline help.

PyCharm also lets you jump to external API documentation by pressing☛✡ ✟✠Shift-F1 . This will open a webpage with the official API documentation for the
function currently highlighted.

API documentation is a very good source of help and often includes ex-
amples. For new libraries try find a README file or project home page to get
an overview of what the library does. Many libraries come with tutorials or a
quick-start section that will get you up to speed on the libraries main features.
You should also skim the API reference documentation, which may help jog
your memory when you’re looking to solve a problem later.

For built-in libraries use the official documentation at https://docs.python.
org/3/. Be sure to check out the “Quick Search” feature.

3.15.3 Searching for Help

Searching the Web Effectively

You should very familair with using search engines (e.g., Google) to find infor-
mation on the web. When it comes to programming there are a few tips that
will narrow down your search and help you find answers more quickly. They
include:

• Add the name of the language you are using (e.g., “Python”) to your
search. Note, however, that many programming languages have very
generic names (e.g., “R”) so try appending “language” (e.g., “R lan-
guage”).

• If you’re looking for example code to try adding terms “example”, “tuto-
rial” or “quickstart” to your search string.

• If you’re getting an error message that you do not understand then try
searching for the generic part of the error message (i.e., remove line num-
bers, specific variable names, etc.).

Consider the following buggy code snippet where we attempt to change the
second character of a string my string.

136 CHAPTER 3. LECTURES

Python Code

1 my_string = ’abc’

2 my_string [1] = ’Z’

An attempt to run the code returns an error message with something like:

Traceback (most recent call last):

File "...", line 2, in <module>

my_string[1] = ’Z’

TypeError: ’str’ object does not support item assignment

Searching the Internet for the generic error “’str’ object does not support

item assignment” returns some very useful hits including a stackoverflow page,
which provides answers to user posted questions (more on this later). In this
case the question is related to the same error message and the answers explain
that strings in Python are immutable so cannot be changed in-place.

Python Resources

There are many beginner-friendly resources available for Python. These include:

• Python.org

– Python Programming FAQ:
https://docs.python.org/3/faq/programming.html

– Python Tutorial:
https://docs.python.org/3/tutorial/

– Asking for help Wiki:
https://wiki.python.org/moin/Asking%20for%20Help

• CodeAcademy

– Similar to CodeBench
https://www.codecademy.com/en/tracks/python

• Coursera

– Introductory online course
https://www.coursera.org/course/pythonlearn

3.15.4 Asking for Help Online

Suppose that you have tried the inline help, reviewed the library API documen-
tation and scanned the FAQ, but you still cannot find an answer to your prob-
lem. Fortunately there are a number of places on the web where you can seek
expert advice on a problem. These fall into two main catagories—newsgroups
and technical Q&A sites.

3.15. LECTURE 15: SEARCHING FOR HELP 137

Discussion Groups

Discussion groups or newsgroups are forums for discussion on a particular topic.
Most are accessible via dedicated newsreaders, email subscription, or Google
Groups. Email or Google Groups are probably the easiest.

There are a number of newsgroups dedicated to Python programming. You
can find a list of active newsgroups here:

https://www.python.org/community/lists/

The main ones are:

• comp.lang.python: https://groups.google.com/forum/#!forum/comp.
lang.python

• Python tutor: https://code.activestate.com/lists/python-tutor/

Question & Answer Sites

There are also several technical Q&A sites around the web. The biggest is
StackOverflow, which recently passed 10 million questions. Here experts (i.e.,
other users) will browse the site and answer questions. More helpful questions
propagate to the top of the list through a user voting scheme (with reputation
management).

You can see all questions on StackOverflow tagged with the “python” key-
word here:

http://stackoverflow.com/tags/python

However, rather than just browsing questions it is often easier to search for
the specific query you are interested in. Put “[python]” in the query string to
limit results to those relevant to Python programming. Searching directly from
Google will also often return StackOverflow hits.

Not all questions and answers are created equally. Here are some suggestions
for improving your mileage when reading answers and asking questions.

Reading Answers

• Check the date of the answer (and language version)

• Answers are ranked by users in terms of helpfulness

• User who asked question can label answer as correct

• Check the “Related” section to see if there are better answers

Asking Questions

• Search the site before posting (duplicates are frowned upon)

• Make your question concrete. Include snippets of code

• Include language version, libraries, what you’ve tried, etc.

138 CHAPTER 3. LECTURES

3.15.5 Helping Others

Helping other people is often a good way to help yourself and promotes a com-
munity culture that is beneficial to everyone. Often being forced to explain
something to someone else can help you to understand it better or from a differ-
ent perspective. This is exactly why we encourage collaboration in this course,
and many discussion groups (including StackOverflow and Python tutor) en-
courage community participation. Apply the same due diligence and care to
answering questions as you would to asking them.

3.16. LECTURE 16: ADVANCED REVISION CONTROL 139

3.16 Lecture 16: Advanced Revision Control

Learning Outcomes

• Understand how revision control systems track the history of a
codebase as a series of changes or versions.

• Know how to revert to an earlier revision of a codebase using git.

• Define a merge conflict and understand how conflicts are resolved.

• Observe and example of a branch and merge and understand the
difference between a branch and a fork.

• Appreciate the link between issue tracking and revision control.

Overview
In this lecture we discuss more advanced features of revision control
systems—mostly git—such as branching and merging. These are par-
ticularly useful for managing larger projects and for working in groups.

In Lectures 3 and 12 we introduced the idea of revision control and showed
how to access Git via the PyCharm IDE.9 A summary of the different Git com-
mands and places is shown in Figure 3.36. In this lecture we explore more
sophisticated uses of revision control systems, most importantly dealing with
code conflicts when multiple people are collaborating on the same piece of soft-
ware.

3.16.1 Revision History and Rollbacks

Software repositories store the entire commit history for a project. That is, every
modification (and commit) you make to the code is tracked by the repository. In-
stead of storing a new copy of the code each time you make a commit, the repos-
itory records the changes from the previous commit. Each point in the history
is called a revision and has a unique identifier (or hash), e.g., 68e6124f3e7...
Figure 3.37 illustrates this idea. Note that commits are recorded in the local
repository—they only appear in the remote repository when they are pushed.10

The special identifier HEAD refers to the current (i.e., latest) point in the revision
history.

In PyCharm there are many ways to view the revision history for a sin-
gle file or for the whole project. The two most accessible ways are via the
VCS|Git|Show History... menu option or the revision control panel displayed
with View|Tool Windows|Version Control or pressing

☛✡ ✟✠Alt-9 . You can also
view the revision history (assuming that you have pushed to the remote reposi-
tory) via the GitLab web-interface.

Sometimes you will want to look at a previous revision of the code in more
detail, or even revert permanently. This is called rolling back the code. In git you
do this using the checkout command and providing the unique identifier for the

9Git can also be accessed from the command line to give you fine control over various
operations. However, for now we will stick with using Git in an integrated fashion from
PyCharm.

10Technically, there can be multiple remote repositories and you can push code to any
of there. Moreover, your own local repository can act as a remote repository for another
developer on the project.

140 CHAPTER 3. LECTURES

Local

(your computer)
Remote

(GitLab)

working
directory

staging
local
repo

remote
repo 2

fetch

merge

checkout

pull

clone

add

commit

push

remote
repo 1

fork

edit

Figure 3.36: Overview of Git places and commands.

3.16. LECTURE 16: ADVANCED REVISION CONTROL 141

Local

(your computer)

working
directory

local
repo

commit

edit

commit

edit

commit

Rev. 675a5...

Rev. a4e54...

Rev. 243d7...

HEAD

Figure 3.37: Illustration of Git revision history.

Figure 3.38: Example diff between two snippets of code.

commit that you wish to rollback to. In PyCharm the VCS|Git|Branches...

menu item provides rollback functionality. Alternatively you can right-click on
the revision you want from the Git log and choose Checkout Revision. Finally,
the menu item VCS|Git|Revert... will discard all changes in the working
directory and revert your code back to the most recent commit. On the command line type

git checkout --

<filename>.
Comparing Revisions

The smallest unit of change in a commit is a line. A list of differences in the lines
of two revisions is called a diff. When comparing two revisions in PyCharm you
are shown whether lines have been added, deleted, or modified. Understanding
diffs is key to being able to handle working collaboratively with revision control
systems. Figure 3.38 shows a very small example of the difference between two
code snippets. The diff visualises where code has been added and modified
between the two revisions.

142 CHAPTER 3. LECTURES

3.16.2 Code Conflicts

When multiple programmers are working on the same project, and editing the
same codebase, there will be a need to synchronise the codebase. This is of-
ten done via a remote repository that is shared between all project members.
Commits from each programmer’s local repository get pushed to the remote
repository. Other programmers can then pull those changes to synchronise
their local copy of the codebase. In the simple case (shown in Figure 3.39(a))
there is no overlap in the commits and git simply updates to the latest version
on each pull.

However, when two or more programmers edit the same code concurrently
then a conflict can occur. An example of this scenario is shown in Fig-
ure 3.39(b). In these situations one of two things can happen. First, the commits
may be able to be automatically merged (e.g., when commits are for different
files of have no changed lines in common). Second, the some manual work is
needed to resolve the conflicts. Below we step through an example where manual
merging is required.

• Create a project in GitLab (say, revctrldemo) by clicking the “New
Project” button in GitLab. Add a description and keep it private. Click
“Create Project”.

• Clone a first local copy of the project. Start PyCharm and choose to
“Check out from Version Control”. Select “Git”. Copy and paste the
URL from GitLab and choose the destination directory. Click “Clone”
and say “Yes” to opening the cloned project.

• Add a new file to the project (File|New...). Call it main.py.

– Click “OK” to add the new file (only) to Git.

• Write some code and commit.

– Right-click on filename, click Git|Commit File..., enter comment
and choose “Commit and Push.”

• Close the project and clone a copy to a different directory (simulating
another developer cloning the project on their local machine).

• Change the code, commit and push, and close the project.

• Open the first copy of the project and make some changes without pulling
any updates from the remote repository.

• Try commiting and pushing the latest changes. We have a conflict!

• Click “Merge...” Resolve the conflict and push changes with Git|Push...

(the merge is automatically commited locally by PyCharm). Notice that
two commits are pushed. Viewing the “Network” in GitLab shows the
different edits and the merge.

The first developer writes and commits initial version of code:

3.16. LECTURE 16: ADVANCED REVISION CONTROL 143

Local

(A's computer)
Remote

(GitLab)

A's local
repo

remote
repo

pull

push

Local

(B's computer)

B's local
repo

pull

push

(a) Without Conflict

Local

(A's computer)
Remote

(GitLab)

A's local
repo

remote
repo

pull

push

Local

(B's computer)

B's local
repo

pull

push

!

(b) With Conflict

Figure 3.39: Illustration of shared Git repository with and without code conflicts.

144 CHAPTER 3. LECTURES

Python Code

1 # declare set of fruit that each child likes

2 Ariella = {’apples ’, ’oranges ’, ’pears’}

3 Bronte = {’apples ’, ’bananas ’, ’oranges ’}

4 Hana = {’apples ’, ’mangoes ’, ’oranges ’}

5

6 # find all fruit liked by all children

7 for fruit in Ariella:

8 if fruit in Bronte and fruit in Hana:

9 print(fruit)

The second developer clones the repository, modifies the code, and pushes
back her changes:

Python Code

1 # declare set of fruit that each child likes

2 Ariella = {’apples ’, ’oranges ’, ’pears’}

3 Bronte = {’apples ’, ’bananas ’, ’oranges ’}

4 Hana = {’apples ’, ’mangoes ’, ’oranges ’}

5

6 # find all fruit liked by all children

7 liked = set()

8 for fruit in Ariella:

9 if fruit in Bronte and fruit in Hana:

10 liked.add(fruit)

11

12 # print in alphabetical order

13 print(’\n’.join(sorted(liked)))

The first developer then modifies his code without checking whether the
remote repository has been updated. He tries to push his changes and finds
that there is a conflict. PyCharm provides support for resolving the conflict
by displaying a diff between the conflicting files as shown in Figure 3.40. Once
resolved the repository ends up with an additional commit which merges the
changes.

Python Code

1 # declare set of fruit that each child likes

2 Ariella = {’apples ’, ’oranges ’, ’pears’}

3 Bronte = {’apples ’, ’bananas ’, ’oranges ’}

4 Hana = {’apples ’, ’mangoes ’, ’oranges ’}

5

6 # find all fruit liked by all children

7 liked = Ariella & Bronte & Hana

8 for fruit in liked:

9 print(fruit)

Branches and Merges

Sometimes fixing a bug or implementing a new feature is a considerable project
in its own right and cannot be done in a single sitting with a handful of commits.
Moreover, development of other aspects of the project can’t be paused while
work on the bug or new feature is complete. This is where branches and merges
can help in supporting multiple concurrent development streams. Branches are
simply different streams of development stored within the one repository. The

3.16. LECTURE 16: ADVANCED REVISION CONTROL 145

Figure 3.40: Merging in PyCharm after finding a code conflict.

Figure 3.41: Network of repository commits showing merge in GitLab.

main development branch is often called the “master” and this is assumed to
be where the latest and most stable version of the code resides.

Creating a new Branch. New branches can be created very easily from
an existing branch and will “contain” all the commit history of the branch from
which it was created. Usually branches are created off the master branch. In
PyCharm select VCS|Git|Branches... and choose New Branch. On the command line use

git checkout -b

<branchname>.

You can also
create a new branch using the GitLab web interface on the remote repository
and then pull it to the local repository (VCS > Update Project...). To start
working on the new branch you will need to switch to it.

Switching between Branches. Sometimes during development you will
want to switch to a different branch in your respository. This may be to do
some work on another branch or to compare/copy code between two branches.
Switching branches is done if Git via a checkout. In PyCharm click on menu
item VCS|Git|Branches... and choose the branch you wish to switch to. On the command line use

git checkout

<branchname>.

Note
that if you have uncommitted changes in the branch that you are switching
from (i.e., your current branch) then these changes will either be lost (reverted)
or stashed (see below). Changing branches updates the files in your working
directory.

Merging. At some point you will want to merge the changes you made in
your development branch with the master branch. You may also want to merge
changes that other developers have been pushing into the master branch with
your development branch. This can be done using the same merge operation as
when merging changed code pulled from a remote repository. The only difference
is that you are merging code between two branches in the same local repository.
In PyCharm, simply choose VCS|Git|Merge Changes...

Merges also come up in the context of merging code between forks. This
is quite often used in open-source software development, where the fork can be
viewed as a “detatched” branch (which no longer lives in the same repository
and is subject to different visibility, etc). Such a merge is sometimes called a
merge request or pull request and needs to be authorised by a member of the

146 CHAPTER 3. LECTURES

repository where the merge will occur. This type of merge, while important in
real-world software development, is beyond the scope of this course.

Stashing. Git and other revision control systems allow a temporary branch
to be created to “stash” any changes in the working directory. The com-
mand git stash will store any uncommited changes. A subsequent command
git stash pop will merge changes back into the working directory.

Last word. Sometimes merges and conflicts become too complicated. When
this happens you can always checkout the latest version of the code (or an earlier
version if you like) in a new directory and start over.

3.16.3 Revision Control and Issue Tracking

One of the key benefits of systems like GitLab is that they integrate revision
control and issue tracking. You can make use of this while developing by adding
special phrases to your commit messages that get interpretted by the system.
For example adding “Fixed #N” or “Closes #N” to a commit message will
automatically close Issue #N in the GitLab project when those commits are
pushed. Moreover, the issue tracker will identify which commit resulted in the
issue being closed.

3.17. LECTURE 17: VISUALISING DATA 147

3.17 Lecture 17: Visualising Data

Learning Outcomes

• Understand the importance of visualising data through plots and
graphs (of nodes and edges) for both conveying information and
debugging.

• Appreciate different types of plots and when each is appropriate
for the information being conveyed.

• Basics of the matplotlib and networkx Python libraries and how
to find help for using these libraries.

Overview
This lecture covers some basic visualisation techniques. We present
the matplotlib and associated Python library. We also revisit the
networkx library for drawing graphs.

Perhaps the most common form of data visualisation is through plots such
as line graphs, bar graphs, and pie charts.11 But there are many more way of
visualising data (including non-numerical data) and Python has a plethora of
packages for this task, some of which we will cover over the next two lectures. Tkinter and PIL were

once the de facto standard
for platform independent
graphics in Python, but
now there many much
more sophisticated libraries.

3.17.1 Basic Plotting with matplotlib

Let us start with plotting numerical data. For this we will make heavy use of
the numpy and matplotlib.pyplot libraries, which both come bundled with
the Anaconda Python distribution.12

Python Code

1 import numpy as np

2 import matplotlib.pyplot as plt

The most basic plot we can draw is a line plot. For example, if we wanted
to plot the parabola y = x2 − 3x+2 over the range −5 ≤ x ≤ 5, we could do so
as follows:

Python Code

1 x = np.linspace (-5.0, 5.0, num =21)

2 y = x ** 2 - 3.0 * x + 2.0

3 plt.plot(x, y)

4 plt.show()

The resulting plot is shown in Figure 3.42. While the plot of the parabola
looks continuous it is actually made up of many small line segments. Examining
the code we see that Line 1 defines an array of values for x starting at negative
five and going up by increments of 0.5 to positive five. Here the 0.5 comes from
the fact that we specified 21 evenly spaced points (inclusive of the end points).
A numpy array containing the corresponding values of y is computed in Line 2.
This line of code is numpy shorthand for the following:

11Warning: in this lecture we will use the term “graph” to mean both a plot of a function
and a set of nodes and edges. The meaning should be clear from the context.

12Matplotlib has good documentation and numerous examples at http://matplotlib.org.

148 CHAPTER 3. LECTURES

Figure 3.42: Four plots. The first with default formatting, the second showing
markers, the third with user-specified formatting, and the fourth showing two plots
on the same axes.

Python Code

1 y = np.empty(len(x)) # could also use np.shape(x)

2 for i in range(len(x)):

3 y[i] = x[i] ** 2 - 3.0 * x[i] + 2.0

When the graph is plotted matplotlib draws straight line segments between
consecutive pairs of points.

We can see the sampled points more clearly if we plot markers instead of
line segments as done by the following code. The corresponding plot is also
displayed in Figure 3.42.

Python Code

1 plt.plot(x, y, ’bo’)

2 plt.show()

A Quick Word on numpy

numpy is a very popular package for numerical computing in Python. Quoting
the numpy website13, it “is the fundamental package for scientific computing
with Python.” The main feature of numpy that we will be using is its efficient

13http://www.numpy.org/

3.17. LECTURE 17: VISUALISING DATA 149

storage and manipulation of multi-dimensional arrays. However, numpy is much
more powerful and can be built upon to do a vast range of scientific computing,
especially based on linear algebra.

The imporant properties of a multi-dimensional numpy array (apart from the
data that it contains) are:

• The number of dimensions (ndim), one for a vector, two for a matrix, etc.

• The size of each dimension (shape). For example an n-by-m matrix, that
is, a matrix with n rows and m columns, has shape defined by the tuple
(n,m).

• The type of data stored (dtype), which is most often integer or (64-bit)
floating-point.

Creating an array in numpy can be done in various ways. Here we demon-
strate a few options:

Python Code

1 import numpy as np

2

3 # create an array of 21 linearly spaced points between -5.0 and 5.0

4 x = np.linspace (-5.0, 5.0, 21)

5

6 # create an array from -5.0 to (under) 5.0 in steps of 0.5

7 y = np.arange (-5.0, 5.0, 0.5)

8

9 # create an empty array with 20 elements

10 z = np.empty (20)

Once created we can perform basic elementwise arithmetic on arrays, ap-
ply functions to each element of an array, reshape an array, index individual
elements, and take slices of the array. Consult the numpy tutorial and online
documentation for more information on array creation and manipulation.

3.17.2 Plot Formatting and Labeling

The plots we’ve looked at so far are pretty basic—the axes are not labeled, there
is no title, etc. While this is fine for playing around with data and debugging
it would not be very useful in a report or on a webpage. The tick button on
the Matplotlib plot window (see Figure 3.43) allows you to manually format a
graph, but it is often much, much better to do the formatting programmatically.
This will allow you to regenerate the exact same graph later without having
to go through the trouble of formatting by hand. It will also allow you to
generate plots with a consistent look and feel, which gives reports a much more
professional appearance.

Matplotlib provides a number of mechanisms for changing the format and
style of a graph. Basic functionality is demonstrated in the code below, which
changes the linewidth (lw) of the parabola, adds labels to the x- and y-axes,
adds a title, and makes the x-axis limits tight. The resulting plot is shown in
Figure 3.42.

150 CHAPTER 3. LECTURES

Figure 3.43: Manually formatting a Matplotlib graph.

Python Code

1 plt.plot(x, y, lw=2)

2 plt.xlabel(’x’, fontsize =16)

3 plt.ylabel(’$y = x^2 - 3x + 2$’, fontsize =16)

4 plt.title(’Example Parabola ’, fontsize =20)

5 plt.xlim ([-5.0, 5.0])

6 plt.grid()

7 plt.show()

We are not limited to showing a single plot. Multiple plots can be drawn
on the same axes. In such cases you will want to add a legend to the graph to
delineate the plots. The following code provides an example and the resulting
plot is, again, shown in Figure 3.42.

Python Code

1 y2 = x ** 2 - 1.5 * x - 1.0

2 plt.plot(x, y, lw=2)

3 plt.plot(x, y2 , lw=2) # alternatively , plt.plot(x, y, x, y2)

4 plt.xlabel(’x’, fontsize =16)

5 plt.ylabel(’y’, fontsize =16)

6 plt.title(’Example Parabolas ’, fontsize =20)

7 plt.xlim ([-5.0, 5.0])

8 plt.grid()

9 plt.legend ([’$y = x^2 - 3x + 2$’, ’$y = x^2 - 1.5x - 1$’])

10 plt.show()

Note how the legend function and xlabel and ylabel functions in the previ-
ous example are able to interpret LATEX-style mathematics. LATEX is a document
typesetting (markup) language that is popular in mathematical disciplines for
writing technical articles and reports. It provides a very convenient way of de-
scribing mathematical equations, which are enclosed between $ signs. LATEX is
beyond the scope of this course but for those who are interested an excellent
introduction can be found at https://tobi.oetiker.ch/lshort/lshort.pdf.

3.17. LECTURE 17: VISUALISING DATA 151

Figure 3.44: Some popular colour maps and a user-defined ANU colour map. Shown
are the colour map in full colour and greyscale (as would be displayed if printed in black
and white). The “hot” and “cool” colour maps exhibit a better intensity (greyscale)
gradation.

Colour Maps

Often when we display multiple plots on a set of axes we will want them drawn
in different colours (and, sometimes, styles). This is done automatically for us
by matplotlib. Moreover, when drawing a 3D surface plot (such as a topo-
graphical landscape), contour plot, or heatmap we will want colours to denote
different “height” values. The mapping of plot index or surface height to colour
is determined by a colour map.

matplotlib includes a variety of colour maps that you can select from using
the cm.get cmap method. The following code demonstrates the use of this
function.

Python Code

1 import numpy as np

2 import matplotlib

3

4 index = np.arange (...)

5

6 cmap = matplotlib.cm.get_cmap(’Spectral ’)

7 cnorm = matplotlib.colors.Normalize(0, len(index) - 1)

8 colours = cmap(cnorm(index))

You can even define your own colour map. Here is some code that creates a
“ANU” colour map. Some common colour maps along with the ANU colour
map are shown in Figure 3.44.

Python Code

1 import matplotlib

2

3 # create ANU colour map

4 start_colour = "#af1e2d" # red

5 end_colour = "#94 b0bc" # grey

6 cmap = matplotlib.colors.LinearSegmentedColormap.from_list("ANU",

7 [start_colour , end_colour])

8 matplotlib.cm.register_cmap(name="ANU", cmap=cmap)

The jet colour map is the default. It is used in matplotlib and a large

152 CHAPTER 3. LECTURES

number of other plotting software. However, it has the disturbing property
that intensity does not correspond to increasing value as can be seen in the
greyscale versions of the colour maps in Figure 3.44. The hot and cool colour
maps are much better in this respect. When choosing a colour map you may
want to take this into consideration—for example, what happens if your graph
is printed in black and white? See the discussion at http://matplotlib.org/
users/colormaps.html for more information on choosing colour maps.

3.17.3 Exploring Different Plot Types

There are many different options for visualising numerical data. Make sure you
choose a plot type appropriate for the data you want to show.

Line Plot A line plot displays the relationship between two variables as a series
of points (on the xy-plane) connected by line segments. Line plots are very
useful for showing trends in time series data where the x-axis depicts time
and the y-axis represents the quantity being measured/simulated.

Scatter Plot Scatter plots shows paired numerical data using the x-axis (hor-
izontal) and y-axis (vertical). The graph is most useful for exploring the
relationship between quantities, for example, age versus height where each
point on the plot represents an age-height measurement for a given indi-
vidual. Often a scatter plot will include a regression line showing the
statistical relationship (or correlation) between the variables. They are
also useful for discovering clusters in your data. For example, the age-
versus-height relationship may differ for males and females.

Bar Graph Bar graphs are used to compare a numerical quantity across a
discrete set of categories. Rectangular bars are drawn with length propor-
tional to the quantity being represented. Bars can be drawn horizontally
or vertically and multiple bars representing different aspects of a category
can be grouped together or stacked one on top of the other. Bar graphs
can be made fancy by replacing the bars with pictures, or icons, relating
to the items being plotted. This is known as a picograph.

Histogram A histogram is a variant of a bar chart used to display a probability
distribution of data. Note, however, that a bar chart is used for categorical
data whereas a can be used for continous data as well. Here each bar of the
histogram represents a range of values, known as bins. The height of a bar
denotes the frequency (or count) of items appearing in the corresponding
bin.For word clouds check out

the wordcloud Python
package by Andreas

Mueller.

A related graph that has become popular for showing word or tag
frequencies is the word cloud.

Pie Chart A pie chart shows the relative proportion of categorical data as
slices in a pie. Pie charts use useful for illustrating the qualitative relation-
ship between categories (e.g., country populations or wealth distribution),
but are not very good for making precise comparisons between categories.
Bar charts are much better in this respect. Sometimes one or more slices
of the pie will be offset to highlight the importance of the corresponding
category. This is known as an exploded pie chart.

3.17. LECTURE 17: VISUALISING DATA 153

Figure 3.45: Basic plot types in the third-party plotly package. Many of the same
plot types are available in other Python libraries too.

Heat Map A heat map is a graphical representation of spatial data (or data
arranged in a matrix) where a colour scale is used to denote numerical
values. For example, weather information such as rainfall or barometric
pressure is often displayed as a heat map. In biology, results of assays
(e.g., DNA gene expression) are often displayed as heat maps.

Surface Plot A surface plot depicts a function defined over two continuous
variables. It is a 3D representation where the x and y axes correspond
to the two variables, and the z axis corresponds to the function value.
Typically x and y are spatial coordinates and z is some natural quantity
measured at each location (e.g., height, temperature, etc.). Variants of
the surface plot include a heat map, contour plot, or 3D mesh plot.

Example 3.17.1. Consider plotting monthly stock market trading volume
from the ASX. We can extract the monthly volume from the ASX website using
the HTMLParser class we’ve seen earlier. The following code will then plot the
volume data as a bar chart:

154 CHAPTER 3. LECTURES

Figure 3.46: Charts showing the trading volume in equity stocks at the ASX from
May, 2014 to April, 2015. A bar chart is more appropriate for this type of data than
a pie chart, which fails to convey the variation across the months.

Python Code

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 def plot_bar(volume , months , colours):

5 width = 0.65

6 index = np.arange(len(volume));

7

8 plt.bar(index , volume , width , color=colours)

9

10 plt.ylabel("Volume")

11 plt.title("Previous Year’s Equity Trades")

12 plt.xticks(index + 0.5 * width , months)

13 plt.show()

Or as a pie chart:

Python Code

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 def plot_pie(volume , months , colours):

5 explode = [0 for i in range(len(volume))]

6 explode [-1] = 0.1

7 plt.pie(volume , labels=months , explode=explode , colors=colours)

8 plt.title("Previous Year’s Equity Trades")

9 plt.show()

The corresponding bar and pie charts are shown in Figure 3.46. Note that
for this type of data the information conveyed by the bar chart is much more
useful.

3.17. LECTURE 17: VISUALISING DATA 155

Axis Scale

Sometimes plotting data on a linear scale or starting the scale from zero is not
appropriate for the data at hand. The xlim and ylim methods allow you to
change the x- and y-axis limits. You can also control whether the scale is linear
or logarithmic with the Axes.set xscale and Axes.set yscale methods as the
following code demonstrates.

Python Code

1 plt.plot(x, y + 1.0)

2 plt.gca(). set_yscale(’log’) # gca() gets the current axes

3 plt.xlim ([-5.0, 5.0])

4 plt.grid()

5 plt.show()

3.17.4 Layout and Multiple Subplots

matplotlib can draw multiple sets of axes or subplots in the same window as
demonstrated by the following code. This is useful for visualising related plots
that, perhaps, cannot be drawn on the same set of axes.

Python Code

1 plt.subplot(1, 2, 1)

2 plt.plot(x, y, lw=2)

3 plt.xlabel(’x’, fontsize =16); plt.ylabel(’y’, fontsize =16)

4 plt.title(’$y = x^2 - 3x + 2$’, fontsize =20)

5 plt.xlim ([-5.0, 5.0])

6 plt.grid()

7

8 plt.subplot(1, 2, 2)

9 plt.plot(x, y2 , ’g’, lw=2)

10 plt.xlabel(’x’, fontsize =16)

11 plt.title(’$y = x^2 - 1.5x - 1$’, fontsize =20)

12 plt.xlim ([-5.0, 5.0])

13 plt.grid()

14

15 plt.show()

You can also draw plots in multiple different windows, known as figures. The
figure() function will generate a new figure. In the above code snippet replace
the subplot lines with plt.figure(). You can also provide a figure identifier
(number) to instruct matplotlib that the succeeding drawing commands are
to be done in that window. The function gcf() gets a handle to the current
figure. Likewise, gca() gets a handle to the current axes.

3.17.5 Some Guidelines for Including Plots in Reports

Graphs and charts are an incredibly powerful way of communicating information
to your readers. But the value of a graph is deminished if your readers cannot
understand how the data is being displayed. Here are a few tips for producing
informative graphs that make it easy for your readers to understand what you
are showing.

• Use a chart type that is appropriate for the data you are showing.

156 CHAPTER 3. LECTURES

• Give your chart a title and label all axes. Include a legend if appropriate.

• Make sure all fonts are legible (when printed).

• Use different colours and styles for different plots on the same axes. Make
sure the colour scheme works well for printed reports (especially black and
white printing—becoming less important these days).

• Be consistent with your colours and styles across figures.

• Give the chart a figure number and caption and refer to it in the text of
your report.

• If comparing different methods against a performance metric, indicate the
direction of the metric (e.g., “lower error is better” or “higher ACME
score is better”). You can do this in the caption of the figure.

• Generally, you should not include figures inline. Rather display at the top
or bottom of a page, on a page by itself, or in an appendix.

• Always write a script to generate and format the plot from raw data. This
allows you to easily update the plot when the underlying data changes.

• Don’t over do the beautification of your chart, conveying information is
more important than a pretty picture.

There are some very nice Python libraries that produce very impressive
plots. These are not included in the Anaconda distribution but can be installed
on most systems as separate packages. See for example,

• the Seaborn library http://stanford.edu/~mwaskom/software/seaborn/
for some beautiful statistical plots;

• plotly for a wide range of different graph types.

3.17.6 NetworkX for Visualising Relationships

Graphs are used in computer science (and mathematics) to represent pairwise
relationships between a set of discrete objects.The mathematical subject

of graph theory is
concerned with the study

of graphs.

The objects in a graph are
denoted by nodes (or vertices) and the relationships denoted by edges (or arcs)
between the nodes. We have already seen some examples throughout this course
such as the movie-actor graph in Lecture 1, where we used nodes to represent
actors and edges between actors appearing in the same movie together.

The networkx library provides functionality for defining and drawing graphs.
It also includes some useful graph algorithms such as finding the shortest path
between two nodes.

The following code shows a small example of defining and visualising a
graph. For more information see the online networkx documentation at https:
//networkx.github.io/.

3.17. LECTURE 17: VISUALISING DATA 157

Python Code

1 import networkx as nx

2 import matplotlib.pyplot as plt

3

4 # create a graph

5 g = nx.Graph()

6

7 # add some nodes

8 names = ["A", "B", "C", "D"]

9 for n in names:

10 g.add_node(n)

11

12 # add some edges

13 g.add_edge("A", "C")

14 g.add_edge("A", "D")

15 g.add_edge("B", "C")

16 g.add_edge("B", "D")

17

18 # visualise

19 nx.draw(g, with_labels=True , font_size =24)

20 plt.show()

3.17.7 Next Lecture

• Data exploration

• Animation

• Saving figures and videos

• Interaction

158 CHAPTER 3. LECTURES

3.18 Lecture 18: Visualising Data II

Learning Outcomes

• Appreciate more sophisticated visualisations types and animation.

• Be able to use plotting for exploration of numerical datasets.

• Understand the use of callback functions for handling events.

• Know how to save images and videos for incorporation into docu-
ments and web pages.

Overview
In this lecture we discuss more advanced visualisation techniques in-
cluding animation and interaction via event callback functions. We also
introduce the pandas Python library for manipulating data sets.

3.18.1 Saving Figures and Loading Images

Consider again the nicely formatted parabola plot from the previous lecture,

Python Code

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 x = np.linspace (-5.0, 5.0, num =21)

5 y = x ** 2 - 3.0 * x + 2.0

6

7 plt.plot(x, y, lw=2)

8 plt.xlabel(’x’, fontsize =16)

9 plt.ylabel(’$y = x^2 - 3x + 2$’, fontsize =16)

10 plt.title(’Example Parabola ’, fontsize =20)

11 plt.xlim ([-5.0, 5.0])

12 plt.grid()

13 plt.show()

We can save the plot from the matplotlib window by clicking on the disk
icon. Alternatively, if we have a large number of plots to save we can use the
savefig function,

Python Code

1 plt.savefig("parabola_plot.png")

Make sure you put this statement before the plt.show() or omit showing
the image altogether. The savefig function includes a number of optional
parameters for controlling how the figure is saved.

You can load and view previous saved figures or other arbitrary images using
the imread function. We saw an example of this in Lecture 6 on data formats.
The following code loads and redisplays the parabola plot.

Python Code

1 import matplotlib.pyplot as plt

2 img = plt.imread("parabola_plot.png")

3 plt.imshow(img); plt.show()

3.18. LECTURE 18: VISUALISING DATA II 159

Note, however, that since we saved the plot as an image we can no longer
apply formatting to things like the axes, etc. Python is now treating the plot
as a bitmap image and has lost information about how it was constructed.

3.18.2 Data Exploration and the pandas Library

The pandas library14 is an easy-to-use data analysis library that very nicely
handles reading and indexing of tabular data. The following code snippet shows
how to load a CSV file using the pandas library. Here the wine quality data file
was downloaded from the UCI Machine Learning repository.15

Python Code

1 import pandas as pd

2 import numpy as np

3 import matplotlib.pyplot as plt

4

5 # load the wine quality dataset

6 wine = pd.read_csv(’winequality -red.csv’, sep=’;’)

7

8 # print out the different wine attributes (csv header line)

9 for attribute in wine:

10 print(attribute)

The code produces the following output:

fixed acidity

volatile acidity

citric acid

residual sugar

chlorides

free sulfur dioxide

total sulfur dioxide

density

pH

sulphates

alcohol

quality

We could have also printed the entire dataset with:

Python Code

1 print(wine)

Access to individual columns, i.e., slicing, for plotting or analysis can be
done using attribute names. For example, we can compute the average pH level
across the entire dataset with

Python Code

1 # print average ’pH’ across the entire dataset

2 print("mean pH is {}".format(np.mean(wine[’pH’])))

14http://pandas.pydata.org
15https://archive.ics.uci.edu/ml/datasets/Wine+Quality

160 CHAPTER 3. LECTURES

Figure 3.47: 2D and 3D scatter plots from pandas data.

where we have used wine[’pH’] to extract the pH column from the dataset and
then applied the mean function from numpy to compute the average.

The pandas library also integrates well with matplotlib for plotting data.
For example, the following code will produce a 2D scatter plot of pH versus
alcohol for all points in the dataset.

Python Code

1 # plot pH against alcohol content

2 wine.plot(kind=’scatter ’, x=’pH’, y=’alcohol ’)

3 plt.show()

Likewise, we can produce 3D scatter plots.

Python Code

1 # plot pH and alcohol content against quality

2 from mpl_toolkits.mplot3d import Axes3D

3

4 ax = plt.figure ().gca(projection=’3d’)

5 ax.scatter(wine[’pH’], wine[’alcohol ’], wine[’quality ’])

6 ax.set_xlabel(’pH’)

7 ax.set_ylabel(’alcohol ’)

8 ax.set_zlabel(’quality ’)

9 plt.show()

The resulting scatter plots are shown in Figure 3.47.

Visualising more than three dimensions of data is difficult. One convenient
diagram is the scatter matrix, which is a square array of plots, each panel in
the grid plotting one attribute against another. The diagonal of the array of
plots shows a histogram distribution for the attribute corresponding to that row
(and column). Scatter matrices can be generated in a single line of code using
pandas:

Python Code

1 # multiple plots

2 pd.tools.plotting.scatter_matrix(wine)

3 plt.show()

The corresponding plots are shown in Figure 3.48.

3.18. LECTURE 18: VISUALISING DATA II 161

Figure 3.48: Scatter matrix for the wine dataset.

3.18.3 Animation

An animation is the process of creating perceived motion by rapidly displaying
a sequence of (static) images, called frames. Typically images need to be shown
between at 24 to 60 frames per second for motion to be perceived.

Simple animations can be generated using matplotlib by repeatedly re-
drawing on a figure window. This model for animation is supported by two
programming mechanisms: (i) plt.draw(), which instructs matplotlib to im-
mediately redraw the current figure window, and (ii) plt.pause(), which pauses
execution for a given number of seconds thus controlling the frame rate (and
giving the operating system enough time to refresh the window). Example ani-
mation code is shown below.

Python Code

1 import math

2 import numpy as np

3 import matplotlib.pyplot as plt

4

5 plt.figure () # intialize the figure

6 plt.ion() # turn on interactive mode

7

8 for theta in np.linspace (0.0, 2.0 * math.pi, 100):

9 x = np.linspace (0.0, 4.0 * math.pi , 100)

10 y = np.sin(x + theta) # compute the shifted sine wave

11 plt.cla() # clear the plot on the current axes

12 plt.plot(x, y, ’b-’) # plot as a line graph

13 plt.xlim(x[0], x[-1]) # set the range of the x-axis

14 plt.title("$\\ theta = {:0.3f}$".format(theta))

15 plt.draw() # tell Python to update the plot

16

17 plt.pause (0.1) # delay for 100ms before the next plot

An alternative animation model is via callbacks, which have the advantage

162 CHAPTER 3. LECTURES

of separating the drawing logic from the frame rate control. Callbacks are an
example of an event-driven programming model. In this instance, an event
handler, i.e., the callback function, is registered with matplotlib to implement
the animation updating. When the animation starts matplotlib sets a timer
to go off at a regular interval. Each time the timer expires an event is triggered
and matplotlib invokes the callback function.

matplotlib provides a very simple method of registering a callback function
for animations using the animation.FuncAnimation() method. An example is
shown in the code below.

Python Code

1 import math

2 import numpy as np

3 import matplotlib.pyplot as plt

4 import matplotlib.animation as animation

5

6 def animate(fnum):

7 """ Animation function for plotting a phase -shifted sine wave."""

8 theta = 2.0 * math.pi * float(fnum) / 100.0

9 x = np.linspace (0.0, 4.0 * math.pi , 100)

10 y = np.sin(x + theta) # compute the shifted sine wave

11

12 plt.cla() # clear the plot on the current axes

13 plt.plot(x, y, ’b-’) # plot as a line graph

14 plt.xlim(x[0], x[-1]) # set the range of the x-axis

15 plt.title("$\\theta = {:0.3f}$".format(theta))

16

17 return p.gca() # update the entire axes

18

19 # main function

20 f = plt.figure () # intialize the figure

21 plt.ioff() # turn off interactive mode

22

23 # initialize the callback function

24 ani = animation.FuncAnimation(f, animate , interval =100,

25 frames =100, repeat=False)

26 plt.show()

Passing Arguments into the Animation Function

Often a callback function will require more state information that just the frame
number (passed as the first argument, fnum, to the animation function). It is
possible to store state in global variables, which the callback will be able to
access. However, a cleaner alternative is to pass state as an input to the callback
explicitly. The following code shows how we can do this using the fargs optional
parameter when registering the callback.

3.18. LECTURE 18: VISUALISING DATA II 163

Python Code

1 import math

2 import numpy as np

3 import matplotlib.pyplot as plt

4 import matplotlib.animation as animation

5

6 def animate(fnum , x, theta):

7 """ Animation function for plotting a phase -shifted sine wave."""

8 y = np.sin(x + theta [0]) # compute the shifted sine wave

9 theta [0] += 0.02 * math.pi # update state

10

11 plt.cla() # clear the plot on the current axes

12 plt.plot(x, y, ’b-’) # plot as a line graph

13 plt.xlim(x[0], x[-1]) # set the range of the x-axis

14 plt.title("$\\ theta = {:0.3f}$".format(theta [0]))

15

16 return plt.gca() # update the entire axes

17

18 # main function

19 f = plt.figure () # intialize the figure

20 plt.ioff() # turn off interactive mode

21

22 # initialise state information

23 x = np.linspace (0.0, 4.0 * math.pi , 100)

24 theta = [0.0] # note: list

25

26 # register the callback function and show

27 ani = animation.FuncAnimation(f, animate , fargs =(x, theta),

28 interval =100, frames =100, repeat=False)

29 plt.show()

In this example we pass two pieces of state information. The first is the
variable x, which defines the domain for plotting. This variable does not change
throughout the animation so having it pre-computed and passed in to animate

saves some processing time. The second piece of state information is theta,
the phase of the sine wave, which changes each iteration. Because we need to
update theta within the callback we have implemented it as a list—if it were
simply a float we could not modify it since floats are immutable (see Lecture 4).

An alternative to passing in lots of different arguments is to group the ani-
mation state information together into a class and only pass in an instance of
the class. This has the added advantage of separating functionality between the
class and the drawing function as shown in the code snippet below.

Python Code

1 class SineWaveAnimationState:

2 """ Holds state information for animating a sine wave."""

3 def __init__(self):

4 self.x = np.linspace (0.0, 4.0 * math.pi , 100)

5 self.theta = 0.0

6

7 def y(self):

8 """ Returns the shifted sine wave."""

9 return np.sin(self.x + self.theta)

10

11 def inc_theta(self , amount =0.02):

12 """ Increment theta."""

13 self.theta += amount

164 CHAPTER 3. LECTURES

The animation function can then be simplified to:

Python Code

1 def animate(fnum , state):

2 """ Animation function for plotting a phase -shifted sine wave."""

3 plt.cla() # clear the plot on the current axes

4 plt.plot(state.x, state.y(), ’b-’) # plot as a line graph

5 plt.xlim(state.x[0], state.x[-1]) # set the x-axis limits

6 plt.title("$\\theta = {:0.3f}$".format(state.theta))

7 state.inc_theta () # increment theta

8

9 return plt.gca() # update the entire axes

And the main code to start the animation:

Python Code

1 # main function

2 f = plt.figure () # intialize the figure

3 plt.ioff() # turn off interactive mode

4

5 # initialise state information

6 state = SineWaveAnimationState ()

7

8 # register the callback function and show

9 ani = animation.FuncAnimation(f, animate , fargs =(state ,),

10 interval =100, frames =100, repeat=False)

11 plt.show()

When specifying the fargs parameter don’t forget that you must provide a
tuple. A 1-tuple (tuple with only one element) is Python is declared with a
comma following the first element as can be seen in the code above.

Creating Videos

A sequence of frames from an animation can be turned into a video and saved by
assigning the FuncAnimation object to a variable and then invoking the save

member function before calling plt.show() as illustrated in the following code:

Python Code

1 ani = animation.FuncAnimation(f, ...

2

3 ani.save("animation.mp4", writer="avconv", fps=30,

4 extra_args =["-vcodec", "libx264"])

Note that the parameters may need to be adjusted depending on the oper-
ating system and set of video codecs installed. Moreover, the approach does not
work out-of-the-box on many systems ann can be difficult to get working. A
fail-safe (albeit less elegant) approach is to output each frame (using savefig)
and combine them together into a video with another tool.

3.18.4 Interaction

The most simple form of user interaction involves waiting for the user press a
key or mouse button. We have also already seen how to receive user input from
the keyboard with the input function.

3.18. LECTURE 18: VISUALISING DATA II 165

If you wish to show a sequence of plots/images and wait for the user to
press a key between each one, then the easiest approach is to use matplotlib’s
waitforbuttonpress() function. This function blocks execution of the pro-
gram until the user presses a keyboard key or clicks a mouse button, returning
True for the former and False for the latter.

More interesting things can be done if we know where the mouse cursor was
when the mouse was clicked. For this we can use the ginput() function, which
blocks until a given number of mouse clicks have been received. The function
returns a list with the location of each mouse click. The following code snippet
waits for five mouse clicks and then displays them on the plot.

Python Code

1 plt.figure ()

2 plt.cla()

3 points = plt.ginput (5)

4 for i, (x, y) in enumerate(points):

5 plt.plot(x, y, ’bo’)

6 plt.gca(). text(x, y, "Point {}".format(i + 1))

7 plt.draw()

8 plt.show()

The interactivity covered in this lecture is quite rudimentary but sufficient
for many needs. More advanced user experience (UX) design and graphical user
interface (GUI) development, which is often built on an event-driven program-
ming model with support for handling mouse movement, button clicks, etc.,
is beyond the scope of this course. Interested students can read about event
handling in matplotlib at

http://matplotlib.org/users/event_handling.html

166 CHAPTER 3. LECTURES

3.19 Lecture 19: Debugging Strategies

Learning Outcomes

• Recognise that software testing and debugging is an important
part of the software development process (even for small pro-
grams).

• Be able to identify and fix common bugs that can occur in code.

• Understand the basic features of a debugger and how it can be
used to track down bugs.

• Be aware of techniques for minimising the number of bugs in your
code.

Overview
The term bug is attributed
to Grace Hopper, a naval
computer engineer, who

used the term after finding
that a moth had blown part

of the computer circuitry
she had been working on.

You’ve probably already discovered that almost all programs have bugs.
Being able to find and resolve bugs is a key skill that separates really
great programmers from everyone else. This lecture gives you some high
level strategies for debugging code.

A disciplined approach to programming and good software design will help
reduce errors in code. But no matter how careful or experienced you are bugs
will still occur in your code. Edgar Dijkstra once (half) joked: If debugging is
the process of removing software bugs, then programming must be the process
of putting them in. Indeed, some studies estimate an industry “defect rate”
of anywhere between 1 and 25 errors per 1,000 lines of code.cf. Code Complete: A

Practical Handbook of
Software Construction (2nd

Edition), S. McConnell,
Microsoft Press, 2004.

These rates may
sound small, but when you take into account that the codebase for the Windows
operating system is around 50 million lines of code and Google’s services are
reported to consist of 2 billion lines of code, these rates suggest that there are
50,000 bugs in Windows and over 2 million in Google’s services!

Some bugs can be found through ad hoc testing (i.e., just running your
code), but a set of well designed tests is essential if you really want to have any
confidence that your code is working correctly. Professional programmers often
spend more time writing tests and fixing bugs than they do writing the intended
software application itself.

The aim of this lecture is to highlight some techniques that can help you
find, fix, and prevent bugs in your code.

3.19.1 The Craft of Debugging

The most difficult part of debugging is locating the source of the bug. Once
found, fixing the bug is often easy. This lecture gives you some strategies for
finding bugs. The important thing to remember is that debugging is an ongo-
ing process—tedious at times—and an integral part of software development.
Sometimes you will think you’ve fixed a bug only to find its ugly head sometime
later. Software revision control and issue (bug) tracking tools can greatly help
manage this process.

Debugging typically has several stages that we will expand on through this
lecture:

3.19. LECTURE 19: DEBUGGING STRATEGIES 167

• Detection: Determining there is a bug. This can be obvious (e.g., when
error messages or nonsense output appears) or more subtle and tricky
(e.g., a non-repeatable problem or plausible but incorrect output).

• Isolation: Finding roughly where in your code the bug is. This can in-
volve extracting just the problem area from your existing code and running
it with a simplified version of the input that manifested the bug.

• Comprehension: Understanding precisely why a certain piece of code
is causing a problem. This requires a strong sense of what the intended
behaviour of your code should be.

• Correction: Modifying your code to remove the bug. It is important to
make the fix as small and localised as possible to avoid introducing new
bugs.

• Prevention: Writing your code in such a way as to minimise bugs. This
can involve writing test cases, programming defensively, and having other
people check through your code.

3.19.2 Detecting and Isolating Bugs

Isolating Bugs

Like several problems in programming, getting rid of bugs is susceptible to the
“divide and conquer” strategy. If there are many errors in your code it is much
more effective to isolate each one and deal with them in turn.

A high-level plan for isolating bugs is the following:

1. Work backwards: Use error messages or incorrect output as starting
points to figure out what has gone wrong. Look at the code at or just
before these places to see whether there is an obvious bug.

2. Simplify: If it is not clear why your code is not working, you may want
to simplify the code or the input to the code in such a way that the bug
is still present. Consider opening up a new file with only the parts of the
code you suspect your bug is in.

3. Mentally execute: Mentally walk through the suspect code explaining
to yourself what each line should be doing. Add comments to help you, if
necessary.

4. Use Logging: Add print statements or other forms of output to inspect
the value of variables or expressions. Check these against what you ex-
pected to see in the previous step.

Error Messages

Finding the place to work backwards from is sometimes very easy, especially
when the bug results in an error message. For example, consider the following
piece of code in a file called problem.py:

Python Code

1 print(’Uh oh!)

168 CHAPTER 3. LECTURES

When run, this results in the error:

File "problem.py", line 1

print(’Uh oh!)

^

SyntaxError: EOL while scanning string literal

The first line here tells us which file the problem is in and which line the
problem is on. The code from that line and file is then shown with a caret
symbol (‘ˆ’) highlighting where on the line the problem is. The final line says
that the problem is a syntax error (i.e., the code was not well formed) and that
it reached the end of the line (EOL) before it found the end of the string.

Be aware, however, that sometimes the error message will not point you to
exactly where the problem is. Consider the following code:

Python Code

1 print(’Line with error ’

2 x = 1

The error message received when this is run says the problem is on line 2
even though it is clear that there is a missing parenthesis on line 1:

File "problem2.py", line 2

x = 1

^

SyntaxError: invalid syntax

Error messages are therefore only a starting point when debugging your code.
If the problem shown in the error message does have an obvious fix then you
may have to hunt backward from where the error is reported to find the bug.

Using Version Control to Help Find Bugs

Sometimes you may have a working codebase that, due to changes made by
yourself or others, suddenly stops working problem. In this case, it can be very
helpful to look through the recent commit history in the version control system
you are using. If the commits that were made after the bug appeared only
change a small amount of code, these changes can be a great place to start
looking for the new bug.

Also keep in mind that you can “go back in time” using the revision control
system to find a point where the bug did not occur. We covered how to do this
in Lecture 18.

3.19.3 Using Debuggers

Sometimes the interactions between various parts of a codebase can become so
complex that mentally trying to determine what is being executed becomes very
difficult. Fortunately, most languages and software development environments
provide debuggers that allow a programmer to stop a piece of code executing,
examine the state of variables, and step through the execution incrementally.

Figure 3.49 shows a snapshot of a debugging session in PyCharm. The code
in the top panel has been run via the Run|Debug... command and has stopped

3.19. LECTURE 19: DEBUGGING STRATEGIES 169

Figure 3.49: A screen capture of PyCharm’s debugger.

its execution at the highlighted line (line 9). The red circle at position A denotes
a breakpoint in the code. The Python interpreter to pause its execution whenever
it reaches a line with a breakpoint. You can set a breakpoint by clicking just
right of a line number. Clicking on a breakpoint circle will remove it.

When code execution is paused at a breakpoint the debugger pane (shown at
the bottom) will appear with several piece of information about the state of the
code. In the “Variables” pane at position B you can see that several variables
in the scope inside the function summarise are shown, along with their current
values (e.g., key is a string set to ’a’). The values of variables on the current line
are also shown in green at position C. The “Watches” panel in position D lets
you track the value of variables or expressions that may be outside the current
scope. These are added by using the ‘+’ symbol at the bottom of the panel.
You could, for example, add a watch that calculates the length of the results
dictionary by pressing ‘+’ and typing in len(results). Each time results is
changes this expression will be updated to show its current value.

The icons showing various arrows at position E provide several types of
control over the way in which the code is executed after it has hit a breakpoint
(these are also available from the Run menu and hotkeys). They are described
in Table 3.8.

Get to know these debugging commands by trying them out on your own
code. The ability to slowly step through your code and inspect the values of
variables and evaluate expressions is an extremely powerful way to track down
problems.

3.19.4 Know Your Enemy

By definition, a bug in your code is a difference between what you expected to
happen and what actually happened when you ran your code. This means that
in order to find a bug you need to have a precise idea of what it is you expect

170 CHAPTER 3. LECTURES

Icon Name Description

Show Show the current execution point.

Step Steps one line forward in the current file.

Step Into Step into the next function or method to be
called. This may open a new file and possibly
library code.

Step Into My Code Step into the next function or method to be
called but do not show execution through li-
brary code.

Step Out Execute until the end of the current function
and stop at first line after it was called.

Run To Cursor Execute until the line containing the cursor in
the edit window.

Table 3.8: Debugging commands and their PyCharm icons.

your code to do. Before you start trying to track down a bug it is worthwhile
stepping back and thinking about—or even better, writing down—exactly what
you want your code to do. Code comments or function docstrings are very good
places to do this.

Often, simply clarifying exactly what it is you want your code to do will
make it obvious where the problem lies. If that’s not the case, there a several
common “gotchas” that cause bugs. This are discussed with examples below
and are sometimes good things to check for when trying to track down a bug.

Common Bugs

In this section we will briefly look at a number of common bugs that cause
problems for new (and sometimes even experienced) programmers.

Off-by-one and indexing errors Most languages, including Python, index
lists from zero instead of one. If you haven’t programmed much before this
can often catch you out, especially when having to loop through a list-like data
structure.

Python Code

1 # Print the first and last element of a list

2 xs = [1,2,3]

3 print(xs[1]) # BUG: Prints 2.

4 print(xs[3]) # => IndexError: list index out of range

The correct way to get the first and last element of a list xs is to use xs[0]
to get the first element and xs[len(xs) - 1] or just xs[-1] to get the final
element. More generally, if you want to access the nth element in a list you
need to use the index n− 1, not n.

Infinite Loops The following piece of code is attempting to use a while loop
to print the numbers from 0 to 4 inclusive:

3.19. LECTURE 19: DEBUGGING STRATEGIES 171

Python Code

1 i = 0

2 while i < 5:

3 print(i)

4 i + 1 # BUG: should be i = i + 1

The intention here is to increment the value of i at the end of each loop but
the expression i + 1 does not update the value of i.

One reason bugs like this occur is because the programmer must keep track
of the variable i “by hand”. Whenever possible, you should try to re-express
loops like these so that this sort of updating is handled automatically. The
following piece of code does exactly the same as what the previous example
attempted but notice that the for loop makes sure i is incremented each loop.

Python Code

1 for i in range (5):

2 print(i)

Unintended side-effects A very common cause of bugs is unintentionally
modifying the state of some object or data structure. This can happen in a
number of ways. A very simple instance is shown below where two variables xs
and ys are referencing the same list [1,2,3]. Because both variables point to
the same list, any modification of list via one of the variables will also affect
what is returned when the other variable is accessed.

Python Code

1 xs = [1,2,3]

2 ys = xs

3 ys[0] = 100 # NOTE: xs[0] == 100 too!

If you expected ys to be a new, independent copy of the list that remains
unchanged then you will likely have a bug in your code. To make a new copy
of a list and ensure that it will not be modified by changes to the original, you
must use the copy() method on a list like so:

Python Code

1 xs = [1,2,3]

2 ys = xs.copy()

3 ys[0] = 100 # NOTE: xs[0] is still 1

Unintended side-effects can be caused is many other ways. Another common
instance is when functions modify the arguments they are given as input. For
example, a function might make a change to an element of a list without first
making a copy of it, as in the previous example.

It is important to carefully read the documentation of any function you use
to make sure the arguments you pass in do not change. When you are writing
functions, it is generally good practice to avoid modifying its arguments inside
the function. If you do need to modify an input argument, make sure this is
very clearly stated in the documentation for your function or method.

172 CHAPTER 3. LECTURES

Machine Precision A problem common to almost all program languages is
machine precision when it comes to representing and working with numbers,
and Python is no exception.

Floating point numbers in Python use 53 bits to represent numbers and
although this is more than enough for most circumstances it can result in un-
expected behaviour, especially when working with very large and very small
numbers simultaneously.

However, the following code shows that small representational errors can
occur even when dealing with simple arithmetic.

Python Console

1 >>> 0.1 + 0.2

2 0.30000000000000004

The reason that the answer is not exactly 0.3 is because the numbers 0.1
and 0.2 are not exactly representable in binary. This is similar to why 1/3 is
0.33333... in decimal. Because only 53 bits are available, approximations of 0.1
and 0.2 are used and when these are added this approximations means their
sum is slightly bigger than 0.3.

These sorts of approximation means you have to be very careful when testing
whether two numbers are equal in Python. A test like 0.1 + 0.2 == 0.3 would
return False due to the approximation error. Instead of checking whether two
values are exactly equal, one often checks if they are “close” using a function
like the following:

Python Code

1 def are_close(x, y, tolerance =10e-7):

2 """ Test whether the absolute difference between the two

3 numbers are within a specific tolerance of each other."""

4 return abs(x-y) < tolerance

5

6 are_close (0.1 + 0.2, 0.3) # Returns True

Notice that in the above example, 0.1 + 0.2 are considered “close enough”
to 0.3. The tolerance parameter specifies that “close enough” is equal up to 7
decimal places. The unittest module, which we saw earlier, provides a method
called assertAlmostEqual that provides essentially this functionality for unit
testing.

3.19.5 Fixing and Preventing Bugs

Once you have found the cause of your bug and understand why it happened,
you are in a good position to fix it. Once a bug is vanquished it is a good idea
to take a step back to see whether similar bugs might be avoided in the future.

Fixing Bugs

There is often a strong temptation to dive in, make the first change to the code
that comes to mind, then run it and see whether the problem is fixed. However,
this is not advisable. It is better to think through a few possible changes you
could make and consider their merits. For example, you may have found an
off-by-one error in a loop and think to yourself, “I’ll just subtract one from

3.19. LECTURE 19: DEBUGGING STRATEGIES 173

this index variable and that will fix it”. An alternative might be to rewrite the
loop using for ... in ... so the index variable is no longer needed. Another
alternative might be to write a separate function that takes the index variable
and the list it refers to as arguments and returns the appropriate value. You may
even want to encapsulate this by writing a new class. The best solution will, of
course, depend on the code and problem and your experience but choosing the
right fix can save you time and improve the overall quality of your code.

Sometimes a bug fix will suggest a large-scale change to the design of your
code so as to avoid similar bugs in the future. Changing the structure of your
code without significantly changing its behaviour is called refactoring and is
covered in detail in Lecture 3.22.

3.19.6 Preventing Bugs

No Code is Good Code!

There are a number of things you can do to minimise the chance of having
errors in your programs but the simplest (recalling the defect rates from the
introduction) is write less code! Provided you are not using “clever” tricks to
cram lots of functionality into each line, having less code means fewer “moving
parts” that you have to reason about in your program which means you will be
less likely to make a mistake.

There are two very easy ways to reduce the amount of code you use to solve
a problem:

1. Use libraries or existing code whenever appropriate. Code that
has been used by yourself or others in the past is likely to have been tested
and debugged already. Trying to reinvent a solution that already exists is
typically a bad idea.

The relative ease in which code can be copied, shared, and reused is one
of the major reasons software has developed incredibly rapidly over the
last several decades.

2. Don’t Repeat Yourself. If you find very similar code in two or more
places in your codebase try to extract the common behaviour into func-
tions or classes. The big advantage to doing this is that it reduces the
number of possible places an error may occur. Also, if you do find a
problem you only need to fix it in one place, not several.

Finally, whenever possible, delete code that is no longer in use. If you
have been using version control you can alway get it back later if it is useful.
However, having it lying around when it is not being used just makes your
program harder to understand and make cause inadvertent problems, such as
variable name clashes.

Write Test Cases

If you are writing a function or class that implements some non-trivial data
processing or simulation, consider writing unit tests before you write the code
to solve the problem. This has two big advantages. First, writing the tests
will force you to think clearly about the intended behaviour of your functions.

174 CHAPTER 3. LECTURES

Second, when you do write the code you can immediately test whether it is
working as intended, thereby finding bugs earlier than if you did not have tests.

As a bonus, having tests for your code means that if you do decide to make
changes later you can quickly and easily ensure that you have not introduced
any new bugs by running the tests.

Two Heads are Better Than One

If you are collaborating on a project, it is often useful to have someone else look
over your code to help you find bugs. If you have been staring at your code
for an extended period of time, you can often miss things that are obvious to a
fresh set of eyes.

Some programming methodologies have this idea as a central tenant and
call it pair programming. In pair programming two developers sit side-by-side
at the same computer. While one developer writes the code, the other watches
on and makes suggestion or corrections. After a while, the developers swap so
the one writing becomes the one critiquing and vice versa. As well as catching
bugs earlier, this method has the advantage of familiarising two developers with
the same parts of a codebase. It is also a useful technique for mentor junior
programmers since the less experienced programmer can watch and learn from
the more experienced one.

3.19.7 Case Study

Consider the buggy code below, which is supposed to produce a summary of
the values in a dictionary. We will walk through the steps of detecting the
bug, using the Pucharm debugger to isolate and fix the bug, and then update
documentation to warn against future bugs.

3.19. LECTURE 19: DEBUGGING STRATEGIES 175

Python Code

1 #!/usr/bin/env python3

2 # COMP1040: The Craft of Computing

3 #

4 # NOTE: This code is deliberately incorrect! Use the PyCharm

5 # debugger to walk through this code to find and fix the

6 # bugs. There are at least two.

7 #

8 # The intention of the code is to take as input a dictionary

9 # containing lists of numbers as values and producing the sum

10 # of those values for each dictionary entry.

11

12 def summarise(results):

13 """ Summarise a dictionary by calculating the total of the

14 list of numbers associated with each key."""

15

16 for key , values in results.items ():

17 results = { key: total(values) }

18

19 return results

20

21 def total(xs):

22 """ Computes the total of the numbers in the given list."""

23 result = 0

24 for x in xs:

25 result += result + x

26

27 return result

28

29 # Simple example usage

30 simple = { ’a’: [1, 2] }

31 print(summarise(simple))

32

33 # More complex example usage

34 sales = { ’apples ’: [89, 55, 20], ’oranges ’: [30, 67, 90]}

35 print(summarise(sales))

Running the code produces the following output.

{’a’: 4}

{’apples’: 486}

The first thing to do is determine whether this matches our expectation
of what the code should produce. Clearly, the second line is wrong since we’re
expecting two dictionary elements—apples and oranges—but the code only pro-
duces one. On closer inspection the first line is wrong too. The summary for a
should be 3 not 4.

Try find the bug by mentally executing the code or using the PyCharm
debugger. You can even write some unit test cases to help understand what the
code should be doing. A live demonstration is given in the lecture.16

After fixing the bugs we note that there is an additional aspect of the code
that may lead to future bugs—the results argument to the summarise func-
tion is modified by the function. This side-effect is not documented and may
cause problems if the programmer is not expecting variables simple or sales to
change. It is important, therefore, to ammend the docstring for the summarise
function to bring this to the attention of the programmer.

16Answer: the bugs are on lines 17 and 25.

176 CHAPTER 3. LECTURES

3.20 Lecture 20: Software Design

Learning Outcomes

• Appreciate that a large software project, like any engineering ef-
fort, requires detailed design and planning.

• Describe the different stages in the software development pro-
cess including requirements elicitation, system specification, de-
sign (architecture, interface, component, etc), implementation,
testing, and maintenance.

• Understand agile methods do not follow the above stages in strict
order. Rather software development is seen as an iterative process.

• Define what a design pattern is and recognise a few common design
patterns used in solving programming problems.

• Understand the importance of conventions and standards.

Overview
Software design and development is an entire field of study—this lecture
gives just a brief taste of some of the important aspects of design. We
cover some methodologies for designing good software and study the core
problem of abstracting from a real world problem to a piece of software
for solving that problem. We also present common design patterns
that allow you to quickly map programming problems onto established
solutions. Finally, we discuss some practical issues such as following
programming conventions when implementing large software projects.

A lot of the code that we have written so far in this course can be done
without much planning or forethought. However, as you develop bigger software
projects planning and design become ever more important. We cannot hope to
cover all of software design in a single lecture—there are entire courses on the
topic—so will only present a brief glimpse of methodologies and techniques here.

3.20.1 The Importance of Good Software Design

There are countless examples of catastrophic software failures that provide evi-
dence for why software design is important. Here are two classic examples.

• Y2K (Design) Bug. Leading up to the year 2000, developers and users
started noticing a significant design failure in almost all software systems.
The software has been designed to store years using two digits (e.g., “99”
for “1999”). This affected an enormous number of systems and is esti-
mated at costing USD 500 billion worldwide to fix.

• Knight Capital “Flash Crash”. At 2:32pm EDT on 6 May 2010 a
poorly designed (and tested) computerised trading system started switch-
ing between buying and selling stock. The result was an estimated loss of
$440 million in about 30 minutes. Special “circuit breaker” software now
exists to prevent such re-occurrences, but these preventative measures are
implemented in software too, so also subject to failure.

Good software design doesn’t only help to reduce bugs, it may also help to make
development more efficient thereby reducing cost and improving time-to-market.

3.20. LECTURE 20: SOFTWARE DESIGN 177

3.20.2 Development Methodologies and Design Principles

There are many different software development methodologies. Here we con-
trast two quiet different approaches. Both approaches incorporate the main
tasks of software development—requirements gathering, system specification,
system design, implementation, testing, and maintenance—differing mainly in
how these tasks are staged.

The Waterfall Method is a methodology introduced as a strawman by
Royce in 1970 as a non-working model of software development, however, one
that mirrors closely the development practices in some industries. In this ap-
proach development proceeds as a strict sequence going from gathering require-
ments through design and implementation to verification and maintenance. This
“big upfront design” approach is very brittle.

At the other end of the spectrum are Agile Methods of which there are
many variants (e.g., eXtreme Programming, Scrum, etc.) but all with similar
philosophy. In these methods, design and development is seen as an iterative
process; accepting the fact that you will not get every aspect of the design
perfect the first time before moving on to implementation. As a consequence, the
philosophy is to produce something quickly that meets most of the requirements
(termed early delivery) and then continuously improve. The approach requires
adaptive planning and dynamic teams.

Design techniques included to various degrees within all modern software
development methodologies include:

• Use Cases. Sometimes called User Stories, this technique captures re-
quirements through short stories about how certain features or services
might be used. They facilitate concrete discussions and are very helpful
in making sure stakeholders and developers agree.

• Test-Driven Development. Here required functionality is specified
through unit tests and other forms of automated testing. This allows
very simple verification that certain functionality has been implemented
but it is difficult to discuss behaviour with project members who are non-
programmers. Some tools exist for systematically tuning high-level be-
havioural specification into executable tests (e.g., Python behave!).

• Release Early, Release Often. Agile methods place emphasis on hav-
ing a working (but incomplete) system early (i.e., minimal viable product).
This enhances feedback from users but care must be taken in managing
expectations especially if only a subset of the functionality is implemented,
which can frustrate users if they are expecting a fully working product.
This also allows requirements to be validated with stakeholders.

• Fail Fast. Knowing when something is broken as soon as possible means
that it can be fixed faster. Continuously testing code and verifying re-
quirements with automated tests and user trials will help find (and fix)
problems early. Don’t work under the assumption that everything will
work when put together the first time.

There are also a number of design principles that are adopted by many soft-
ware development methods. Once again, we cannot hope to cover all design

178 CHAPTER 3. LECTURES

principles in a single lecture. Moreover, most of these principles are only ap-
preciated once you start using them (or not!)—experience and practice counts
a lot in design. Some of the more common design principles include:

• Keep it Simple (KISS). Albert Einstein famously said “Everything
should be made as simple as possible but no simpler.” This is not as easy
as it sounds and our first attempts at solving a problem are often way
more complicated than they need to be (sometimes because we don’t fully
understand the problem). Try to keep breaking down a problem until
what you are trying to do can be explained precisely in a few sentences.

• Separation of Concerns. Reasoning about multiple interactions is dif-
ficult. It is much easier to break down a problem so that you don’t have
to think about the whole problem. Rather focus on solving one aspect of
your problem at a time and move between different layers of abstraction.
A pattern that is often followed in software design is the separation of
model, view and control.

• Least Surprise. Designs should be consistent and adhere to familiar
conventions. For example, if you travelled to a new city and found that all
stop signs were green that would be very weird (and dangerous). Design
functions and objects so that naming, behaviour, arguments, etc. are
consistent. This reduces cognitive load needed to develop and understand
your software.

• Don’t Repeat Yourself (DRY). Hunt and Thomas summarise this
principle nicely as “Every piece of knowledge must have a single, unam-
biguous, authoritative representation within a system.” The idea is that
if there is a piece of information that needs to be passed around in a sys-
tem, then keep one copy of that information otherwise you risk needing
to synchronise the copies (i.e., keep them up to date).

• You Ain’t Gonna Need It (YAGNI). It is very easy to dream up
extension and improvements to your initial idea and be tempted to im-
plement these well before you have completed your first design. Don’t.
Only code features when you actually need them otherwise you introduce
breeding grounds for bugs. Revision control is a perfect antidote here—file
an issue and address it later.

3.20.3 Design Patterns

A design pattern is a generic solution to a commonly occurring problem. It is
not a complete design that can be directly implemented in source code. Rather
it is a template that can be applied in many different situations and contexts.
Because design patterns are well used and tested they simplify design decisions
and speed software development. Design patterns are lower level than the design
principles we discussed above. Below we study a small selection of the (technical)
design patterns you may encounter.

The Adapter pattern allows two incompatible interfaces to work together
typically by wrapping one object with a lightweight shim that translates between
the two interfaces. A similar idea is the Decorator pattern, which allows

3.20. LECTURE 20: SOFTWARE DESIGN 179

behaviour to be added to an object without affecting other objects of the same
class. Python has a special syntax for implementing the decorator pattern. For
example, assume we have a function to determine whether someone is tall given
their height in feet and inches. This function can be arbitrarily complicated but
in our example we assume that is just checks if the person is over six foot.

Python Code

1 def is_tall(feet , inches):

2 """ Returns whether someone is tall based on their height in feet

3 and inches. We consider someone tall is they are over 6 feet."""

4

5 return (feet + inches / 12) > 6

We may want to execute the function using SI units (i.e., meters) but not
want to change the implementation of the function. A decorator is perfect for
this situation.

Python Code

1 def si_units(fcn):

2 """ Decorator to convert perform calculation in SI units."""

3 def convert(height):

4 inches = 39.3701 * height # convert from meters to inches

5 feet = int(inches / 12) # convert from inches to feet ...

6 inches -= 12 * feet # ...and inches

7 return fcn(feet , inches)

8 return convert

9

10 @si_units

11 def is_tall(feet , inches):

12 ...

We can now call our function using SI units:

Python Console

1 >>> print(is_tall (1.75)) # well under 6 foot

2 False

3 >>> print(is_tall (1.82)) # just under 6 foot

4 False

5 >>> print(is_tall (1.83)) # just over 6 foot

6 True

7 >>> print(is_tall (1.90)) # well over 6 foot

8 True

Decorators are useful when they need to be applied in a variety of con-
texts. You can think of them as rebinding the function, in the case above as
is_tall = si_units(is_tall). Of course in this example an alternative (and
probably better) solution is to write a wrapper function, say is tall metric

to make the operation explicit.

Python Code

1 def is_tall_metric(height):

2 """ Variant of is_tall for heights in meters."""

3 inches = 39.3701 * height # convert from meters to inches

4 feet = int(inches / 12) # convert from inches to feet ...

5 inches -= 12 * feet # ...and inches

6 return is_tall(feet , inches)

180 CHAPTER 3. LECTURES

The Iterator pattern is one which we have already seen repeatedly through-
out the course. It provides a mechanism to traverse every element of a container
without having to know the implementation of the container. For example, we
can iterate through every element of a set or a list in a consistent way without
needing to know the storage details. (For a list we can also index elements by
their position in the list but this already assumes the implementation and is
prone to off-by-one errors as discussed in Lecture 3.19.)

Python Code

1 for element in container:

2 do_something(element)

The Factory pattern is useful for creating objects when the class of the
object is not known until runtime. For example, we may have a class that is
specialized for different spoken languages, but we don’t know which language to
use until runtime. A factory can be used to create an object of the right class
for us as the following example demonstrates.

Python Code

1 class Salutation:

2 def __init__(self , name):

3 self.name = name

4

5 def sayHello(self):

6 pass

7

8 def sayGoodbye(self):

9 pass

10

11 class English(Salutation):

12 def __init__(self , name):

13 super (). __init__(name)

14

15 def sayHello(self):

16 print("Hello {}".format(self.name))

17

18 def sayGoodbye(self):

19 print("Goodbye {}".format(self.name))

20

21 class French(Salutation):

22 def __init__(self , name):

23 super (). __init__(name)

24

25 def sayHello(self):

26 print("Bonjour {}".format(self.name))

27

28 def sayGoodbye(self):

29 print("Au revoir {}".format(self.name))

30

31 class Factory:

32 def makeSalutation(self , name , language):

33 if language == "English":

34 return English(name)

35 if language == "French":

36 return French(name)

The last design pattern that we’ll look at is the Command pattern. This is
a pattern that used when you want to prepare a sequence of operations and then

3.20. LECTURE 20: SOFTWARE DESIGN 181

execute them later. One of the nice features of the command pattern is that
you can very easily reverse the operations by keeping a history (e.g., implement
undo). The following code gives a simple example of the pattern.

Python Code

1 class Engine ():

2 """ Engine for executing commands. Also keeps a history so that

3 commands can be undone. A command must have both an execute

4 function and an undo function."""

5 def __init__(self):

6 self.history = list()

7

8 def execute(self , command):

9 self.history.append(command)

10 command.execute ()

11

12 def undo(self):

13 self.history.pop(). undo()

14

15 class Increment ():

16 """ Command to add some amount to every number in an array."""

17 def __init__(self , array , delta = 1):

18 self.array = array

19 self.increment = delta

20

21 def execute(self):

22 for i in range(len(self.array)):

23 self.array[i] += self.increment

24

25 def undo(self):

26 for i in range(len(self.array)):

27 self.array[i] -= self.increment

28

29 class Zero ():

30 """ Command to zero every element in an array."""

31 def __init__(self , array):

32 self.array = array

33 self.backup = None

34

35 def execute(self):

36 self.backup = self.array.copy()

37 for i in range(len(self.array)):

38 self.array[i] = 0

39

40 def undo(self):

41 for i in range(len(self.array)):

42 self.array[i] = self.backup[i]

43 self.backup = None

44

45 # create and array and perform some operations and show results

46 engine = Engine ()

47 array = [1, 5, 7, 2]; print(array)

48 engine.execute(Increment(array)); print(array)

49 engine.execute(Increment(array , 5)); print(array)

50 engine.execute(Zero(array)); print(array)

51 engine.undo (); print(array)

52 engine.undo (); print(array)

53 engine.undo (); print(array)

182 CHAPTER 3. LECTURES

3.20.4 Conventions and Standards

Programming languages are incredibly flexible. In order to write software that
is understandable, maintainable, and able to be re-used by others it is important
to follow conventions and standards.

Many companies, open-source projects, and individual programmers have
their own style. This is captured by a wonderful quote attributed to Grace
Hopper, “the great thing about standards is that there are so many of them to
choose from.” And while this is true, the important thing is to choose one.

When working on a large team project or in an open-source community it
is important to establish and follow a set of coding conventions. Not all team
members will like all of the conventions, but the project as a whole will benefit
from the consistency and uniformity that standards bring. This is especially
important when you consider that most software is maintained by someone
other than the original author(s).

In addition to consistency, standards also have other benefits. For example:

• They allow the creation of tools to assist with development, documenta-
tion, refactoring, and testing;

• They eliminate the need to make lots of unimportant decisions (should
you use two space indentation or four?);

• They lower the barrier to learning a new tool or language (and prevent
lock-in). E.g., standard key bindings for many applications (Ctrl-C and
Ctrl-V for cut and paste, respectively).

In this lecture we use the words standards and conventions quite loosely.
A rough delineation is that standards relate to rules for writing and formatting
code that is enforced within a project, company or industry, whereas conventions
are guidelines for how you should write your code so that it is consistent, robust
and easily understood by a community of programmers.

We have already seen a number of coding conventions under the guise of
good programming practice. For example, the use of descriptive variable names
is a convention—there is nothing in the programming language that forces you
to use meaningful names, but it turns out to just be a very good thing to do.

Naming Conventions

One of the biggest efforts in establishing coding conventions surrounds the nam-
ing of variables, functions and classes. Python restricts names to start with a
letter or underscore and contain only letters, numbers and underscores. The
rest is up to the programmer.

A fairly standard convention (in Python) is to use all capital letters for
constants, to capitalise the first letter of each word in a class name, and to use
lowercase with underscores for function and variable names. The following gives
examples of each:

3.20. LECTURE 20: SOFTWARE DESIGN 183

Python Code

1 # constants

2 ALL_CAPS_WITH_UNDERSCORES

3

4 # class names

5 camelCase

6 UpperCamelCase

7

8 # variable names

9 underscore_separated

10 _underscore_prefixed

11 __underscore_surrounded__

Some naming conventions are so well established that they appear to be rules
of the programming language. A good example is the use of “self” in member
function declarations. This is, in fact, a convention and “self” can technically be
replaced by any valid variable name (although that is not advisable). Consider
the readability of the following class definitions.

class MeaningfulClassName:

constructor

def __init__(self , val1 , val2):

self.total = val1 + val2

a method to ...

def scale(self , factor):

return factor * self.total

class C:

__init__

def __init__(r, a, b):

r.H = a + b

method

def m(s, _123):

return _123 * s.H

Code Layout

Another important convention has to do with code structure and layout. In
Python indentation is significant so the language forces a certain layout. How-
ever, you still have a choice of tab or space, and how many spaces. The use of
four-space indentation is the norm.

The maximum length of any one line of code is also a convention. Older
programmers used 80 characters, but the new standard is more like 120. Py-
Charm indicates the maximum line limit with a margin line. Of course, this is
not a hard rule and can sometimes be violated. When a line is broken there is a
choice about where to break it. Try break lines within parentheses, at a comma
or inline operation and continue the line at an indented position.

A very common (and useful) convention for Python scripts is to wrap the
entry-point code in if __name__ == "__main__": to prevent execution when
the script is imported into another piece of code (e.g., to reuse some of its
internally defined functions).

Documentation and Commenting

Various standard exist for documenting code. In Python use docstrings for
functions and classes. PyCharm can assist by providing a template for the
docstring (by typing a triple inverted commas and hitting enter).

184 CHAPTER 3. LECTURES

Python Code

1 """

2 Concise description of the function ’s purpose.

3

4 :param first_argument: A short description of the first argument.

5 :param second_argument: A short description of the second argument.

6 :return: A short description of the return value.

7

8 Optionally , more details about the function including , perhaps , a

9 description of how it works , what algorithms are implemented , any

10 side effects of the function , special cases that the caller should

11 be aware of, and examples for how it can be used.

12 """

Comments, discussed in an earlier lecture, should also be used appropriately
and always kept up-to-date with the code.

Python also has a well accepted convention for file headers. For example,
the following file header is quite common:

Python Code

1 #!/usr/bin/env python

2

3 """

4 Docstring describing the module.

5 """

Older code used to include special variables in the header like __author__

and __copyright__ but these have largely been superseded by package level
LICENSE and README files.

Unit Testing

There are no hard rules about unit testing but the following conventions are
popular:

• Build tests using the unittest module. Similar libraries exist for other
programming languages.

• Have one unit test class for each class/module in your code.

• Name unit tests based on what functionality and behaviour is being tested.

• Do not mix test code with production code.

Miscellaneous Conventions

There are many other conventions that experienced programmers follow and
that generalise across to any other programming language. These include:

• Brevity. Keep expressions short (i.e., no more than about one line).
For example, if your lambda expression or list comprehension is more
complicated then define a function.

• Consistency. When modifying someone else’s code follow the existing
conventions (even if they don’t seem right to you at first).

3.20. LECTURE 20: SOFTWARE DESIGN 185

• More Whitespace. Actually, use less: avoid extraneous whitespace, but
don’t over crowd your code either.

Many Python specific coding conventions are described in PEP (Python
Enhancement Proposal) 0008—Style Guide for Python Code, which is based on
the tenet that code is read more often that it is written. The PEP can be found
at https://www.python.org/dev/peps/pep-0008/.

Different programming languages and communities of programmers adopt
different conventions. For example, Windows developers tend to use the so-
called Hungarian notation to name all variables. Here character prefixes such
as lpsz are used to denote a variable’s type, in this case a “long pointer to a
zero-terminated string”. The rest of the variable name is in CamelCase. Linux
developers tend to use underscores to separate words in a variable name.

Another example is naming conventions for member variables (inside classes)
in different programming languages. In C/C++ member variables are often
prefixed by “m ”. This is not necessary in Python, which forces the use of the
“self.” prefix.

3.20.5 Starting a New Project

One of the most difficult questions you will ask when you begin a new project is
where do I start? Unfortunately the answer depends on a number of factors—
the complexity of the project, the experience of you and your team, the time and
cost budget, the market and your customers. While the design and software en-
gineering methodologies discussed above outline a formal process for developing
software, in this section we give some practical advice on where to start.

• Design top-down; implement bottom-up. Do a rough design an iterate.

• Make sure you understand the problem. Can you break down the problem
into subproblems, which are more easily solved?

• What is the high-level idea? Who are the main actors (people, things,
and interactions) and how will these be modelled? How do these map
onto code?

• Have you seen software that solves a similar problem? Can you base your
design on that?

• Ask what are your inputs and what are your outputs? How will data flow
through your system?

• Set up a software revision control repository.

• How will you represent your data? Will you need to implement a class?
What interface should it have?

• Implement and test components in isolation to the whole system.

• Write test cases.

• Leave unimportant functionality until later (e.g., use pass or similar).
You want to make sure your design works before spending too much effort
getting every feature right.

• Refactor as you go, but don’t optimise too early.

186 CHAPTER 3. LECTURES

3.21 Lecture 21: Collaborating

Learning Outcomes

• Recognise techniques for more effective collaboration with others.

• Understand the role played by software revision control and issue
tracking systems in group projects.

Overview
This lecture covers the skills needed to work on a software project in
teams. We discuss some of the features of revision control systems, such
as GitLab, which facilitate collaborative projects.

There are many approaches to programming in groups that have various
pros and cons. All give some basic principles that you can use to help make
decisions about your project. Moreover, there is a vast body of literature on
how to effectively manage teams on technical projects. We won’t go into too
much detail here but there are some techniques you can investigate that may
be applicable to your work:

• Pair programming

• Test-driven development

• Continuous integration

The focus of this lecture is to show you how to use the tools that you are
already familiar with to help you to collaborate better.

3.21.1 Using GitLab to Collaborate

GitLab has many features that can be used to help you collaborate with your
team mates:

• Permissions and group control

• Commit messages, comments, and version history

• Issues, issue assignment, and milestones

• Wiki pages and other documentation

Do not feel that you need to use all of the bells and whistles that come along
with thes features; some (like milestones) are there for larger and longer-term
projects. Furthermore, these tools should not replace other forms of communi-
cation, such as email, instant messaging, and face-to-face meetings, which are
still needed to collaborate effectively.

Managing Group Members

The first step in collaborating on a project hosted by a remote revision control
system is to set up your project and its members. To add members to a project
in GitLab click on the Gear button for your project and choose “Members”.

3.21. LECTURE 21: COLLABORATING 187

You can then search for members to add by their real name, username (ANU
ID) or email address. You also get to set the permissions for each member of
your team. It’s best to set up collaborators as Developer or Master giving them
full permission to push code to the repository.

As the Owner of a repository you can always add or remove members later
and change permissions for individual members.

Commit Messages and Comments

Everytime you commit code you are prompted to enter a commit message. For
the small projects that you’ve been working on so far, and for the examples
that we have seen in class, these commit messages fairly banal. However, when
working on larger projects and in teams, commit messages become a invaluable
mechanism for comminicating between team members. A well written commit
message will help your team mates understand the changes that you have made.
As noted in an earlier lecture, commit messages can also be used to close an
issue.

Team members can also comment on invididual commits on to start a new
discussion thread. To do this in GitLab, simply view the commit (from the
“Repository ¿ Commits” tab) and write your comment in the space provided at
the bottom of the screen. Comments can even be attached to specific lines of
code (by clicking on that line). The original committer of the code will receive
a notification depending on their Profile Settings.

Issues, Issue assignment, and Milestones

Issues are a fantastic way of planning tasks and tracking development. For
example, at the start of a project you can create an issue of all the high-level
tasks that need to be completed. And as development proceeds a new issue can
be created for each new task (big or small) that comes up. This generation of
issues can be done in project meetings or in an ad-hoc manner (and discussed
online).

Issues can be assigned to specific members of your group. They will receive
notifications and can list all issues assigned to them. This gives you a (crude)
form of resource allocation, but more importantly let’s everyone know who is
responsible for what.

Milestones are collections of issues that can be assigned a due date. They
are more useful for larger, ongoing projects.

Wiki Pages and the README file

A wiki is a collaboratively editable collection of web pages. Each GitLab project
can have an associated wiki (you decide this when you first create the project).
Wikis are useful for planning, keeping meeting notes, documenting links to
external libraries, etc. Pages within the wiki are written in markdown, a text-
based formatting language.

Generally wiki pages are edited online. However, one of the nice features of
having a wiki integrated with revision control is that they can also be checkedout
as a git repository for offline editing.

Special files README.md, NOTES.md, and MEETINGS.md are also a common
way of managing software projects. Generally, the first place someone new to a

188 CHAPTER 3. LECTURES

project will look is the README.md file. This is such a common convention that
GitLab displays the README file on the main project page.

3.21.2 Communicating Effectively

There are plenty of other tools that facilitate effective communication—email,
chat, cloud-based messaging (e.g., slack), etc. However, one of the most effective
communication tools, when used properly, are face-to-face meetings.

Meetings

Using the tools discussed above, it should be possible to coordinate much of
your activity on a project without having to be in the same room or in the same
conference call. However, meetings are a good way to brainstorm and plan.
They are especially useful to coordinate who will work on which part of the
codebase so that merge conflicts can be avoided.

Come into meetings with a well-defined start and end time, a plan (i.e.,
agenda) of what will be discussed and end on time (have someone chair) with
a list of “action items” for the team members to do before the next meeting. If
something looks like it is dragging on, schedule a new time to discuss it further
and move on so the other items can be dealt with.

If something complicated or not well defined needs discussing, allocate a set
amount of time and try to work towards clarifying or simplifying. Make sure
notes are taken about what the team figured out—most importantly, document
all action items and decision.

3.21.3 Communication and Learning

Don’t get too hung up on process—you are still learning how to code and project
management is a completely different (albeit as important) skill to learn. The
most important things to remember when collaborating are:

• Keep open all lines of communication: email, meetings, phone, messaging.
But remember that other members of your team may operate on a different
schedule to you—e.g., don’t always expect an immediate response to an
email.

• Tell your team mates as early as possible if something goes wrong or your
plan needs revising. You can file an issue or send an email or bring it up
in a meeting if there is one coming up soon.

• Don’t get hung up on mistakes; solve the problem, learn from it, and move
on—the aim is to learn.

• Look for opportunities to help your team mates and improve their understanding—
don’t just do it all yourself but by the same token don’t just assign every-
thing to someone else.

• Every team member should all feel a sense of ownership in the project—
i.e., be able to point to a part and honestly say “I did this” and collectively
point to the project and proudly say “And we did this.”

3.22. LECTURE 22: REFACTORING CODE 189

3.22 Lecture 22: Refactoring Code

Learning Outcomes

• Be able to define refactoring as the process of re-writing code to
improve design or performance without changing behaviour.

• Understand how software revision control and regression testing
play an important part in the refactoring process.

• Be able to refactor small pieces of code, e.g., by encapsulating
repeated code in a function.

Overview
This lecture covers the art of re-writing an existing piece of code to
either make it simpler, faster, or provide additional functionality.

Refactoring is the process of re-writing software with the intention of mak-
ing it simpler (i.e., easier to understand and maintain) or use less resources
(i.e., faster or less memory hungry). Refactoring can also be done to prepare
for new functionality to be added. The main point is that during refactoring
the behaviour of the code should not change. As such, regression tests are a
very important for making sure you don’t introduce bugs during the refactoring
process.

3.22.1 Refactoring Categories

Refactoring can be broken down into three main categories:
Refactoring Names. Renaming variables or functions is a common oper-

ation and useful for correcting spelling mistakes, coming up with a more appro-
priate/descriptive name, or avoiding clashes with library or built-in functions.
Renaming can also be used to introduce constants in place of strings and magic
numbers—you should always be suspicious of strings and numbers that are not
used for output. Replacing these with constants will make your code much more
readable and maintainable.

Renaming also occurs when you move code between modules or break up a
large file into smaller ones to help with understanding and readability. This is
especially true when functions that work on similar data are grouped together
and separated from functions that have no clear relationship to one another.

Refactoring Processes. Long sequences of code are often difficult to un-
derstand and the operations better expressed as functions. A typical example
might be to break a long script into functions that (i) read data, (ii) process
pieces of data, (iii) combine the processed data, and (iv) visualise or output the
results.

Duplicated code should always be turned into functions and reused. In the
process of extracting common code you should try to recognise common usage
patterns and generalise functions to cover these patterns (e.g., by introducing
parameters).

Loops are another area where refactoring can be focused. Try simplify loops.
For example, use iterators over items or enumerate. Sometimes list compre-
hension simplifies the construction of an output list. You can also explore using
the map function for transforming one list into another.

190 CHAPTER 3. LECTURES

When your data processing involves complex state you should encapsulate
the data and operations that change the data into a class. This is typically
needed when several data structures or elements need to be updated simulata-
neously (e.g., day and month when representing dates).

Refactoring Structure. Sometimes decisions made early in a design, such
as choice of data structure, do not hold up as you add functionality or become
cumbersome to deal with as you get deeper into your implementation. When
this happens it may be time to change the type of data structure used to hold
your data. For example, two equal length lists used together may be better
stored as a list of tuples or dictionary.

Code structure can also be improved by simplifying dependencies between
functions or classes. For example, if you are passing many values into or out of
functions consider wrapping them in a dictionary or class. You may also consider
splitting a single large class into smaller units that are easier to manage. Other
simplifications may be to move methods up a class hierarchy so that derived
classes get access to that method. Alternatively, if several classes have similar
methods you can make them inherit from a common base (super) class.

3.22.2 Refactoring Guidelines

Since refactoring should not change behaviour you can use your existing code
to develop unit tests. Write these before making any changes to the code so
that you can regress against your previous “working” code at any stage of the
refactoring process.

Once you start refactoring you will probably initially break functionality
and then attempt to put it back together in a simplified way. Sandboxing and
revision control can be a life-saver here. Make sure your code is committed and
pushed to a remote repository before starting any major refactoring. If this get
out of hand you can always compare to the last working version or, as a last
resort, revert back to a working version and start again.

Inline with the above, try make lots of small changes instead of one big
change. For each change make sure your unit tests pass and then commit the
change to the repository. Of course big changes will sometimes be unavoidable.
In such cases consider starting a new branch in the repository so that you don’t
hold up development on other parts of the project.

When refactoring avoid early optimization. As you make changes to the code
computational bottlenecks may move to a different part of the process. Wait
until you’ve made all your changes, then profile the code to understand where
the bottlenecks really are. We have a whole future lecture on this topic.

Finally, always keep in mind the number one rule: don’t try to do too
much at once—make small changes and test often.

3.22.3 Refactoring Support in PyCharm

Many IDEs, including PyCharm, provide support for automating many refactor-
ing steps. In the following case study, we will assume that we have written some
(bad) code to get quickly get some statistics out of the wine quality dataset that
we saw earlier. Specifically, we will write code to compute the average pH and
alcohol content for red and white wines. The wine datasets can be downloaded
from https://archive.ics.uci.edu/ml/datasets/Wine.

3.22. LECTURE 22: REFACTORING CODE 191

Our quick-and-dirty solution is shown below and was mostly written by
replicating (cutting and pasting) large blocks of code.

Python Code

1 # Code to compute some statistics from the wine quality data sets.

2 #

3 # NOTE: This is deliberately poorly written so as to demonstrate

4 # why refactoring is important

5

6 import csv

7

8 # Get the means for red wine

9 print(’Red wine:’)

10

11 print(’\tpH:’)

12 # Calculate the average pH content in the red wine data set

13 with open(’winequality -red.csv’) as datafile:

14 sum = 0

15 count = 0

16 for row in csv.DictReader(datafile , delimiter=’;’):

17 sum += float(row[’pH’])

18 count += 1

19 print(’\t\tmean: {:.2f}’.format(sum / count))

20

21 print(’\talcohol:’)

22 # Calculate the average alcohol content in the red wine data set

23 with open(’winequality -red.csv’) as datafile:

24 sum = 0

25 count = 0

26 for row in csv.DictReader(datafile , delimiter=’;’):

27 sum += float(row[’alcohol ’])

28 count += 1

29 print(’\t\tmean: {:.2f}’.format(sum / count))

30

31 # Do the same for white wine

32 print(’White wine:’)

33

34 print(’\tpH:’)

35 # Calculate the average pH content in the white wine data set

36 with open(’winequality -white.csv’) as datafile:

37 sum = 0

38 count = 0

39 for row in csv.DictReader(datafile , delimiter=’;’):

40 sum += float(row[’pH’])

41 count += 1

42 print(’\t\tmean: {:.2f}’.format(sum / count))

43

44 print(’\talcohol:’)

45 # Calculate the average alcohol content in the white wine data set

46 with open(’winequality -white.csv’) as datafile:

47 sum = 0

48 count = 0

49 for row in csv.DictReader(datafile , delimiter=’;’):

50 sum += float(row[’alcohol ’])

51 count += 1

52 print(’\t\tmean: {:.2f}’.format(sum / count))

One poor aspect of the program above is that it includes a lot of repeated
code that can be consolodated. It is also difficult to extend, for example, if we
wished to compute the maximum pH instead of the average. We can address
these problems (and others) by refactoring the code.

192 CHAPTER 3. LECTURES

Figure 3.50: Snapshot of PyCharm IDE during refactoring operation.

We will tidy up the code in a number of steps:

• Rename sum, which clashes (or shadows) with a built-in function, with
total. To do this we can right-click on one instance of the variable and
select Refactor|Rename...

☛✡ ✟✠Shift-F6 . Type in the new name and notice
that PyCharm replaces all instances of the variable.

• The filenames “winequality-red.csv” and “winequality-white.csv” have been
hardcodes, which is in general bad programming practice. Let’s factor
them out into constants which will make it easier if we need to change the
file locations later. In PyCharm we can right-click on one of the filenames
(e.g., “winequality-red.csv”) and select Refactor|Extract|Constant...☛✡ ✟✠Ctrl-Alt-C . This step is shown in Figure 3.50. Notice how PyCharm sug-
gests a name for the constant and place it at the top of the code where
it will be easy to redefine if needed. We can move elsewhere if we don’t
like the placement. Repeat for the other filename (e.g., “winequality-
white.csv”).

• Observe that the expression total / count appears in numerous places
within the code. Let’s make the code more readable by giving the expres-
sion a name. Right-click on the expression and select Refactor|Extract|Variable...☛✡ ✟✠Ctrl-Alt-V . PyCharm suggests a variable name, but you can override the
suggestion by typing a new one. Let’s type mean (and notice that it
changes in both places; the variable assignment and the variable use).

• At this point there is still quite a lot of duplication of code. For exam-
ple, the “with open” suite of code appears in four different places and
essentially does the same thing. Let’s turn that code into a function.
In PyCharm, highlight the code you want to turn into a function (say

3.22. LECTURE 22: REFACTORING CODE 193

the first occurance), right-click and select Refactor|Extract|Method...☛✡ ✟✠Ctrl-Alt-M . Given the function a name, say “mean pH”, and click OK.
PyCharm has done some work for us automatically, but we can still do
better for example by removing the global variables created by PyCharm.
The function new looks as follows:

Python Code

1 def mean_pH ():

2 with open(RED_CSV) as datafile:

3 total = 0

4 count = 0

5 for row in csv.DictReader(datafile , delimiter=’;’):

6 total += float(row[’pH’])

7 count += 1

8 return total / count

• We can further improve the code by parameterising the function to be able
to pass in the filename and the attribute. This will then let us reuse the
function elsewhere in the code. Again, PyCharm can help with the refac-
toring via Refactor|Extract|Parameter...

☛✡ ✟✠Ctrl-Alt-P . We will rename
the function to “mean” (which we can do using Refactor|Rename... and
even preview the change before making it) and make sure we provide the
correct arguments when we call it.

Python Code

1 def mean(filename , attribute):

2 """ Compute mean of given attribute from the file."""

3 with open(filename) as datafile:

4 total , count = 0, 0

5 for row in csv.DictReader(datafile , delimiter=’;’):

6 total += float(row[attribute])

7 count += 1

8 return total / count

In just a short time of refactoring, we have made some pretty good progress.
The new code, shown below, is much more readable and maintainable.

194 CHAPTER 3. LECTURES

Python Code

1 # Partially refactored code to compute statistics from the wine

2 # quality dataset.

3

4 import csv

5

6 RED_CSV = ’winequality -red.csv’

7 WHITE_CSV = ’winequality -white.csv’

8

9 def mean(filename , attribute):

10 with open(filename) as datafile:

11 total , count = 0, 0

12 for row in csv.DictReader(datafile , delimiter=’;’):

13 total += float(row[attribute])

14 count += 1

15 return total / count

16

17 # Get the means for red wine

18 print(’Red wine:’)

19

20 print(’\tpH:’)

21 # Calculate the average pH content in the red wine data set

22 print(’\t\tmean: {:.2f}’.format(mean(RED_CSV , ’pH’)))

23

24 print(’\talcohol:’)

25 # Calculate the average alcohol content in the red wine data set

26 print(’\t\tmean: {:.2f}’.format(mean(RED_CSV , ’alcohol ’)))

27

28 print(’White wine:’)

29

30 print(’\tpH:’)

31 # Calculate the average pH content in the white wine data set

32 print(’\t\tmean: {:.2f}’.format(mean(WHITE_CSV , ’pH’)))

33

34 print(’\talcohol:’)

35 # Calculate the average alcohol content in the white wine data set

36 print(’\t\tmean: {:.2f}’.format(mean(WHITE_CSV , ’alcohol ’)))

Let’s make one more change to put the repeated calls to “mean” into a
loop. We will make this change manually. We can also very easily now add
functionality, such as calculating the mean of another attribute, say “quality”.
The final code is shown below.

3.22. LECTURE 22: REFACTORING CODE 195

Python Code

1 # Version of code to compute means of some attributes from the

2 # wine quality data sets. Compare against version above.

3

4 import csv

5

6 RED_CSV = ’winequality -red.csv’

7 WHITE_CSV = ’winequality -white.csv’

8

9

10 def mean(filename , attribute):

11 with open(filename) as datafile:

12 total , count = 0, 0

13 for row in csv.DictReader(datafile , delimiter=’;’):

14 total += float(row[attribute])

15 count += 1

16 return total / count

17

18

19 # Get results for red and white wine

20 for filename in [RED_CSV , WHITE_CSV]:

21 print(’Results for {}:’.format(filename))

22

23 for attr in [’pH’, ’alcohol ’, ’quality ’]:

24 print(’\t{}:’.format(attr))

25 print(’\t\tmean: {:.2f}’.format(mean(filename , attr)))

With the code in a much more managable state, it is now relatively easy
to extend the functionality. For example, in the code below we include two
additional statistics—max and min for each attribute.

Python Code

1 # Final version of code to compute various statistic over some

2 # attributes from the wine quality data sets.

3

4 import csv

5

6 RED_CSV = ’winequality -red.csv’

7 WHITE_CSV = ’winequality -white.csv’

8

9 def mean(xs):

10 return sum(xs) / len(xs)

11

12 def read_attribute(filename , attribute):

13 data = []

14 with open(filename) as datafile:

15 for row in csv.DictReader(datafile , delimiter=’;’):

16 data.append(float(row[attribute]))

17 return data

18

19 # Get results for red and white wine

20 for filename in [RED_CSV , WHITE_CSV]:

21 print(’Results for {}:’.format(filename))

22

23 for attr in [’pH’, ’alcohol ’, ’quality ’]:

24 print(’\t{}:’.format(attr))

25 data = read_attribute(filename , attr)

26 for stat in [mean , max , min]:

27 print(’\t\t{}: {:.2f}’.format(stat.__name__ , stat(data)))

196 CHAPTER 3. LECTURES

Note that for brevity in this case study we have not included unit tests or
discussed the use of revision control but as mentioned above these are both very
important steps when embarking on a large refactoring task.

3.23. LECTURE 23: ADVANCED PROGRAMMING 197

3.23 Lecture 23: Advanced Programming

Learning Outcomes

• Define the concept of an anonymous function.

• Be able to use lambda expressions as arguments to functions such
as sorted, map and filter.

• Understand and implement simple recursive functions.

Overview
This lecture covers some advanced programming concepts such as re-
cursion and lambda expressions.

With the programming concepts covered in the course so far you can solve
a great many computational problems. In this lecture we will discuss some
advanced programming concepts that, in certain situations, will make your so-
lutions more elegant.

3.23.1 Anonymous Functions

Most modern programming languages support anonymous functions. They are
functions that are created without a specified name (or identifier). This may
seems strange given that we usually invoke a function by providing its name as
part of the function call. We cannot do this with anonymous functions (unless we
assign the function to a variable as we will see below). However, we can invoke
the function at the point at which it is defined. For this reason anonymous
functions are often small and can be thought of throw away functions, that is,
functions that we use at the place where they are defined and not again.

Let’s consider the concrete example of sorting a list of names and final course
grades. We will assume that the names and grades are provided as a 2-tuple
with name first as shown in the code below.

Python Code

1 # define final grades as list of (name , grade) pairs

2 final_grades = [

3 ("Homer Simpson", 33.75) ,

4 ("Marge Simpson", 72.5),

5 ("Bart Simpson", 50.0) ,

6 ("Lisa Simpson", 98.5) ,

7 ("Maggie Simpson", 8.75),

8 ("Carl Carlson", 68.75) ,

9 ("Ned Flanders", 72.5) ,

10 ("Barney Gumble", 37.5),

11 ("Lenny Leonard", 40.0),

12 ("Otto Mann", 85.0),

13 ("Seymour Skinner", 81.25)

14]

15

16 # sort and print

17 sorted_by_name = sorted(final_grades);

18 for student in sorted_by_name:

19 print(student)

If we simply apply the sorted function and then print the names, we see that
Python has returned the list sorted by the first element of each tuple (ties, which

198 CHAPTER 3. LECTURES

do not appear in this example, are broken by looking at the second element).
The output is shown below.

(’Barney Gumble’, 37.5)

(’Bart Simpson’, 50.0)

(’Carl Carlson’, 68.75)

(’Homer Simpson’, 33.75)

(’Lenny Leonard’, 40.0)

(’Lisa Simpson’, 98.5)

(’Maggie Simpson’, 8.75)

(’Marge Simpson’, 72.5)

(’Ned Flanders’, 72.5)

(’Otto Mann’, 85.0)

(’Seymour Skinner’, 81.25)

What if we wanted the list stored by grade instead of name? There is an
old programming trick called decorate-sort-undecorate, which constructs a new
list called the decorated list with the fields of interest as the first element of
each tuple. This list is then sorted and then the extraneous fields removed. An
alternative, provided in Python 3’s sorted function is to provide an optional
key argument.

The key argument refers to a function which returns a key for each item
being sorted. The key is then used to compare items. So, for example, if we
want to sort by grade then we would want the key function to return the second
element in the (name, grade)-pair. One way to do this is to define the key
function explicitly and provide that to the sorted function as in:

Python Code

1 def grade_key(student):

2 return student [1]

3

4 sorted_by_grade = sorted(final_grades , key=grade_key)

5 for student in sorted_by_grade:

6 print(student)

However, since the grade key function is small and only really being used
in one place, we can use an anonymous function to more efficiently write our
code. In Python anonymous functions are declared using the lambda keyword.

In theoretical computer
science anonymous

functions are related to
field of study known as λ

Calculus.

The general pattern for a lambda expression is

lambda <arguments>: <return_expression>

In the case of our student sorting example we would have:

Python Code

1 sorted_by_grade = sorted(final_grades , key=lambda stdnt: stdnt [1])

2 for student in sorted_by_grade:

3 print(student)

which produces:

3.23. LECTURE 23: ADVANCED PROGRAMMING 199

(’Maggie Simpson’, 8.75)

(’Homer Simpson’, 33.75)

(’Barney Gumble’, 37.5)

(’Lenny Leonard’, 40.0)

(’Bart Simpson’, 50.0)

(’Carl Carlson’, 68.75)

(’Marge Simpson’, 72.5)

(’Ned Flanders’, 72.5)

(’Seymour Skinner’, 81.25)

(’Otto Mann’, 85.0)

(’Lisa Simpson’, 98.5)

Here is a more complicated example where we sort by last name and then
first name. The lambda expression is on Line 2.

Python Code

1 sorted_by_lastname = sorted(final_grades ,

2 key=lambda student: ’’.join(student [0]. split ()[:: -1]))

3 for student in sorted_by_lastname:

4 print(student)

Note that the sorted function does not modify the items themselves, even
though the key function is acting on the first element to swap the order of first
and last names.

(’Carl Carlson’, 68.75)

(’Ned Flanders’, 72.5)

(’Barney Gumble’, 37.5)

(’Lenny Leonard’, 40.0)

(’Otto Mann’, 85.0)

(’Bart Simpson’, 50.0)

(’Homer Simpson’, 33.75)

(’Lisa Simpson’, 98.5)

(’Maggie Simpson’, 8.75)

(’Marge Simpson’, 72.5)

(’Seymour Skinner’, 81.25)

Other Common Uses

Another common use of anonymous functions is in converting or mapping from
one list to another. Consider the problem of converting a list of heights in
feet and inches to centimeters. Knowing that there are 12 inches in a foot and
2.54cm in an inch we can write the following expression for converting from the
tuple (<feet>, <inches>) to the float <centimeters>,

lambda height: 2.54 * (12 * height [0] + height [1])

Python Code

1 height_imperial = [(6, 2), (5, 11), (6, 0), (5, 8), (5, 7)]

2 height_mertic = list(map(lambda x: 2.54 * (12 * x[0] + x[1]),

3 height_imperial))

4 print(height_mertic)

200 CHAPTER 3. LECTURES

Of course the same result could have been achieved with list comprehension,

Python Code

1 height_imperial = [(6, 2), (5, 11), (6, 0), (5, 8), (5, 7)]

2 height_mertic = [2.54 * (12 * x[0] + x[1]) for x in height_imperial]

3 print(height_mertic)

Lambda expressions can also be used to filter a list, for example, keeping
only heights from our list above 6 foot,

Python Code

1 height_imperial = [(6, 2), (5, 11), (6, 0), (5, 8), (5, 7)]

2 height_tall = filter(lambda x: x[0] >= 6, height_imperial)

3 print(height_tall)

If you prefer, this too could be done using list comprehension,

Python Code

1 height_imperial = [(6, 2), (5, 11), (6, 0), (5, 8), (5, 7)]

2 height_tall = [x for x in height_imperial if x[0] >= 6]

3 print(height_tall)

Naming an Anonymous Function

Anonymous functions can be assigned to a variable, thus giving them a name
(which remains valid while the variable remains in scope).

Python Code

1 # define a function to convert height from imperial to metric

2 convert_height = lambda x: 2.54 * (12 * x[0] + x[1])

3 # demonstrate the function

4 print(convert_height ((6, 2)))

Closures

There are more sophisticated uses for lambda expressions in programming tech-
nique known as closures. These are advanced techniques which are beyond the
scope of this course, but if you’re interested you can read about them here:

https://en.wikipedia.org/wiki/Closure_(computer_programming)

3.23.2 Recursion

Recursion is a method for solving a problem where the solution is found by
combining the solutions to smaller instances of the same problem. In the context
of programming languages, a recursive function is a function that calls itself on
smaller input as a step in evaluating its output. A base case is always needed
to stop the recursion (i.e., a case where the recursive function no longer needs
to call itself but can evaluate its output directly on its input).

3.23. LECTURE 23: ADVANCED PROGRAMMING 201

Figure 3.51: The Towers of Hanoi puzzle. The aim is to move the stack of disks
from the leftmost column to the rightmost column with only every moving one disk
at a time and never placing a larger disk on a smaller disk.

(a) (b)

Figure 3.52: Developing the recursive solution for the Towers of Hanoi puzzle.

Example 3.23.1. The Towers of Hanoi puzzle is a classic problem that is
used in computer science that is used to demonstrate the concept of recusion.
In the puzzle you are given a stack of n disks of varying size and three rods or
columns. Let’s call them “A”, “B” and “C”. Initially the disks are placed on
“A” in descending order of size as depicted in Figure 3.51 (for n equals 4). The
objective of the puzzle is to move the entire stack from “A” to “C” with the
following two restrictions: First, you may only move one disk at a time. Second,
you may never place a larger disk on a smaller disk.

In deriving a recursive solution, consider a situation in which we are able
to move the top n− 1 disks from column “A” to the middle column, “B”. The
scenario is depicted in Figure 3.52. We know that we cannot move the n − 1
disks in one go so there must be a sequence of moves to achieve this. However,
for the moment we will not be concerned with how this is done, only that it is
possible. Now, given that we have moved the the top n− 1 disks to “B” we are
free to move the biggest disk from “A” to “C” thereby making progress towards
our solution—the first disk is in the right place.

It remains to move the rest of the disks to column “C”. But, observe that
this is just a smaller instance of the orginal puzzle. Namely, we can ignore the
largest disk and reduce the problem to moving the stack of disks from column
“B” to column “C”. Now, let’s return to the question of how to move the n− 1
disks from “A” to “B” in the first place. Well, this is also a smaller instance
of the original puzzle, except now the destination stack is “B” instead of “C”.
Again we can ignore the largest disk.

We now have a recursive algorithm for solving to the Towers of Hanoi puzzle.
Let us denote the algorithm by SolveTowersOfHanoi(n, A, C), meaning solve
the Towers of Hanoi problem with n disks originally on column “A” with the
goal of moving them to column “C”. The algorithm can then be summarised as:

• SolveTowersOfHanoi(n, A, C):

– Move n − 1 disks from “A” to “B” which can be done using
SolveTowersOfHanoi(n - 1, A, B)

202 CHAPTER 3. LECTURES

– Move the n-th disk from “A” to “C”

– Move n − 1 disks from “B” to “C” which can be done using
SolveTowersOfHanoi(n - 1, B, C)

The only thing left to do is to define a base case. For the Towers of Hanoi
problem the base case occurs when n = 1. Here we simply move the single disk
from its starting column to the destination column. (We could have also define
the base case to be when n = 0, which would be to do nothing.)

With the algorithm in hand, writing code to solve the Towers of Hanoi puzzle
is fairly straightforward. We begin by developing some infrastructue code to
display the solution. Our code makes use of a class to hold the data (number
of disks and their current locations). We initialise the class by providing an
argument specifying the number of disks. The constructor init below places
all disks on column “A” and leaves the other columns empty. A disk is encoded
by an integer specifying its size (from the smallest, 1, to the largest, n).

Python Code

1 class Hanoi(object):

2

3 def __init__(self , n):

4 """ Initialise the board state with n disks."""

5 self.n = n

6 self.stacks = {’A’: list(range(n, 0, -1)), ’B’: [], ’C’: []}

Let us write some helper member functions for displaying the state of the
puzzle at any point. We will use a row of 2m+ 1 stars to depict a piece of size
m. The code for displaying a single piece and the whole puzzle is then:

Python Code

1 def print_disk(self , m):

2 """ Prints the m-th disk."""

3 prefix = ’ ’ * (self.n - m)

4 print(prefix + (’*’ * (2 * m + 1)) + prefix , end=’’)

5

6 def print(self):

7 """ Prints the puzzle state."""

8 empty_row = (’ ’ * self.n) + ’|’ + (’ ’ * self.n)

9 for row in range(self.n, 0, -1):

10 print(’{0:2d}: ’.format(row), end=’’)

11

12 for col in [’A’, ’B’, ’C’]:

13 if len(self.stacks[col]) < row:

14 print(empty_row , end=’’)

15 else:

16 self.print_disk(self.stacks[col][row - 1])

17 print ()

18 print(’ ’ + ’-’ * (self.n * 6 + 3))

19 print ()

We can now initialise and display a puzzle. What about moving disks? To
do this we need to pop the disk from one column and push in onto another. Let
us implement this as the move member function.

3.23. LECTURE 23: ADVANCED PROGRAMMING 203

Python Code

1 def move(self , src , dst):

2 """ Move the disk at the top of stack ‘src ‘ to ‘dst ‘."""

3 self.stacks[dst]. append(self.stacks[src].pop())

4 self.print ()

To facilitate outputting the solution we have included a statement to print the
puzzle state at the end of each move.

Let us start writing code to move a partial stack of m disks from one column
to another. This corresponds to our recursion discussed above. The code is:

Python Code

1 def move_partial_stack(self , m, src , dst):

2 """ Move stack of depth ‘m‘ from ‘src ‘ to ‘dst ‘."""

3 # base case

4 if (m == 1):

5 self.move(src , dst)

6 return

7

8 # recursion

9 oth = self.other(src , dst)

10 # 1. move m-1 disks from src to oth

11 self.move_partial_stack(m - 1, src , oth)

12 # 2. move m-th disk to dst

13 self.move(src , dst)

14 # 3. move m-1 disks from oth to src

15 self.move_partial_stack(m - 1, oth , dst)

Note that our code makes use of the, as yet, undefined function other, which
returns the spare column for the current puzzle instance. For example is src

is “A” and dst is “C” then other should return “B”. The function can be
implemented in various ways. One way, that uses list comprehension, is:

Python Code

1 def other(self , src , dst):

2 """ Returns the stack which is not ‘src ‘ or ‘dst ‘."""

3 return [disk for disk in self.stacks.keys()

4 if disk not in [src , dst]][0]

Finally, to solve the original puzzle we need to invoke move partial stack

with the right arguments:

Python Code

1 def solve(self):

2 """ Solve the Towers of Hanoi problem."""

3 self.move_partial_stack(self.n, ’A’, ’C’)

To solve a Towers of Hanoi problem with four disks we construct the class
with argument 4 and call the solve method:

Python Code

1 puzzle = Hanoi (4) # construct the puzzle instance

2 puzzle.print () # print the initial puzzle state

3 puzzle.solve() # solve the puzzle

204 CHAPTER 3. LECTURES

The code developed above generates the following sequence of moves (exe-
cuted columnwise):

4: *** | |
3: ***** | |
2: ******* | |
1: ********* | |

4: | | |
3: ***** | |
2: ******* | |
1: ********* *** |

4: | | |
3: | | |
2: ******* | |
1: ********* *** *****

4: | | |
3: | | |
2: ******* | ***
1: ********* | *****

4: | | |
3: | | |
2: | | ***
1: ********* ******* *****

4: | | |
3: | | |
2: *** | |
1: ********* ******* *****

4: | | |
3: | | |
2: *** ***** |
1: ********* ******* |

4: | | |
3: | *** |
2: | ***** |
1: ********* ******* |

4: | | |
3: | *** |
2: | ***** |
1: | ******* *********

4: | | |
3: | | |
2: | ***** ***
1: | ******* *********

4: | | |
3: | | |
2: | | ***
1: ***** ******* *********

4: | | |
3: | | |
2: *** | |
1: ***** ******* *********

4: | | |
3: | | |
2: *** | *******
1: ***** | *********

4: | | |
3: | | |
2: | | *******
1: ***** *** *********

4: | | |
3: | | *****
2: | | *******
1: | *** *********

4: | | ***
3: | | *****
2: | | *******
1: | | *********

Every recursive function can be reimplemented as an iteration without recur-
sion. However, thinking about the solution to a problem recusively may result
in a more elegant formulation and simpler code.

Example 3.23.2. The Towers of Hanoi puzzle can also be solved via an iter-
ative algorithm, which simply alternates between the following two moves:

• Move the smallest disk one column clockwise if the number of disks is even
(or anti-clockwise if the number of disks is odd);

• Move another disk legally (there will only be one such move).

Note that discovering this algorithm is somewhat more difficult than coming up
with the recursive solution above. But we can see that this is the exact set of
moves that the recursive algorithm is generating in the example solution shown.

3.23. LECTURE 23: ADVANCED PROGRAMMING 205

Recursion can also increase the cost of solving a problem if implemented
naively. A classic example is when using recusion to compute the n-th number
in the Fibonacci sequence.

The Fibonacci numbers are those in an integer sequence where each number
in the sequence is defined as the sum of the previous two numbers, written
mathematically as:

Fn = Fn−1 + Fn−2

and where the first two numbers in the sequence are 0 and 1 (i.e., F0 = 0 and
F1 = 1). Evaluating the equation above we see that the first few numbers in
the sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

From the definition of the Fibonacci sequence it is very straightforward to
code a recursive function to compute the n-th number as we show below.

Python Code

1 def fibonacci_recusive(n):

2 """ Compute the n-th Fibonacci number recursively."""

3

4 # base cases

5 if n == 0: return 0

6 if n == 1: return 1

7

8 # recursion

9 return fibonacci_recusive(n - 1) + fibonacci_recusive(n - 2)

Here Lines 5 and 6 deal with the base cases and Line 9 handles the re-
cusion. Note that if n is not one of the base cases then the return state-
ment calls fibonacci recusive twice. This is somewhat wasteful given that
the first call, fibonacci recusive(n-1), will itself invoke the second call,
fibonacci recusive(n-2). This results in double the computation needed.
A much faster solution is to compute the n-th number directly as the following
code shows.

Python Code

1 def fibonacci_iterative(n):

2 """ Compute the n-th Fibonacci number iteratively."""

3

4 # initialisation

5 f_last = 0

6 f_curr = 1

7

8 # iteration

9 for i in range(1, n):

10 f_curr , f_last = f_curr + f_last , f_curr

11

12 return f_curr

In the direct solution we simply keep track of the current and previous
fibonacci numbers in variables f curr and f last, respectively. At each step in
the iteration we compute the new current value by adding f curr and f last

and updating the new previous value to the current one. This is efficient in both
storage and time.

206 CHAPTER 3. LECTURES

3.23.3 Next Lecture

• Regular expressions

3.24. LECTURE 24: REGULAR EXPRESSIONS 207

3.24 Lecture 24: Regular Expressions

Learning Outcomes

• Understand that regular expressions are a language for encoding
patterns for string matching.

• Understand standard regular expression constructs including an-
choring, alternation, grouping and quantification.

• Be able to read and write simple regular expressions.

Overview
This lecture covers the topic of regular expressions for pattern matching
and replacement. We show how regular expressions can be useful in
parsing or re-formatting data.

Standard string matching algorithms look for an exact match of a substring
within a larger string. However, this is restrictive and we would often like to
search for more expressive patterns, e.g., find either the word “dog” or “cat” in a
document. A regular expression is a language for encoding such search patterns.
Of course the above example (of searching for “dog” or “cat”) could easily be
done using two exact string matches, but, as we will see, regular expressions
allow for way more flexible patterns (such as finding every word starting with
“d” and ending with “g” and being no more than five letters long). Regular
expressions are defined using a so-called regular language. They appear in both
programming languages and stand-alone applications such as word processors
and genomic databases, and can be used to search for patterns or validate input.

3.24.1 Learning from Examples

Regular expressions (or regexp for short) can be daunting when first encountered.
The following quote
attributed to Jamie
Zawinski summarises the
frustration many people
feel when working with
regular expressions: Some
people, when confronted
with a problem, think “I
know, I’ll use regular
expressions.” Now they
have two problems.

The best way to learn about regular expressions, just like learning to program,
is to build up from some simple examples. The following is a regular expression
that searches for either the word “dog” or the word “cat”.

dog|cat

The vertical bar represents alternation, i.e., the choice between two alter-
native sub-patterns. Alternation can be extended arbitrarily, e.g.,

dog|cat|mouse|bird

From this example we can see that regular expressions define a (possibly
infinite) set of strings to match, in this case the set is “dog”, “cat”, “mouse”,
“bird”. Constructs more powerful than alternation allow use to express a much
richer set very compactly, but let’s first see how regular expressions are written
in Python.

Regular Expressions in Python

The Python package re is used for regular expression matching.

208 CHAPTER 3. LECTURES

Python Code

1 import re

2 sentence = "My dog can catch tennis balls."

3 m = re.search(r"dog|cat", sentence)

The prefix ‘r’ before the regular expression string passed to search tells
Python to treat the string as a raw string. In other words, special characters
like backslashes are left unaltered in the string allowing them to be interpretted
as regular expression tokens.

Python Console

1 >>> if m: print("matched")

2 matched

3 >>> print(m.group ())

4 dog

The search function returns the first location where the pattern matches
within the string. But our example sentence actually contains multiple matches.
The findall function allows us to extract all matches.

Python Code

1 import re

2 sentence = "My dog can catch tennis balls."

3 m = re.findall(r"dog|cat", sentence)

Python Console

1 >>> print(m)

2 [’dog’, ’cat’]

3.24.2 More Regular Expression Constructs

Character classes specify a set of single character alternations. They are
specified by square brackets and can support ranges (indicated by a dash).
Negation is also supported using a caret (^). For example, the set of query
strings “dog”, “dag”, “dig” can be encoded by the regular expression

d[aio]g

The wildcard (single dot character) is shorthand for the ultimate character
set—i.e., match any single character. Other shorthands for common character
classes are shown in Table 3.9.

Quantification qualifiers allow us to specify repetition of sub-patterns,
for example, optionally allowing an “s” on the end of a word. Thus, the pattern

d[aio]gs?

would any of “dag”, “dags”, “dig”, “digs”, “dog”, “dogs”.
A very common quantification qualifier is the match zero or more quantifier.

For example, matching the string “Dogs” or “dogs” followed by “cats” with any
number of words in between them would be represented by the regular expression

[Dd]ogs\s.*\scats

3.24. LECTURE 24: REGULAR EXPRESSIONS 209

Shorthand Description
. Matches anything other than newline.
\d Matches any digit. Same as [0-9].
\D Matches non-digits. Same as [^0-9].
\s Matches a whitespace character.
\S Matches a non-whitespace character.
\w Matches letters, digits and underscore. Same as [a-zA-Z0-9_].
\W Matches anything other than letters, digits and underscore.
\. Matches a dot (period).
\\ Matches a backslash (\).

Table 3.9: Shorthands for common character classes.

Quantifier Description
* Match zero or more of the preceding group.
+ Match one or more of the preceding group.
? Match zero or one of the preceding group.
{m} Match exactly m copies of the preceding group.
{m,n} Match between m and n copies of the preceding group.

Table 3.10: Standard quantification qualifiers.

Table 3.10 shows the standard quantifiers.
Sometimes it is useful to group characters/tokens into sub-patterns. Quan-

tification can then be applied to the group. Grouped matches can also be
retrieved later (as we will soon see). A group is a subsequence of a regular
expression surrounded by round brackets (). Compare the following three ex-
pressions.

Python Console

1 >>> sentence = "My dog can catch tennis balls."

2 >>> print(re.findall(r"dog|cat?", sentence))

3 [’dog’, ’ca’, ’cat’]

4 >>> print(re.findall(r"(dog|cat)?", sentence))

5 [’’, ’’, ’’, ’dog’, ’’, ’’, ’’, ’’, ’’, ’cat’, ’’, ’’, ’’, ’’, ’’,

6 ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’]

7 >>> print(re.findall(r"dog|(cat)?", sentence))

8 [’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’cat’, ’’, ’’, ’’, ’’, ’’, ’’,

9 ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’]

The second two expressions match at every character in the string with the ?

quantifier matching greedily.
Note that when using grouping, the findall function will return matches

as tuples that include the substrings that are matched by each subexpression.
For example,

Python Console

1 >>> re.findall(r"((dog)|(cat))", sentence)

2 [(’dog’, ’dog’, ’’), (’cat’, ’’, ’cat’)]

We can anchor our expressions to the start or end of a string using meta-
characters ^ and $, respectively. For example, matching filenames that end in

210 CHAPTER 3. LECTURES

either “.py” or “.txt” can be done using:

\.(py|txt)$

Sometimes you will want to match the same subsequence that you have
encountered earlier, e.g., “dogs and dogs” or “cats and cats” but not “dogs
and cats”. Back references allow you to capture a partial match and refer
to it later in your regular expression. The subsequence is captured using round
brackets (). The back reference, or captured subsequence, is specified using
\<n> where <n> is counts the open brackets. For example,

((dog|cat) and \2)

3.24.3 Replacement

Regular expressions are also useful is specifying complex find and replace op-
erations. In the most straightforward case we would replace a matched pattern
with a fixed string. For example, replacing either “dog” or “cat” with the string
“animal” could be done with the following Python snippet:

Python Code

1 print(re.sub(r"dog|cat", "animal", sentence))

We can also use back references to capture sub-patterns and use them in
our replacement string. For example, replace “Stephen Gould” or “Mark Reid”
with “Stephen” or “Mark”, respectively can be done with:

Python Code

1 sentence = "COMP1040 is taught by Stephen Gould and Mark Reid"

2 pattern = r"((Stephen|Mark) (Gould|Reid))"

3 print(re.sub(pattern , r"\2", sentence))

Warning. This expression also replaces “Stephen Reid” and “Mark Gould”
with “Stephen” and “Mark”, respectively.

3.24.4 Regular Expressions as Finite State Automata

Strings are matched against regular expressions using an abstract machine
known as an automata, which you will learn about in advanced courses on
computation theory and algorithms. The process of compiling a regular expres-
sion to an automata takes time so if you’re running the same regular expression
against multiple strings it helps to precompile the expression.

Python Code

1 import re

2

3 # precompile the regexp

4 pattern = r"dog|cat"

5 prog = re.compile ()

6

7 # process each line of a file for the pattern and print matches

8 with open("file.txt", "r") as fh:

9 for line in fh:

10 if prog.match(line):

11 print(line.strip ())

3.24. LECTURE 24: REGULAR EXPRESSIONS 211

3.24.5 Final Word

Regular expressions can get complicated. Don’t try to solve everything with a
regular expression. You often have other programming tools at your disposal.
For example, you may wish to verify valid email addresses on a web form. The
following regular expression will validate that an address is RFC5322 compliant:

(?:[a-z0-9!#$%&’*+/=?^_‘{|}~-]+(?:\.[a-z0-9!#$%&’*+/=?^_‘{|}~-]

+)*|"(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21\x23-\x5b\x5d-\x7f]| \\

[\x01-\x09\x0b\x0c\x0e-\x7f])*")@(?:(?:[a-z0-9](?:[a-z0-9-]*[a-z

0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?|\[(?:(?:25[0-5]|2[0-4]

[0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9]

[0-9]?|[a-z0-9-]*[a-z0-9]:(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21-\x5a

\x53-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])+)\])

However, there is no guarantee that anyone actually owns that email address.
A simpler solution is to perform some basic match, say

\S+@\S+\.\S+

and then send a welcome email and see if it bounces!

212 CHAPTER 3. LECTURES

3.25 Lecture 25: Data Pipelines and Command
Line Processing

Learning Outcomes

• Appreciate that data processing often involves a pipeline of tasks.

• Be able to glue together pieces of existing software to achieve some
data processing task.

• Understand the importance of re-purposing existing tools over
writing your own.

• Have an appreciation of the history, breadth, and depth of com-
mand line tools and their importance for software development.

• Be familiar with some basic command line commands for navigat-
ing file systems.

• Understand that IDEs such as PyCharm provide often provide
graphical interfaces to many command line tools, such as inter-
preters and revision control systems.

• Understand how to write your own simple command line tools in
Python.

Overview
A typical application may involves getting some raw data, pre-
processing it, performing some analysis on it, generating some output,
and then interpretting and reporting the results. This lecture shows
how these steps come together in a data processing pipeline. Moreover,
often you can solve a problem, or a large portion of a problem, with
pre-existing software tools if only the tools spoke to each other. This
lecture will present strategies for gluing bits of code together to form
a larger application and introduces the idea of command line tools and
interfaces.

Despite the prevalence of graphically-oriented interfaces for operating sys-
tems such as in Mac OS X, Windows, and several Linux distributions, all of
these systems still provide tools for interacting with the files on your computer
via a command line interface (CLI). On OS X and Linux a command line can be
open through the Terminal app, while on Windows this is achieved by open the
Command Prompt application or through third-party programs such as Power-
Shell. PyCharm also comes with a command line interface which can be opened
by pressing

☛✡ ✟✠Alt-F12 .
In this lecture we will focus on the commands and tools provided by what

are called POSIX -compatible terminals such as those provided on Mac and
Linux systems, or through PowerShell on Windows. Command line tools are
extremely useful in the context of a data processing pipeline where multiple
processing stages need to be glued together. We conclude the lecture with a
demonstration of such a pipeline.

3.25.1 Basic Terminal Commands

When you first open up a terminal you will be greeted with a command prompt,
as shown (for Mac OS X) in Figure 3.53. This prompt acts much like the

3.25. LECTURE 25: DATA PIPELINES AND COMMAND LINE PROCESSING213

Python console we have been using elsewhere in this course: input is typed at
the prompt and when return is pressed the input is interpreted, some output is
displayed, and another prompt is shown.

Figure 3.53: A command prompt is shown when the Terminal application on Mac
OS X is first opened.

The main difference between the command line and the Python console
is that the command line understands a different set of commands to those
understood at a Python console. A list of commonly used commands that you
can use at a command line are shown in Table 3.11. These commands mimic
several of the ways you can work with files and directories by dragging, dropping,
and clicking them in the graphical user interface to your operating system.

Command Description
cd DIRNAME Change current directory to DIRNAME.
ls Show the contents of the current directory.
cp SRC DEST Copy the file SRC to DEST.
mv SRC DEST Move or rename the file SRC to DEST.

Table 3.11: Some common command line commands for working with files.

As well as these basic commands for working with files, there are hundreds of
other commands. These range from grep which can be used to search for strings
or patterns of text within files, to ssh which lets you open command lines on
remote machines, to zip which can be used to compress files and directories.

3.25.2 The Command Line and Programming

Several of the things you do when working with code in PyCharm can also be
done via the command line. In fact, PyCharm actually uses the command line
“under the hood” to implement some of its functionality.

Running Python Programs

When you run a piece of python code, PyCharm constructs a string that can
is sent to a command line to run that code. For example, when you right-click
on a file and select “Run” you will notice that in the window that displays the
output of the code that is run there is text like:

/Users/mreid/bin/python /Users/mreid/code/mycode.py

This is a command line instruction to call the python interpreter located in the
/Users/mreid/bin/ directory and pass it the program in the mycode.py file
located in the /Users/mreid/code/ directory.

214 CHAPTER 3. LECTURES

You can use the “Edit Configurations...” dialog window to construct more
complex command line instructions from PyCharm, including being able to add
arguments after the program name and other options.

Version Control

The other way in which PyCharm uses the command line is when executing
version control instructions for git. When you clone, commit, pull, and push to
and from repositories in PyCharm, command line versions of these instructions
are called and their output is captured and turned into graphical representation
within the PyCharm IDE.

If you open a terminal
☛✡ ✟✠Alt-F12 and run the git command, you will see a

list of ways you can run Git from the command line:

$ git

usage: git [--version] [--help] [-c name=value]

[--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]

[-p|--paginate|--no-pager] [--no-replace-objects] [--bare]

[--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]

<command> [<args>]

The most commonly used git commands are:

add Add file contents to the index

bisect Find by binary search the change that introduced a bug

branch List, create, or delete branches

checkout Checkout a branch or paths to the working tree

clone Clone a repository into a new directory

commit Record changes to the repository

diff Show changes between commits, commit and working tree, etc

fetch Download objects and refs from another repository

grep Print lines matching a pattern

init Create an empty Git repository or reinitialize an existing one

log Show commit logs

merge Join two or more development histories together

mv Move or rename a file, a directory, or a symlink

pull Fetch from and merge with another repository or a local branch

push Update remote refs along with associated objects

rebase Forward-port local commits to the updated upstream head

reset Reset current HEAD to the specified state

rm Remove files from the working tree and from the index

show Show various types of objects

status Show the working tree status

tag Create, list, delete or verify a tag object signed with GPG

’git help -a’ and ’git help -g’ lists available subcommands and some

concept guides. See ’git help <command>’ or ’git help <concept>’

to read about a specific subcommand or concept.

This can sometimes be useful for more advanced operations. For example,
to get the URL for the remote repository that your code is being feteched from
or pushed to, you can use:

3.25. LECTURE 25: DATA PIPELINES AND COMMAND LINE PROCESSING215

Terminal

1 $ git remote -v

You can even change where you’d like your changes to be pushed to:

Terminal

1 $ git remote set -url origin $NEW_URL

2 $ git push

where $NEW_URL is the full URL of the new remote repository.

3.25.3 Writing Command Line Tools in Python

Example 3.25.1. The following code shows a very simple Python program
that can be run from the command line. We will assume its file is called
countwords.py. When this code is given the name of a file as an argument
on the command line, it will count the number of words (i.e., space delimited
strings) in the given file.

Python Code

1 #!/usr/bin/env python3

2 import sys

3

4 # Get the first command line argument to as filename to process

5 filename = sys.argv [1]

6

7 # Read in each line , split on white space , and count words

8 wordcount = 0

9 with open(filename) as file:

10 for line in file:

11 # Break up line into words and add to count

12 wordcount += len(line.split ())

13

14 # Display the count

15 print(wordcount)

There are few difference between this program and the others you have
seen so far in this course. First, the beginning of the file contains a cryptic
looking #!/usr/bin/env python3 comment. This is actually an instruction to
the command line interpreter to treat the rest of the file as a Python program.
More specifically, the command line will “hand over” the running of the file to
the Python 3 interpreter that is found somewhere within the user’s environment
(that is what the /usr/bin/env part is doing).

The second thing to notice is that line 2 is import sys. This makes the
sys module available to the program and, on line 5, we can see that there is
a variable in that module called argv that is used. This variable is a list that
contains the space delimited strings that make up the command that was called
to run this program.

For example, if the program is called on the command line
using countwords.py words.txt then the sys.argv list will contain

216 CHAPTER 3. LECTURES

[’countwords.py’, ’words.txt’]. Thus, the contents of sys.argv[1] will
be the filename to process.

The remainder of this code is standard Python. The print statement at the
very end will send the word count that is computed in the previous lines back
out to the terminal.

Many scripts include optional arguments that control their functionality (e.g., set-
ting verbose output). The getopt Python module provides a principled way of
processing optional arguments. A short example is shown below.

Python Code

1 import sys , getopt

2

3 # Usage statement to display if an error is encountered or

4 # the user provides the help option.

5 def usage(result = 1):

6 print("USAGE: python3 " + sys.argv [0] + " [<OPTIONS >]")

7 print("OPTIONS:")

8 print(" -a <argument > :: option with argument")

9 print(" -b :: option with no argument")

10 print(" -h | --help :: print help")

11 sys.exit(result)

12

13 # Parse the command line

14 try:

15 opts , args = getopt.getopt(sys.argv [1:], "a:bh", ["help"])

16 except getopt.GetoptError:

17 usage ()

18

19 # Make sure there are no "required" parameters

20 if len(args) != 0:

21 usage ()

22

23 # Start processing command line arguments

24 for opt , arg in opts:

25 if opt in ("-h", "--help"):

26 usage (0)

27 elif opt in ("-a"):

28 print("argument for -a is {}".format(arg))

29 elif opt == "-b":

30 print("option -b encountered")

Note that you can set command line options in PyCharm by editing the
Run... configuration script parameters. However, it is more common to run
scripts with command line options/arguments from the command line.

3.25.4 Data Pipelines

One of the big advantages of command line tools is that they facilitate data
processing pipelines, i.e., gluing applications together to achieve some goal. A
pipeline breaks a long operation into smaller self-contained stages. Typical
stages in a data processing pipeline are shown in Figure 3.54 and summarised
below:

• Acquisition and Extraction

3.25. LECTURE 25: DATA PIPELINES AND COMMAND LINE PROCESSING217

Figure 3.54: Typical stages in a data processing pipeline.

– Getting the data onto your computer
– Pulling out the information you need and discarding the rest

• Cleaning and Transformation

– Text processing
– Converting between data formats
– Deriving new values

• Aggregation

– Compute statistics
– Grouping by shared column values
– Fusion with other data

• Analysis and Visualisation

– Plotting, reporting, etc.

Rather than write a single monolithic application to perform all of these
steps, typical pipelines glue different applications together using a script. This
is especially time-saving when existing tools can be used to perform parts of
the pipeline. As we will see a master script can be used to execute stages
implemented as command-line tools or through an API. In either case it is
important to work out the data interface between the stages, typically by saving
intermediate results.

Storing Intermediate Results

Saving intermediate results has a number of other advantages, including:

• Testing and Sanity Checks

– Examining the output of each stage of pipeline makes testing easier
and helps catch bugs earlier

• Manual Editing and Correction

– Allows for manual intervention in some cases

• Recovery and Partial Evaluation

– For long running processes, a failure mid-way through can cost time
– Design pipelines so process can pick up where it was stopped
– Especially important in large-scale clusters where machine failure is

inevitable

218 CHAPTER 3. LECTURES

You may find the Python pickle library useful for storing and retrieving inter-
mediate calculations.

Warning: Modifying the code for a stage in a pipeline generally invalidates
any results produced from that stage and all subsequent downstream stages. It
is very important to clear all intermediate data when you modify your code.
Resuming a data pipeline from intermediate results that were produced by a
different version of code may result in invalid conclusions or non-reproducible
findings.

Logging

Another important aspect of long-running data pipelines is logging. When writ-
ing a possibly long-running data pipeline, it is important to regularly output
messages to the user explaining what is happening. This can include errors,
warnings, progress messages, and debugging information. A very useful Python
package for managing logging (including options to write the log to the screen
and save it to disk) is the logging package.

A typical log will include timestamps and output a message at the start and
end of each major step in the pipeline. These messages may also include infor-
mation such as number of items processed, etc. Pipelines should also include
tests for data validity, especially in early stages. Show-stoppers (e.g., missing
files) shoudl result in an error being logged (and the pipeline halted). Lesser
problems can be reported through warnings.

When processing large numbers of files, it is useful to indicate progress in
some way. For example, output a dot or other indication at semi-regular inter-
vals. For example, if it takes a few seconds to process a file and you have 10,000
files to process you could output a dot every 10–100 files.

3.25.5 Data Pipeline: Case Study

We demonstrate a data pipelining case study in which we are interested in
analysing blog postings from a single author. We will use Mark Reid’s blog,
http://mark.reid.name/blog/. Our pipeline will operate in a number of stat-
ges:

• Fetch. First, we will fetch a list of blog URLs by parsing an index file.
We will then download each blog posting and store the raw HTML to disk.
We will make use of the urllib and BeautifulSoup Python libraries for
downloading the URLs and converting them to text, respectively.

• Extract. Second, we will extract all the words from the blog and count
the number of times each word appears. We will use the NLTK Python
library for converting text to word counts.

• Compare. Third, we will compare blog postings by computing a similar-
ity distance between the histogram of word counts. Here we will use the
so-called cosine similarity metric.

• Analysis. Fourth, we will analyse the data to produce a histogram of
similarities.

• Graph. Fifth (and last), we will produce a graph that visualises the most
similar blog postings.

3.25. LECTURE 25: DATA PIPELINES AND COMMAND LINE PROCESSING219

We have written the code—available from the course GitLab account—to be
able to be run as separate scripts from the command line or controlled from a
single script. This is for demonstration purposes. Usually, you will choose one
one method or the other (depending on the availability of existing tools). The
usage for each command line stage is shown below.

Terminal

1 $./ fetch.py

2 USAGE: python3 ./fetch.py [<OPTIONS >] <LINKS_FILE > <POSTS_DIR >

3 Fetches blog posts from links found in <LINKS_FILE > and stores them

4 in the <POSTS_DIR > directory. The -b option updates the links file.

5 OPTIONS:

6 -b <url > :: base URL to update links file

7 --log=<level > :: change logging level

8 -h | --help :: print help

9

10 $./ extract.py

11 USAGE: python3 ./ extract.py [<OPTIONS >] <POSTS_DIR > <TEXT_DIR >

12 Reads HTML files from <POSTS_DIR >, extracts the text then stems and

13 tokenizes. The result for each HTML file is written to <TEXT_DIR >.

14 OPTIONS:

15 --log=<level > :: change logging level

16 -h | --help :: print help

17

18 $./ compare.py

19 USAGE: python3 ./ compare.py [<OPTIONS >] <FEATURES_DIR > <OUT_FILE >

20 Computes the pairwise similarity as a bag -of-words model

21 for all files in <FEATURES_DIR >.

22 OPTIONS:

23 --log=<level > :: change logging level

24 -h | --help :: print help

25

26 $./ analyse.py

27 USAGE: python3 ./ analysis.py <SIMS_FILE >

28 Plots a histogram of pairwise similarities.

29

30 $./ graph.py

31 USAGE: python3 ./graph.py [<OPTIONS >] <SIMS_FILE >

32 Visualises similarities as a graph. The -t option sets a threshold

33 on which edges get displayed.

34 OPTIONS:

35 -t <threshold > :: similarity threshold (default: 0.75)

36 --log=<level > :: change logging level

37 -h | --help :: print help

Command line applications can be run from Python using the call method
from the subprocess standard library module.

220 CHAPTER 3. LECTURES

3.26 Lecture 26: Optimising Code

Learning Outcomes

• Recognise when to optimise code and when to not.

• Identify the steps involved in optimising code.

• Understand how to use a profiling tool.

Overview
A software developer’s time is often more valuable than a computer’s.
However, sometimes you really need software to run fast or use a small
memory footprint. This lectures is all about strategies for optimising
code.

Often your first attempt at writing a piece of software will not result in the
most efficient code. However, if the software is well written (i.e., commented
and tested), meets the requirements of the project, and is not slowing you down
in other ways then you are done—remember perfect is the enemy of good.17

Otherwise, you may need to refactor (or in some cases completely rewrite) your
code to optimise it.

The first step to optimising a piece of code is to make sure it is correct, i.e., it
produces the correct output. There is no point optimising something that does
not work!18 The second step is to make sure everything is revision controlled
and to write regression tests so that as you make changes to the code you can
continuously check that it still works as expected.

There are a number of reasons that code could be running inefficiently. We
have already briefly discussed complexity analysis and the fact that different
algorithm (which solve the same problem) can have markedly different running
times. However, other design choices and implementation details can also have
a significant affect on running time. After making sure the code is working and
is revision controlled, the next step is to determine which parts of the code are
running slowly. For this we will need to do some profiling.

The basic steps for optimising code are then:

• Make sure the code is working (i.e., tested)

• Make sure the code is revision controlled

• Profile the code to determine bottlenecks (on common use cases)

• Refactor code to eliminate the bottlenecks

• Repeat

3.26.1 Profiling Code

Code profiling lets you know where you code is spending most of its time.
Commercial IDEs (including the commercial version of PyCharm) come with
in-built code profilers. Fortunately, Python comes with a number of standard
libraries and tools for profiling. One of the most useful is cProfile, which can
be invoked from the command line, e.g.,

17See https://en.wikipedia.org/wiki/Perfect_is_the_enemy_of_good.
18There is one caveat here: if the code is running too slowly for you to effectively test it

then you may want to consider do some optimisation before the code is fully tested.

3.26. LECTURE 26: OPTIMISING CODE 221

python -m cProfile -s tottime <filename >

or included within a script, e.g.,

Python Code

1 import cProfile

2

3 cProfile.run("<command string >", sort="tottime")

The profiler generates timing information for each function in the program.
By providing the sort optional argument we are asking for this information to
be printed out in decreasing order of total running time, which is most useful
for determining bottlenecks in the code. The exact format of the output will be
discussed as we work through the case study below. Note that timing is subject
to other processes running on your machine and profiling may change slightly
between runs.

Case Study: Actor-Movie Database

To demonstrate the process of profiling and optimising code we will consider
the following case study. We are given a file containing a list of actor-movie
pairs for the top 250 movies according to IMDB. The file is a text file with
one actor-movie pair per line. The actor and movie title are separated by a
semi-colon (;) as illustrated below:

Carney, Thom; It! The Terror from Beyond Space (1958)

Biehn, Michael; The Terminator (1984)

Dijon, Alain; La dolce vita (1960)

Hoffman, Otto; Mad Love (1935)

Washington, Blue; Gone with the Wind (1939)

...

Our task is to write code that will find all actors co-starring in at least one
movie (in the list of top 250 movies) with a given actor. The list of costars is
to be returned in alphabetical order. We will develop the code by writing four
functions:

• A function to read the data

• A function to find all movies starring a given actor

• A function to find all stars in a given movie

• A function that uses the previous two functions to find all costars of a
given actor

The first function, read data, reads the actor-movie pairs from file and is
shown below. Here we choose to represent the data as a list of actor-movie pairs
(2-tuple), where both actors and movies are represented as strings (the name of
the actor or the title of the movie). The function opens the actor-movie.csv

file and creates a CSV reader object specifying the field delimiter as “;”. It
then proceeds to read each line of the file, extract the actor-movie pair, and
append it to the dataset list. After reading each line, the function closes the
file, prints out the number of actor-movie pairs read, and returns the list.

222 CHAPTER 3. LECTURES

Python Code

1 import csv

2

3 def read_data(filename):

4 """ Read in dataset as list of (actor , movie) pairs."""

5 fh = open(filename , "r")

6 reader = csv.reader(fh , delimiter=";")

7

8 dataset = []

9 for actor , movie in reader:

10 dataset.append ((actor.strip(), movie.strip ()))

11

12 fh.close ()

13 print("... read {} actor -movie pairs".format(len(dataset)))

14 return dataset

The second function, find movies, returns a list of movie titles which star
the given actor. The function, shown below, iterates over all actor-movie pairs
in the list dataset. If the actor matches the given actor (star argument for the
function) then the movie title is appended to the list of movies to be returned.

Python Code

1 def find_movies(star , dataset):

2 """ Find all movies starring the given actor."""

3 acted_in = []

4 for actor , movie in dataset:

5 if actor == star:

6 acted_in.append(movie)

7

8 return acted_in

The third function, find actors shown below, is the dual of the find movies

function just discussed. Given a movie title, the find actors function will it-
erate through the list of actor-movie pairs and return a list of actors who all
appeared in the given movie.

Python Code

1 def find_actors(title , dataset):

2 """ Find all actors starring in the given movie."""

3 cast = []

4 for actor , movie in dataset:

5 if movie == title:

6 cast.append(actor)

7

8 return cast

The fourth and final function, find costars, uses the previous three func-
tions to achieve the task for this problem. Given an actor (star) and the
pre-read dataset, the function first finds all movies in which the actor appears
using the find movies function. Then, for each movie title in the returned list
it finds the cast for that movie using the find actors function. For each actor
in the cast, it adds the actor to the list of costars if it has not already done
so (and if the actor is not the given actor). To ensure that the returned list of
costars is in alphabetical order we sort the list each time a new actor is added
to the list. We also print out debugging information, which helps us to check

3.26. LECTURE 26: OPTIMISING CODE 223

that the code is working as expected. The code is shown below.

Python Code

1 def find_costars(star , dataset):

2 """ Finds all costars who have appeared with the given actor in

3 at least one movie and returns in sorted order."""

4

5 # first find movies containing the star

6 movies = find_movies(star , dataset)

7 print("{} appears in {}".format(star , ", ".join(movies)))

8

9 # initialise list of costars

10 costars = []

11

12 # for each movie search for the costars

13 for title in movies:

14 cast = find_actors(title , dataset)

15 for actor in cast:

16 if actor != star:

17 print("{} appears with {} in {}".format(actor , star , title))

18 if actor not in costars:

19 # insert into list and maintain sorted order

20 costars.append(actor)

21 costars.sort()

22

23 # return costars

24 return costars

For the purposes of this case study we will profile the code by first loading
the dataset and then running the same query one thousand times to search for
the co-stars of Tom Cruise. This will simulate multiple queries and give us
sufficient running time statistics. A more elaborate scheme could be setup for
testing with different queries, but that is unlikely to give different results in any
material way. The code snippet for performing the profiling is shown below.

Python Code

1 # search costars of Tom Cruise

2 def main ():

3 dataset = read_data("actor -movie.csv")

4 for i in range (1000):

5 costars = find_costars("Cruise , Tom", dataset)

6

7 # do profiling

8 if __name__ == "__main__":

9 cProfile.run("main()", sort="tottime")

There is one more important step that we need to perform before we be-
gin profiling and optimisation. That is to write some regression tests. For
this problem we could write out the list of co-stars returned from one call to
find costars and save it to disk. Then everytime we modify the code we can
check that we produce the same list. For brevity we omit regression test details
for the remainder of the case study, but this is very important for real-world
code optimisation.

Running the code produces detailed profiling information, the top few lines of
which are shown below. There are some important items of the profiling output
that you should note. First, the top line indicates the total number of function
calls that were profiled (some built-in functions may not be profiled since Python

224 CHAPTER 3. LECTURES

itself optimises them out) and the total running time. This running time may
be slower than running the code without profiling since the act of profiling
adds some small overhead. The output then lists timing information for each
function, in this case ordered by the “tottime” column. The information shown
is:

• ncalls. The total number of calls made to the function during the profiling
run.

• tottime. The total amount of time spent running code within the function
excluding any time taken by calls to sub-functions.

• percall. The previous column divided by the number of function calls.

• cumtime. The total amount of time spent running code within the func-
tion including time taken by calls to sub-functions.

• percall. The previous column divided by the number of function calls.

• filename:lineno(function) The function being profiled and its location
in your source code.

1305871 function calls in 4.071 seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
251000 1.207 0.000 1.207 0.000 {method ’sort’ of ’list’ objects}

3000 1.199 0.000 1.212 0.000 movie_optimization_demo.py:39(find_actors)
1000 0.642 0.001 4.053 0.004 movie_optimization_demo.py:48(find_costars)

253001 0.450 0.000 0.450 0.000 {built-in method print}
1000 0.400 0.000 0.401 0.000 movie_optimization_demo.py:30(find_movies)

253001 0.129 0.000 0.129 0.000 {method ’format’ of ’str’ objects}
520246 0.026 0.000 0.026 0.000 {method ’append’ of ’list’ objects}

1 0.013 0.013 0.016 0.016 movie_optimization_demo.py:17(read_data)
1 0.002 0.002 4.071 4.071 movie_optimization_demo.py:74(main)

22492 0.001 0.000 0.001 0.000 {method ’strip’ of ’str’ objects}
...

The first thing we notice is that the sort method is taking up sizeable chunk
of the overall running time—about 30%, in fact. This relates to the sorting of
the costars list that we do each time we add an actor on Line 21 of function
find costars above. Reflecting on what we wish to achieve it should be clear
that we do not need to maintain the list of costars in sorted order during the
inner workings of the function. All we need to do is make sure we sort the list
before the function returns. Thus, we can remove the repeated calls to sort

from Line 21 and move it to just before the costars list is returned on Line 24.

While we’re looking at this part of the code, also notice that we keep checking
whether the actor already exists in the costars list before adding, afterall we
do not want the list to contain repeats of the same actor’s name. It turns out
that a set instead of a list data structure will do this for us. Let’s make
that change at the same time (but remember to change back to a list before
returning). The modified code is shown below.

3.26. LECTURE 26: OPTIMISING CODE 225

Python Code

1 def find_costars(star , dataset):

2 """ Finds all costars who have appeared with the given actor in

3 at least one movie and returns in sorted order."""

4

5 # first find movies containing the star

6 movies = find_movies(star , dataset)

7 print("{} appears in {}".format(star , ", ".join(movies)))

8

9 # initialise set of costars

10 costars = set()

11

12 # for each movie search for the costars

13 for title in movies:

14 cast = find_actors(title , dataset)

15 for actor in cast:

16 if actor != star:

17 print("{} appears with {} in {}".format(actor , star , title))

18 costars.add(actor)

19

20 # sort and return costars

21 costars = sorted(list(costars))

22 return costars

We are now ready to run the code again to see how these changes have
affected the profiling. The results are run are shown below.

1056871 function calls in 2.333 seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
3000 1.181 0.000 1.194 0.000 movie_optimization_demo2.py:39(find_actors)

253001 0.407 0.000 0.407 0.000 {built-in method print}
1000 0.385 0.000 0.385 0.000 movie_optimization_demo2.py:30(find_movies)
1000 0.125 0.000 2.315 0.002 movie_optimization_demo2.py:48(find_costars)

253001 0.117 0.000 0.117 0.000 {method ’format’ of ’str’ objects}
1000 0.068 0.000 0.068 0.000 {built-in method sorted}

252000 0.019 0.000 0.019 0.000 {method ’add’ of ’set’ objects}
1 0.014 0.014 0.016 0.016 movie_optimization_demo2.py:17(read_data)

269246 0.013 0.000 0.013 0.000 {method ’append’ of ’list’ objects}
22492 0.002 0.000 0.002 0.000 {method ’strip’ of ’str’ objects}

...

We have already made some progress—the code is running almost twice as
fast. Now looking down the profile list we notice that the second most time-
consuming operation is the “built-in method print”. This is low hanging fruit
for optimisation. As a general rule printing out lots of information, writing lots
of data to disk, or showing graphics and animations will slow down execution of
a piece of code. By all means, use these when debugging your code but remove
unnecessary output before shipping your final product.

Commenting out the print statements on Lines 7 and 17 we get the follow-
ing profile output. Note that depending on how PyCharm or your terminal is
configured, printing may take up more time (and be the dominant bottleneck
initially—specifically if the output is not bufferred so that the screen is updated
everytime print is called.

226 CHAPTER 3. LECTURES

549871 function calls in 1.695 seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
3000 1.184 0.000 1.196 0.000 movie_optimization_demo2.py:39(find_actors)
1000 0.368 0.000 0.368 0.000 movie_optimization_demo2.py:30(find_movies)
1000 0.064 0.000 0.064 0.000 {built-in method sorted}
1000 0.036 0.000 1.677 0.002 movie_optimization_demo2.py:48(find_costars)

1 0.014 0.014 0.016 0.016 movie_optimization_demo2.py:17(read_data)
252000 0.014 0.000 0.014 0.000 {method ’add’ of ’set’ objects}
269246 0.012 0.000 0.012 0.000 {method ’append’ of ’list’ objects}
22492 0.002 0.000 0.002 0.000 {method ’strip’ of ’str’ objects}

1 0.001 0.001 1.694 1.694 movie_optimization_demo2.py:72(main)
1 0.000 0.000 1.695 1.695 <string>:1(<module>)

...

As we can see from the profile information, changing the sorting and re-
moving the unnecessary debugging information has resulted in a 58% reduction
in running time (1.695 seconds versus 4.071 seconds). The new find costars

function implementing these changes is shown below.

Python Code

1 def find_costars(star , dataset):

2 """ Finds all costars who have appeared with the given actor in

3 at least one movie and returns in sorted order."""

4

5 # first find movies containing the star

6 movies = find_movies(star , dataset)

7

8 # initialise set of costars

9 costars = set()

10

11 # for each movie search for the costars

12 for title in movies:

13 cast = find_actors(title , dataset)

14 for actor in cast:

15 if actor != star:

16 costars.add(actor)

17

18 # sort and return costars

19 costars = sorted(list(costars))

20 return costars

We now need to start thinking a bit about our high-level implementation.
So far we have decided to simply read in the data and store it as a list of
actor-movie pairs. However, looking at our profiling information we see that a
large amount of time is spent looking up which actors appear in which movies.
Thinking back to the lecture on data structures, we know that certain data
structures, such as dictionaries are optimised for lookup. Perhaps a change of
how we store/represent the data will lead to faster code. In particular, instead
of storing the data as a list of actor-movie pairs we can store it as a dictionary
indexed by movie, where the values are sets of actors appearing in that movie.
There is some cost associated with pre-processing the data into this format, but
that is more than saved when we come to look up actors. The new read data

function is shown below.

3.26. LECTURE 26: OPTIMISING CODE 227

Python Code

1 import csv

2

3 def read_data(filename):

4 """ Read in dataset as list of (actor , movie) pairs and return

5 as a dictionary of movie casts indexed by movie title."""

6 fh = open(filename , "r")

7 reader = csv.reader(fh , delimiter=";")

8

9 dataset = {}

10 nCount = 0

11 for actor , movie in reader:

12 movie = movie.strip ()

13 if movie not in dataset:

14 dataset[movie] = set()

15 dataset[movie].add(actor.strip ())

16 nCount += 1

17

18 fh.close ()

19 print("... read {} actor -movie pairs".format(nCount))

20 return dataset

With the data in this new representation we will need to change the find movies

and find actors functions.

Python Code

1 def find_movies(star , dataset):

2 """ Find all movies starring the given actor."""

3 acted_in = []

4 for movie , cast in dataset.items ():

5 if star in cast:

6 acted_in.append(movie)

7

8 return acted_in

Python Code

1 def find_actors(title , dataset):

2 """ Find all actors starring in the given movie."""

3 return dataset[title]

With these changes in place and the code behaving correctly we are ready
to perform another profiling run.

295870 function calls in 0.146 seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
1000 0.064 0.000 0.064 0.000 {built-in method sorted}
1000 0.037 0.000 0.126 0.000 movie_optimization_demo3.py:48(find_costars)

1 0.015 0.015 0.019 0.019 movie_optimization_demo3.py:17(read_data)
263246 0.014 0.000 0.014 0.000 {method ’add’ of ’set’ objects}

1000 0.012 0.000 0.012 0.000 movie_optimization_demo3.py:35(find_movies)
22492 0.002 0.000 0.002 0.000 {method ’strip’ of ’str’ objects}

1 0.001 0.001 0.145 0.145 movie_optimization_demo3.py:71(main)
1 0.000 0.000 0.146 0.146 <string>:1(<module>)

3000 0.000 0.000 0.000 0.000 movie_optimization_demo3.py:44(find_actors)
3000 0.000 0.000 0.000 0.000 {method ’append’ of ’list’ objects}

...

228 CHAPTER 3. LECTURES

Our final optimised version of the code is around 28 times faster than the
initial version (0.146 seconds versus 4.071 seconds). This is fast enough for our
needs so is probably a good place to stop. Observe that our code is still quite
easy to follow and is maintainable.

Further Optimisation

If we really wanted to squeeze more performance out of the code we could start
looking at some lower level optimisations. However, this often leads to code
that is difficult to read and less maintainable. For example, looking back at our
find costars function we see that each time we get the cast for a movie we
iterate over those actors and add them to the list of co-stars unless they are
the actor given to the function (star). We can optimise this loop by simply
adding the entire cast and then remove the given actor at the end. We have also
used more a succinct add operation in the form of set union (|=). The resulting
function is

Python Code

1 def find_costars(star , dataset):

2 """ Finds all costars who have appeared with the given actor in

3 at least one movie and returns in sorted order."""

4

5 # first find movies containing the star

6 movies = find_movies(star , dataset)

7

8 # initialise set of costars

9 costars = set()

10

11 # for each movie search for the costars

12 for title in movies:

13 costars |= set(find_actors(title , dataset))

14

15 # remove star , sort , and return costars

16 costars.remove(star)

17 return sorted(list(costars))

and corresponding profile output

44870 function calls in 0.107 seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
1000 0.063 0.000 0.063 0.000 {built-in method sorted}

1 0.015 0.015 0.018 0.018 movie_optimization_demo3.py:13(read_data)
1000 0.012 0.000 0.012 0.000 movie_optimization_demo3.py:31(find_movies)
1000 0.011 0.000 0.087 0.000 movie_optimization_demo3.py:44(find_costars)

22492 0.002 0.000 0.002 0.000 {method ’strip’ of ’str’ objects}
1 0.002 0.002 0.107 0.107 movie_optimization_demo3.py:64(main)

11246 0.001 0.000 0.001 0.000 {method ’add’ of ’set’ objects}
1 0.000 0.000 0.107 0.107 <string>:1(<module>)

3000 0.000 0.000 0.000 0.000 movie_optimization_demo3.py:40(find_actors)
3000 0.000 0.000 0.000 0.000 {method ’append’ of ’list’ objects}

...

Arguably this code is still easy to understand (and the code is now 38 times
faster than when we started), but you can imagine situations where further and
further optimisation leads to less and less readable code. This can be a delicate
trade-off and at some point you need to decide that your code is fast enough.

3.26. LECTURE 26: OPTIMISING CODE 229

Case Study Summary

This case study has demonstrated some of the most important considerations
when optimising code. First, as with any refactoring, always check that your
code remains correct as you make changes. Second, using profiling to determine
where the bottlenecks are. Third, removing unnecessary output, finding better
representations and algorithms, and pre-computing (or caching) information are
the best ways to improve performance. Regarding the last point, there is often
a trade-off between an algorithms speed and space/memory requirements. In
this case study we have focused on improving speed. However, sometimes it is
also important to optimise for memory (e.g., when writing software that runs
in embedded devices).

3.26.2 Amdahl’s Law

Amdahl’s law is a statement on the maximum expected improvement in the
performance of a system if only part of the system is optimised. Consider a
piece of software that takes T seconds to complete a given task. We identify a
bottleneck in the code, which we then optimise from taking T1 seconds to T2

seconds. How much faster is the optimised code?
The optimised code now takes T − T1 + T2 seconds to run. In terms of

speedup this is

T

T − T1 + T2
(3.1)

times faster. If the bottleneck was originally taking 20% of the running time
and we spent a lot of development effort to get it to run in half the time (i.e.,
T2 = 1

2T1), then we have only sped up the end-to-end performance by a factor
of

T

T − 0.2T + 0.1T
= 1.11 (3.2)

That is, the software now only 11% faster, depsite the bottleneck component
being 50% faster.

Amdahl’s law suggests that it is only worth spending time optimising parts
of the code that take a significant portion of the total running time. Optimising
pieces of code that do not have a significant effect on the end-to-end running
time, even if inefficient, is a waste of your time as a developer.

230 CHAPTER 3. LECTURES

3.27 Lecture 27: Defensive Programming

Learning Outcomes

• Understand the importance of guarding against errors in code.

• Develop practices for writing less buggy and more maintainable
code.

• Recognise that just because a programming language allows you
to write code in obscure ways does not mean that you should write
that way.

Overview
Garbage in, garbage out. This lecture discusses how to write code that
guards against bad data and unexpected events. We distinguish between
assertions used during development and error checking and processing
during production.

Debugging is hard, so when writing code try make you code easy to under-
stand, test and debug. You will thank youself later. While writing code think to
yourself how can I avoid debugging it later? For example, consider the following
two code snippets.

print (["Over Ten",

"Under 10"][x < 10])

if x < 10:

print("Under 10")

else:

print("Over Ten")

Both code snippets do the same thing. The code on the left is more concise
but also much more difficult to understand (and debug especially if it appears
within a 1000-line piece of code). The code on the right is less “clever” but
much better. The developer of the Unix operating system and C programming
language, Brian Kernighan sums up up this idea nicely with “Everyone knows
that debugging is twice as hard as writing a program in the first place. So if
you’re as clever as you can be when you write it, how will you ever debug it?”

This lecture discusses some techniques that you can use when writing code
that will make your code more robust and easier to debug when things do go
wrong.

3.27.1 Unit Tests

Probably the single most useful piece of advice for writing robust code is to use
unit tests. Write the unit tests before you implement your code. This will help
you to understand what you want each function to achieve. The same applies
to refactoring and optimising code—write unit tests first and keep testing as
you go to make sure you haven’t broken anything obvious. The same applies
yet again to debugging—find a bug, write a test (which also acts to document
the bug), then fix the bug.

If it seems too difficult to write a unit test for some code then the code
probably needs to be redesigned. You should always be able to write testable
code. Otherwise you have no way of knowing if your code is working.

3.27. LECTURE 27: DEFENSIVE PROGRAMMING 231

But remeber that unit tests cannot possibly cover every scenario. Even
with the best unit tests bugs may still happen. Even worse bugs may be in
the unit tests themselves. Defensive programming techniques give us additional
techniques to help reduce bugs in our code.

3.27.2 Production versus Development

When developing code or writing small scripts for your personal use it is okay
for the code to crash occasionally when it encounters something unexpected, e.g.,
a misspelled filename. If that happens you are right there to fix the problem
and run your code again.

However, production code needs to handle errors gracefully. It should
check user input and return helpful error messages to the user if something goes
wrong. Furthermore, it needs to maintain data integrity of the application.
Imagine what would happen if your email client crashed and in the process
deleted all of your emails? Your code should never leave data in an inconsistent
state.

Malicious users may deliberately try to crash a production system. Honest
users may accidently crash a system too. It is very important to check user
input and reject input that will result in excessive resource usage. For example,
don’t allow a user to attach very large files to an email. Worse than exessive
resource usage (which results in denial of service) are inputs that expose se-
curity vulnerabilities. A classic example is allowing a user to enter malicious
HTML code or SQL queries as input into a web application (known as cross-site
scripting or SQL injection).

3.27.3 Guidelines for Writing Defensive Code

Here we describe a few techniques for writing defensive code:

Understanding Pre- and Post-conditions

When writing a function it is useful to think about the pre- and post-conditions
for the function. Pre-conditions state what should be true when a function is
called. The function is not guaranteed to perform correctly if the pre-conditions
are not satisfied. Post-conditions describe what will be true when the function
returns. If the pre-conditions are met, then the post-conditions are guaranteed
to be true.

Pre-conditions apply to function arguments. They can (and should) be ex-
plicitly tested within the code. For example, think about the pre-conditions for
the following function signature and how you would test them.

Python Code

1 def set_time(hours , minutes , seconds):

2 """ What are the pre -conditions?"""

Post-conditions can be checked with unit tests.

Assertions and Exceptions

Asserts are a systematic way to guard against errors in code. They add some

232 CHAPTER 3. LECTURES

overhead to execution time, but can be turned off with the -O command line op-
tion or in PyCharm via the “Interpreter options” under Run|Edit Configuration...

The following code provides an example of an assert.

Python Code

1 def square_root(x):

2 """ Compute a square root."""

3 assert x >= 0, "negative argument"

4 return math.sqrt(x)

Failed asserts will raise an AssertionError exception. This usually causes
Python to terminate and display an error message.

Exceptions are more general than asserts. They are a way of alerting your
code that an unexpected error has occurred and provides a mechanism for han-
dling the error. For example, exceptions can be used to catch errors associated
with trying to open a non-existing file or performing an illegal mathematical
operation (divide-by-zero or taking the square root of a negative number). The
following code snippet provides a general pattern for exception handling:

Python Code

1 try:

2 do_something () # may cause an error

3 except:

4 handle_error () # run if error

5 else:

6 do_even_more () # run if no error

7 finally:

8 clean_up () # run always

A list of common exceptions is shown in Table 3.12.

Exception Description
Exception Base class.
OverflowError Numerical overflow has occurred.
ZeroDivisionError Division or modulo by zero.
AssertionError As assert has failed.
NameError A variable or function does not exist.
IndexError Invalid sequence index.
IOError E.g., file not found.

Table 3.12: Common Exception Types.

You can write code to handle different types of exceptions differently. For
example, consider the following piece of code, which opens a file containing a
number per line and computes the square root of each number. Two different
types of error can occur; either the file does not exist or a number in the file is
negative. The code treats these errors differently without needing to explictly
check when the file is opened or each time a number is read.

3.27. LECTURE 27: DEFENSIVE PROGRAMMING 233

Python Code

1 try:

2 # open file and print out the square root of each line

3 with open("testfile.txt", "r") as file:

4 for line in file:

5 print(math.sqrt(float(line)))

6

7 except IOError: # handles input/output errors

8 print("file not found")

9

10 except ValueError: # handles numerical errors

11 print("negative number")

You can trigger an exception in your own code using the raise keyword as
the following demonstrates.

def square_root(x):

""" Compute a square root."""

assert x >= 0, "negative argument"

return math.sqrt(x)

def square_root(x):

""" Compute a square root."""

if x < 0:

raise ValueError("negative argument")

return math.sqrt(x)

Unhandled (uncaughted) exceptions bubble upwards. That is, they move up
the call stack through each successive function call until they are caught. If
an exception reaches the top of your code, i.e., the main script, then Python
terminates with an error.

Explicit is Better Than Implicit

Explicit is better than implicit is one of the Python aphorisms. Unfortu-
nately the Python language does not enforce this and in some situations encour-
ages implicit behaviour. This is a habit you need to develop as a programmer,
and is especially important if inexperienced programmers are part of the team
or your project involves coding in a few different languages which may have dif-
ferent rules. The following two examples show that explicit use of parentheses
and explicit return statements make the intent of the code much more clear.

if x < 10 and y > 20 or z < 0:

do_something(x, y, z)

if (x < 10 and y > 20) or (z < 0):

do_something(x, y, z)

def do_something(x, y, z)

n = x + y + z

def do_something(x, y, z)

n = x + y + z

return None

Guard Against Language Idiosyncrasies

Every programming language has quirks and idiosyncrasies. Some people think
that using these idiosyncrasies is smart and shows that you are proficient in
a language; often, however, their use leads to hard to find bugs. You should
definitely know about the quirks of a language; but resist the temptation to use
them in code that you write. One good example in Python is operator chaining.

234 CHAPTER 3. LECTURES

Python Code

1 >>> 1 == 2

2 False

3 >>> False is not True

4 True

5 >>> 1 == 2 is not True

6 False

Always use parentheses to disambiguate meaning in logical and arithmetic
expressions (expecially if you frequently switch between programming in differ-
ent languages).

Python Code

1 >>> (1 == 2) is not True

2 True

3 >>> (1 == 2) and (2 is not True)

4 False

3.27.4 Next Lecture

• Different programming languages

• Learning a new language

3.28. LECTURE 28: PROGRAMMING LANGUAGES 235

3.28 Lecture 28: Programming Languages

Learning Outcomes

• Recognise that there are multiple programming languages, each
with their own strengths and weaknesses. And that the choice of
programming language for a project depends on many factors.

• Understand that many programming concepts in Python map
across to other programming languages.

• Be equipped with skills to leverage knowledge of Python to learn
a new programming langauge.

Overview
In this lecture we give a very brief taxonomy of programming languages.
We introduce some popular programming languages other than Python
and discuss where each might be used. We also discuss common features
of different classes of programming languages. Finally, presented with
having to work with a new programming langauge, this lecture gives
some ideas on how to learn the new langauge. We focus on what general
constructs you can expect to find in all mainstream languages.

This course has used the Python programming language as a vehicle for
teaching you the craft of computing. However, Python is only of many pro-
gramming languages that are widely used in academia and industry (some of
the most popular ones being C/C++, Java, Javascript, PHP, Matlab). There
are similarities between Python and many of these (imperative) programming
languages.

Moreover, all of the tools and techniques taught in the class (text editors,
IDEs, revision control, debuggers, refactoring and code profiling) extend to other
programming languages, and are just as an important a component of software
development as the programming language itself.

In this lecture we will give a brief tour of some other programming languages
and some tips on how to learn another language given that you now know
Python. We will restrict our attention to imperative programming languages
and do not get into any details about distinctions in implementation such as
compiled versus interpretted, etc.

Ultimately the choice of programming language for any given project will
depend on many things: existing codebases, available programmers with ex-
perience in that language, suitability of the language for the task, third-party
libraries, etc. There is no one right language and an important skill is to be able
to move between languages. For an interesting visualization on the influence and
evolution of programming languages take a look at:

https://exploringdata.github.io/vis/programming-languages-influence-network/

3.28.1 Hello World

Often the first program you write in a new programming language is called hello
world. Ironically in this course, we leave this program for last. The aim of the
program is to display the string “hello world”. This exposes you to the process
of editing and running a piece of code for that language. For some languages

236 CHAPTER 3. LECTURES

there is an intermediate step required to compile the source code into a form
that can be run. The following code snippets show hello world written in some
common languages.

Python Code

1 # python

2 print("hello world")

C/C++ Code

1 // c++

2 #include <stdio >

3

4 int main() {

5 std::cout << "hello world\n";

6 }

Java Code

1 // java

2 public class Hello {

3 public static void main() {

4 System.out.println("hello world");

5 }

6 }

Javascript Code

1 // javascript

2 document.writeln("hello world");

3.28.2 Code Concepts

As you’ve probably gathered by now, imperative programming languages are
actually all very similar. Mostly the difference is syntactical rather than
conceptual. So once you can program in one language it becomes fairly easy
to learn another language. Of course to become proficient in a language, like
any skill, you still need to put in a lot of practice and use the language regularly.
Below we list the core concepts to think about when looking at a new language.

• Code structure and layout (line endings, defining code blocks, comments)

• Variables and expressions

– Some programs are strongly-typed and require variables to be de-
clared before used

– Languages can differ in variable scope rules

• Declaring and calling functions

– Languages differ in how functions are declared and called
– Some languages don’t support optional arguments

• Program control flow

– All programming languages support conditional execution and loops

3.28. LECTURE 28: PROGRAMMING LANGUAGES 237

• Objects and classes (not supported in all languages)

• Data structures

– Most programming languages include the main data structures we
have seen in this course, but sometimes these are not a core part of
the language (they need to be imported through libraries)

• Libraries and modules

– Languages differ in how code is organised into libraries and how li-
brary code is used

Circle Program

The circle program that we introduced in Lecture 3 is a good example to demon-
strate how variables are declared/assigned and expressions written in a language.
It also shows basic program structure and how to display (text) output.

Python Code

1 # calculate area and circumference of a circle

2

3 import math

4

5 radius = 10

6 area = math.pi * radius ** 2

7 circumference = 2 * math.pi * radius

8 print(area , circumference)

C/C++ Code

1 // calculate area and circumference of a circle

2

3 #include <cstdlib >

4 #include <cmath >

5

6 int main()

7 {

8 double radius = 10;

9 double area = M_PI * pow(radius , 2.0);

10 double circum = 2.0 * M_PI * radius;

11 std::cout << area << ", " << circum << "\n";

12 }

Javascript Code

1 // calculate area and circumference of a circle

2

3 var radius = 10;

4 var area = Math.PI * Math.pow(radius , 2);

5 var circumference = 2 * Math.PI * radius

6 console.log(area + ", " + circumference)

For Loops and Iteration

Loops are common feature of most programs. Here we repeat the simple ex-
ample of looping through a list of grades in order to count the number of high

238 CHAPTER 3. LECTURES

distinctions. In the C++ example we show the grades stored in an array data
structure, which requires elements to be accessed by indexing. Other data
structures (e.g., std::list) support iterators similar (in concept) to Python’s
iterators.

Python Code

1 # count high distinctions

2 grades = [65, 90, 70, 85, 92, 73, 62, 68, 81, 68]

3

4 num_high_distinctions = 0

5 for g in grades:

6 if g >= 85:

7 num_high_distinctions += 1

C/C++ Code

1 // count high distinctions

2

3 int grades [] = {65, 90, 70, 85, 92, 73, 62, 68, 81, 68};

4

5 int main()

6 {

7 int num_high_distinctions = 0;

8 for (int i = 0; i < sizeof(grades)/ sizeof(int); i++) {

9 if (grades[i] >= 85)

10 num_high_distinctions += 1;

11 }

12 }

Javascript Code

1 // count high distinctions

2

3 grades = [65, 90, 70, 85, 92, 73, 62, 68, 81, 68];

4

5 var num_high_distinctions = 0;

6 for (var i = 0; i < grades.length; i++) {

7 if (grades[i] >= 85) {

8 num_high_distinctions += 1;

9 }

10 }

Functions

Another feature you will see in almost every program is a function. Here we
demonstrate function declarations in Python, C/C++ and Javascript.

Python Code

1 def convert_to_letter_grade(grade):

2 """ Converts from a numerical grade to a letter grade."""

3

4 if (grade >= 85.0): return "HD"

5 elif (grade >= 75.0): return "D"

6 elif (grade >= 65.0): return "CR"

7 elif (grade >= 50.0): return "P"

8 else: return "F"

3.28. LECTURE 28: PROGRAMMING LANGUAGES 239

C/C++ Code

1 // Converts from a numerical grade to a letter grade

2 std:: string convert_to_letter_grade(double grade)

3 {

4 if (grade >= 85.0) return "HD";

5 if (grade >= 75.0) return "D";

6 if (grade >= 65.0) return "CR";

7 if (grade >= 50.0) return "P";

8

9 return "F";

10 }

Javascript Code

1 // Converts from a numerical grade to a letter grade

2 function convert_to_letter_grade(grade) {

3

4 if (grade >= 85.0) return "HD";

5 if (grade >= 75.0) return "D";

6 if (grade >= 65.0) return "CR";

7 if (grade >= 50.0) return "P";

8

9 return "F";

10 }

Many other examples of the same algorithm or concept implemented in a
variety of programming languages can be found at http://rosettacode.org/.

3.28.3 Advice for Learning a New Language

• Browse through lots of code examples

– Try to understand how concepts you know from one language, Python,
translate into the new language

• Look at the keywords (reserved words)

• Pick a project and try implement it in the new language

• Use resources like Stack Overflow, Rosetta Code, and others

• Use support/productivity tools (IDEs, revision control, sandboxing)

• Experiment

