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Pixels labeled with a scene’s semantics and 
geometry let computers describe what they see. 

BY STEPHEN GOULD AND XUMING HE 

PROGRAMMING COMPUTERS TO automatically interpret 
the content of an image is a long-standing challenge in 
artificial intelligence and computer vision. That difficulty 
is echoed in a well-known anecdote from the early years 
of computer-vision research in which an undergraduate 
student at MIT was asked to spend his summer getting a 
computer to describe what it “saw” in images obtained 
from a video camera.35 Almost 50 years later researchers 
are still grappling with the same problem. 

A scene can be described in many ways and include 
details about objects, regions, geometry, location, 
activities, and even nonvisual attributes (such as date 
and time). For example, a typical urban scene (see 
Figure 1) can be described by specifying the location 
of the foreground car object and background grass, 
sky, and road regions. Alternatively, the image could 
be summarized as a street scene. We would like a 
computer to be able to reason about all these aspects 

of the scene and provide both coarse 
image-level tags and detailed pixel-
level annotations describing the se-
mantics and geometry of the scene. 
Early computer-vision systems at-
tempted to do just that by using a sin-
gle unified model to jointly describe 
all aspects of the scene. However, the 
difficulty of the problem soon over-
whelmed this unified approach, and, 
until recently, research into scene 
understanding has proceeded along 
many separate trajectories. 

Along one of them, researchers aim 
to provide a high-level summary or cat-
egorization of a scene using a small 
number of tags (such as city and for-
est) without explicitly identifying the 
objects within it. Another, known as 
“object detection,” aims to locate dis-
crete objects (such as cars or pedestri-
ans) in a scene by placing a bounding 
box around the objects. Face-detection 
algorithms in today’s digital cameras 
and smartphones perform this task. 
However, these approaches do not pro-
vide detailed object outlines and fail to 
reason about the image as a whole. 

Perhaps closest to the long-term 
scene-understanding goal is yet an-
other trajectory that aims to produce 
annotations for the entire image, at 
the pixel level. Such a pixel-labeling, or 
semantic-segmentation, approach to 
scene understanding is our main focus 

Scene  
Understanding 
by Labeling  
Pixels 

 key insights

 ˽ Recent progress on image understanding, 
a long-standing challenge of AI, is 
enabling numerous new applications 
in robot perception, surveillance and 
environmental monitoring, content-
based image search, and social-media 
summarization. 

 ˽ One approach to image understanding 
is to label every pixel in an image with 
a category label using probabilistic 
models known as CRFs that can handle 
uncertainty and propagate contextual 
information across the image. 

 ˽ Improved machine-learning techniques, 
more-powerful machines, and ever-
growing volume of data are getting 
us closer to machines that are able to 
see and understand the world the way 
humans do. 

http://dx.doi.org/10.1145/2629637
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labeling approach and employ the CRF 
framework to integrate the various as-
pects of the scene. 

Here, we outline CRF model vari-
ants for scene understanding, show-
ing how they exploit various assump-
tions (such as that cars typically 
appear on roads) about real-world 
scenes. Note, however, the problem 
of scene understanding remains wide 
open, with new innovations being 
introduced regularly. We also offer 
example results from a baseline CRF 
model on standard scene understand-
ing datasets to demonstrate the ca-
pabilities and weaknesses of today’s 
scene-understanding models. 

Pixel Labeling 
In pixel labeling, each pixel in an im-
age is assigned a class label from a pre-
defined set (such as grass, tree, road, 
car, and person). The assumption is 
that each pixel belongs to a single cat-
egory of interest and that category can 
be identified unambiguously. 

One approach is to classify each 
pixel individually without regard to the 
label assigned to other pixels in the 
image. However, as we show, treating 
each pixel independently can produce 
highly inconsistent results. A more 
sophisticated approach adopted by 
state-of-the-art scene-understanding 
algorithms is to consider the labeling 
of the pixels jointly by defining a ran-
dom field over them.13,34 Such an ap-
proach has enjoyed much success in 
recent years due to effective inference 
and learning algorithms.3,22,31 

Conditional Markov random fields. 
CRFs were first introduced in the area 
of natural-language processing but 
have since found application in a range 
of machine-learning tasks.25 Their key 
benefit is to provide a principled prob-
abilistic framework for describing the 
relationship between related output 
variables (such as labels for pixels in 
an image) as a function of observed 
features (such as pixel colors). They are 
thus ideal for integrating multiple visu-
al cues and combining related scene-
understanding problems. Moreover, 
CRFs admit a compact representation 
and provide efficient (approximate) al-
gorithms for inference and learning. 

Formally, let y = (y1,…,yn) be a vector 
of discrete random variables (output 
variables) we are interested in predict-

here. Objects and background classes 
are segmented into discrete nonover-
lapping regions and a label provided 
for each region, or, equivalently, all the 
pixels within it. In addition to labeling 
each pixel with a class label, different 
instances of each object can also be 
labeled with a unique identifier, so 
two adjacent cars are treated as, for 
example, disjoint objects. Such multi-
class/multi-instance approaches are 
at the cutting edge of contemporary 
scene-understanding research. Hierar-
chical segmentation, so-called “scene 
parsing,”37 can produce an even more 
refined view of the scene by breaking 
objects into component parts; for ex-
ample, a car can be broken down into 
wheels, body panels, and windows. 

These pixel-labeling approaches 
work with a predefined set of class 
labels that dictates the categories of 
objects and types of scenes the model 
can recognize. The labels can be se-
mantic (such as grass, road, sky, and 
car) or geometric (such as horizontal, 
vertical, and slanted) and tuned for 
different scene types; for example, 
describing an indoor scene requires 

very different semantic and geometry 
classes from an outdoor scene. Scaling 
up the number and diversity of recog-
nizable categories is a core thrust in 
contemporary research. 

Most methods for pixel labeling use 
a probabilistic model known as a con-
ditional Markov random field, or CRF, 
which provides a formal framework 
for encoding the complex relation-
ship between the visual appearance of 
a scene and the underlying semantic 
(or geometric) labels. Moreover, the 
formalism admits efficient inference 
algorithms and allows model param-
eters to be learned from data. Some 
recent research (such as Heitz et al.,15 
Hoiem,18 Li et al.,28 and Yao et al.40) has 
sought to reunite the different research 
trajectories for scene understanding 
into a single coherent model incorpo-
rating high-level scene labeling, object 
segmentation, and geometric reason-
ing. This unified view allows, for exam-
ple, constraints (such as object support 
and scale) to be expressed naturally by 
linking the semantic and geometric 
aspects of a scene. These state-of-the-
art holistic models build on the pixel-

Figure 1. Understanding a typical urban scene in terms of foreground objects (“things”) and 
background regions (“stuff”). 

The background regions are easily recognized from local color and texture cues, whereas foreground objects like the car 
require complex shape and appearance models. 
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ing from some observed features x. We 
assume each variable can take a label 
from a predefined finite set of labels 
yi ∈ L. In pixel labeling the variable yi 

denotes the label assigned to the i-th 
pixel in the image and n is the total 
number of pixels in the image. Typi-
cally, the features x are represented by 
real-valued vectors associated with the 
individual pixels or image regions. For 
example, x may encode color and tex-
ture cues, as discussed later. 

The CRF model defines a probabil-
ity distribution over the output vari-
ables, given the observed features via 
an energy function E(y; x) as follows 

 P(y|x) = exp{−E(y;x)}1
Z(x)

 (1) 

where Z(x) is the so-called partition 
function that ensures the probability 
distribution is normalized correctly, or 
sums to one. Note, in general, comput-
ing the partition function is intractable 
since computation involves summing 
over the exponentially many assign-
ments to y. Fortunately, computation 
of the partition function is not neces-
sary for inferring the most likely label-
ing, as we show here. 

CRFs are compactly represented by 
decomposing the energy function E(y; x) 
as the sum of smaller clique potentials 

 ψc
  (yc ;x).E(y;x)  =

c
Σ  (2) 

Here, each clique potential ψc(yc; x) is 
a real-valued function defined over a 
subset of the random variables. We use 
the shorthand yc to indicate the subset 
of variables in the clique, or the scope 
of the “clique potential.”a Roughly, a 
clique potential encodes a numerical 
score for every joint assignment to the 
variables within its scope (ignoring all 
other variables in the model). Probabi-
listic influence propagates across the 
model via clique potentials that share 
variables, or have overlapping scope. 

The number of variables within a 
clique potential defines the order of 
the model. Higher-order models can 
contain a very large number of vari-
ables within each clique. However, 
without appropriate structure, these 
models result in intractable inference 
problems. A common model for pixel 

a Formally, c indexes a sparse subset of ele-
ments from the power set of {1,…,n}.

labeling involves only unary and pair-
wise terms 

Σ (yi ;x)  +ψU
i

E(y;x) =
n

(yi ,yj;x).ψ P
ij

i=1
Σ
ij ∈E

 (3)

There is one unary term associated 
with each pixel in the image, while the 
pairwise terms are defined over a set of 
pixel pairs ε. The set is usually sparse, 
containing only pairs of pixels that are 
neighbors in the image. Figure 2 is an 
example of a grid structured CRF de-
fined over a four-connected neighbor-
hood. In such a model, the label for 
each variable is influenced by some 
local features, as well as by the labels 
from surrounding variables. This influ-
ence can be captured by the unary and 
pairwise terms, respectively. In par-
ticular, the pairwise terms permit the 
encoding of smoothness assumptions; 
that is, a pixel in an image is likely to 
belong to the same object as its neigh-
bors. Some recent research considers 
fully connected graphs in which a pair-
wise term exists between all pairs of 
pixels. This term between pairs of pix-
els allows long-range interactions to be 
captured but is tractable only when the 
pairwise terms take a specific form in-
volving Gaussian kernels.23 

Researchers are often interested in 

only the most likely interpretation of a 
scene; probabilistically, this is known 
as maximum a posteriori, or MAP, in-
ference and requires solving 

 ŷ = argmax P(y;x).
y

 (4) 

Since the partition function Z(x) does 
not change with different assignments 
to y, the most likely scene interpreta-
tion can be found by solving the equiv-
alent energy-minimization problem 

 ŷ = argmin E(y;x).
y

 (5) 

For CRFs found in pixel-labeling prob-
lems, very fast algorithms have been 
developed for approximate energy 
minimization.3,21,22 The most ubiqui-
tous is a method known as “graph-
cuts,”3,21 a move-making algorithm that 
starts with an initial assignment to the 
variables and then iteratively solves a 
sequence of binary optimization prob-
lems that progressively improve on the 
solution at hand. 

The clique potentials ψc(yc; x) can 
be specified in a variety of ways but 
often include parameters that control 
the value of the potential as a func-
tion of the variables and observed fea-
tures; for example, the potential could 

Figure 2. Graphical representation for a grid-structured pairwise CRF over nine random 
variables {y1,…,y9}, with each variable represented by a node, direct pairwise correlations 
between variables by edges, and observed features {x1,…,x9} as shaded nodes. 
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beyond individual pixels and encode 
structural information; for example, 
object-shape information can be repre-
sented using the histogram of oriented 
gradient, or HOG, feature.5 In addition, 
other higher-level features derived 
from top-down processing, discussed 
later, can be used to represent object 
properties. Moreover, global appear-
ance features (such as average image 
color) can provide context for certain 
objects; for example, sheep tend to ap-
pear in greenish images, whereas cars 
tend to appear in grayish ones. 

Image features can be concatenated 
as a feature vector x for each pixel and 
incorporated into the potential func-
tions in CRF models. In particular, the 
unary potentials, which play a critical 
role in mapping image cues into labels, 
can be defined like this 

  ( yi = k;x) = wT
kφi(x)ψU

i
 (6) 

where wk is a weight coefficient for la-
bel class k and φi(x) is a (non-)linear 
mapping of the features for pixel i. The 
weights wk are determined from train-
ing data using, for example, structured 
prediction learning algorithms.31 

The role of context. Context plays 
an important role in natural human 
recognition of objects and scene un-
derstanding. Consider the urban scene 
in Figure 4; we instantly recognize the 
street and somewhat surprisingly each 
of the cars in it despite the cars being 
fewer than 32 pixels high. This recogni-
tion is because the weak local evidence 
for the cars is compensated by strong 
contextual cues based on the scene’s 
spatial layout. 

Contextual information can be in-
corporated into a scene-understand-
ing model in a number of ways. The 
simplest form of context is the statis-
tical correlation between features and 
class labels; for example, blue pixels 
are more likely to be sky or water than 
grass or trees. Likewise, green pixels 
are more likely to be grass or trees than 
sky or water. This is exactly the type of 
context captured through the unary 
potentials in a CRF model. However, 
much more sophisticated contextual 
assumptions can also be encoded. 

The co-occurrence of object classes 
(such as that cars often co-occur with 
road) can also be included in scene-
understanding models.32,40 Here, the 

be defined as a linear combination of 
feature values and parameterized by a 
weight vector. Alternatively, the poten-
tial could be defined as the output of a 
decision-tree classifier and parameter-
ized by node splits and leaf probabili-
ties. The main difficulty in designing 
CRF models for scene understanding 
is in learning these parameters. Maxi-
mum-likelihood approaches cannot be 
applied due to the intractability of cal-
culating the partition function. Many 
approximate learning techniques have 
been attempted. Popular among them 
are “piecewise learning with cross-
validation”34 and “pseudo-likelihood 
learning.”12 In recent years, max-mar-
gin learning approaches have shown 
success.31 However, the most effective 
strategy for CRF parameter learning is 
still an open research question. 

Features. One advantage of the CRF 
formulation is that a variety of image 
features can be used in the clique po-
tentials and treated as observed values, 
or fixed for each image. Treating image 
features as observed values provides 
flexibility in scene representation and 
simplifies the model structure, as the 
model does not need to explicitly cap-
ture the probability distribution over 
these features. Different types of image 
features are tailored to the visual prop-
erties of the object classes of interest. 

Computer-vision researchers af-

fectionately divide object classes into 
two broad categories: “things” and 
“stuff.” Background classes (stuff) are 
easily recognized from local appear-
ance; objects (things) need additional 
cues (such as shape). Figure 1 reflects 
this distinction with three examples of 
background classes—grass, road, and 
sky—and a foreground object—car. 

The local appearance features are 
color and texture cues. Two commonly 
used color spaces are RGB for its sim-
plicity and CIE-Lab for color similarity 
closer to human perception.35 For im-
age features associated with regions, 
color histograms or summary statis-
tics are often adopted to describe their 
overall appearance. The texture cues 
aim to capture repetitive local patterns 
in images and are usually extracted 
by filter banks and the distribution of 
their outputs. One widely used exam-
ple is the texton, or small texture pro-
totype, feature30,34 that first clusters the 
filter bank outputs into a texton code-
book, then represents an image patch 
as a histogram over the texton code 
words; see Figure 3 for several types of 
commonly used image features. 

For foreground objects, however, 
local-appearance features usually have 
much greater variation than back-
ground classes. More distinctive and 
stable features are needed for reli-
able recognition. These features look 

Figure 3. Typical image features used in the potentials of CRF models, including color, image 
location, filter outputs, and HOG; the filter outputs can be used to generate “texton features,” 
or texture prototypes. 
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relative positioning of the two objects 
is irrelevant; all that is important is 
they often appear together. This sort of 
context can be incorporated into a CRF 
by including binary variables zk that in-
dicate the presence or absence of each 
object class. Pairwise potentials link-
ing these object variables zk to the pixel 
variables yi enforce consistency; that 
is, if an object is present, then some 
pixels must be labeled as that object 
and vice versa. Pairwise potentials 
between two object variables zk and zl 
then capture co-occurrence preferenc-
es. However, note that the resulting 
CRF graph is no longer a regular grid 
over pixels. More important, the very ef-
ficient graph-cut technique cannot be 
used for inference, so methods must 
resort to slower inference algorithms; 
see, for example, Yao et al.40 

Class co-occurrence is a crude mea-
sure of context and does not capture 
the relative position of the objects. 
It can thus result in false detections 
placed inconsistently with respect to 
one another (such as a car floating 
in the trees). The spatial location of 
objects relative to the adjacent back-
ground16 or relative location of objects 
across the scene12 allows such errors to 
be corrected automatically by design-
ing potential functions that encode 
this information in the model. Unfor-
tunately, modeling the relative loca-
tion of objects directly requires non-lo-
cal reasoning that can make inference 
intractable. A global entity (such as 
the location of the horizon for out-
door scenes19 or box-structure layout 
of a room for indoor scenes14,39) can be 
used to link objects indirectly and sim-
plify reasoning. Here, additional vari-
ables (such as vhz for the location of the 
horizon) are introduced into the CRF 
formulation (Equation 2) and linked 
via pairwise potentials to the pixel label 
variables yi. 

Pixels versus superpixels. An im-
age is represented within a computer 
as a rectangular array of pixels, so as-
sociating labels with individual pixels 
for scene understanding is a natural 
choice. Moreover, the regular image 
structure is convenient for construct-
ing CRFs with pairwise terms over ad-
jacent pixels. However, pixels them-
selves are an artifact of the imaging 
process and do not necessarily reflect 
the underlying structure or complexity 

of a scene; for example, a one-megapix-
el photograph and an eight-megapixel 
photograph convey essentially the 
same information for the purpose of 
scene understanding despite the latter 
containing eight times as many pixels, 
hence requiring a bigger model. Pixels 
are noisy indicators of class; for exam-
ple, in Figure 5, two adjacent pixels can 
have very different colors despite be-
longing to the same object. 

A potential way to avoid an unnec-
essarily large number of variables is to 
model the image in terms of superpixels, 
or small contiguous regions of con-
sistent appearance. Here, yi in Equa-
tion 3 denotes the label assigned to 
the i-th superpixel, and n is the num-
ber of superpixels, as in Fulkerson et 
al.9 A superpixel representation of an 
image can be generated by clustering 
adjacent pixels with similar color to 
produce numerous small regions.4,8,33 

Since superpixels are often much 
smaller than the objects of interest, 
the process is called “oversegmenta-
tion.” Traditional oversegmentation 
methods are often slow and can result 
in highly irregular regions that do not 
honor object boundaries. A number of 
recent research efforts have attempted 
to produce superpixels with a more 
regular shape1 and better alignment to 
true boundaries in the scene. 

Many algorithms provide a way to 
control the number of superpixels. Fig-
ure 5 includes three different overseg-
mentations of an image into superpix-
els. The first (Figure 5b) produces too 
few superpixels, and much detail in the 
image is lost. However, the last (Figure 
5d) maintains all essential structure in 
the image and achieves a 46 times re-

duction in the number of entities need-
ed to describe the scene, from 68,160 
pixels to 1,476 superpixels. 

In addition to reduced model size, 
superpixels provide spatial support for 
computing features,9,17 making these 
features less susceptible to noise. 
However, there are also a number of 
drawbacks to representing an image 
with superpixels rather than pixels. 
First, superpixels do not conform to a 
regular neighborhood structure, mak-
ing it difficult for a programmer to 
weight the influence of each pairwise 
term in a CRF model. Second, super-
pixels commit to region boundaries 
as a pre-processing step, and these 
boundaries may not coincide with the 
true object boundaries. 

The best of both worlds—pixels and 
superpixels—can be achieved by repre-
senting the image in terms of pixels but 
using superpixels to provide additional 
features or enforce higher-order con-
sistency constraints.20 For example, the 
model can penalize labelings where 
pixels within a superpixel disagree on 
their class label. Such penalties can be 
implemented in a CRF model through 
a higher-order Potts potential 

(yc)  =
λ
0 if ∃� ∈ L s.t. yi = � for all i ∈ c

otherwiseψH
c  

(7) 

where a cost of λ > 0 is paid if not all vari-
ables within clique c take the same label. 
In this way, the algorithm prefers bound-
aries defined by the superpixels, but, giv-
en enough evidence to the contrary, this 
assumption can be overridden. 

Superpixels can also be used within 
iterative inference procedures (such as 
move-making algorithms10,11) or data-

Figure 4. Example low-resolution image showing the importance of context for object 
detection; recognizing the highlighted object is difficult in isolation but in the context  
of a street scene is easily identified as a car. 
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tion usually has higher-order terms, as 
in Equation 2, in which the clique c is 
defined by pixels within the object-sup-
port regions, and the term favors coher-
ent labeling of those pixels. 

Higher-order energy functions can 
be optimized by generalized graph-cut 
inference algorithms20 or transformed 
into pairwise models by adding aux-
iliary variables. Alternatively, both 
bottom-up and top-down information 
can be used in the design of the move-
making algorithms that iteratively 
propose energy-reducing changes to 
variable assignments; for example, 
object-detection outputs can gener-
ate powerful top-down moves, over-
coming fragmented object-labeling 
results from pure bottom-up-driven 
segmentation.11 

As discussed earlier, some recent 
approaches take a holistic view toward 
scene understanding by integrating 
scene segmentation with multiple 
scene-analysis tasks (such as scene 
classification, object detection, and 
depth/layout estimation15,18,40). In such 
a framework, several levels of top-down 
information, including geometry, can-
didate object bounding boxes, and 
scene category, are incorporated into 
a single CRF energy function. Con-
cretely, variables are introduced to rep-
resent these quantities, and their rela-
tionships to pixel labels are modeled 
through pairwise or higher-order po-
tential functions. The overall problem 
can be decomposed into smaller tasks 
and solved in an alternating fashion or 
treated as a unified objective to be opti-
mized jointly. 

Datasets and Software 
Many software implementations of 
scene-understanding algorithms are 
freely available. Two notable exam-
ples are the Darwin software frame-
workb and the Automatic Labeling 
Environment (ALE),c providing infra-
structure for scene understanding via 
pixelwise CRF models, as described 
earlier. The most basic models con-
sist of unary and pairwise potentials. 
The unary potentials are constructed 
using local and global appearance fea-
tures. The pairwise clique potentials 
are defined on either four-connected 

b http://drwn.anu.edu.au
c http://cms.brookes.ac.uk/staff/PhilipTorr/ale.htm

driven Markov chain Monte Carlo al-
gorithms.38 Here, the superpixels guide 
the inference procedure by proposing 
changes to the boundaries of objects 
for the current interpretation of the 
scene at hand. 

Top-down vs. bottom-up. CRF mod-
els provide a unified framework for 
integrating image cues and prior as-
sumptions over scene-label configu-
rations. Image cues used for defining 
unary clique potentials or forming su-
perpixel representations are usually re-
ferred to as “bottom-up information.” 
These bottom-up cues describe the 
similarity between pixels and can be 
used to generate informative propos-
als for the labeling task (such as larger 
homogeneous regions). We view the 
class-dependent unary potentials as 
part of the bottom-up process, though 
they also include the label information. 
The most common prior assumptions 
over labels are defined on neighboring 
(super)pixels (via pairwise terms in the 
CRF) and represent a soft smoothness 
constraint on region labels. While this 
constraint is an effective prior on re-
gion labels, it lacks the expressive pow-
er needed for object-specific informa-
tion (such as global shape and pose). 
We refer to the priors on these latter 
properties as “top-down information,” 

as they encode knowledge at a level be-
yond pixels and simple image regions. 

Object shape is probably the most 
important type of object-level infor-
mation. Shape priors are usually rep-
resented as either rigid or deformable 
masks that assign each pixel a cost of 
belonging to the foreground object 
corresponding to the mask2,27 (see Fig-
ure 6). Deformable masks can capture 
pose variation suitable for object class-
es (such as people and animals) and 
are often implemented through a part-
based model where individual compo-
nents of the mask can move relative 
to one another. As shape is a global 
property of foreground regions, shape 
priors naturally lead to large cliques 
and therefore more complex inference 
algorithms. In practice, some mask 
representations decompose into a 
sum of local unary or pairwise terms; 
for instance, given a matched shape 
mask, pixels lying within the mask can 
be encouraged to take specific labels 
by modifying costs within the corre-
sponding unary potentials. 

One common strategy for incorpo-
rating object priors is to use object de-
tection to generate object-instance pro-
posals (such as bounding boxes) and 
define object-shape potentials on those 
regions.11,24 The resulting energy func-

Figure 5. An image and various oversegmentations of the image into superpixels; 
the number of superpixels controls the trade-off between model complexity and 
representation accuracy. 

(a) (b)

(c) (d)
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or eight-connected neighborhoods 
around each pixel and often involve a 
contrast-sensitive smoothness prior34 
that discourages adjacent pixels from 
taking different labels when the pixels 
are similar in color. 

Moreover, many well-labeled data-
sets are readily available, with many 
researchers using them to develop and 
compare scene-understanding algo-
rithms. To give a flavor of the results 
that can be achieved, consider the fol-
lowing results on two standard datasets 
from the Darwin software framework: 

The Stanford Background Data-
set (SBD)10 consisting of 715 images of 
rural, urban, and harbor scenes. Im-
ages are labeled from two different 
label sets: the first captures semantic 
class and includes seven background 
classes (sky, tree, road, grass, water, 
building, and mountain) and a single 
foreground object class; the second 
captures scene geometry (sky, verti-
cal, and horizontal). Each image pixel 
is allocated two labels, one semantic 
and one geometric; and 

The Microsoft Research Cambridge 
(MSRC) dataset34 consisting of 591 images. 
Pixels are labeled with one of 23 differ-
ent classes. However, due to the rare 
occurrence of the horse and mountain 
class, they are often discarded. Pixels 
not belonging to one of the remaining 
21 categories are ignored during train-
ing and evaluation. One drawback of 
this dataset is the ground-truth label-
ing is rough and often incorrect near 
object boundaries. Nevertheless, the 
dataset contains a diverse set of images 
and is widely used. 

As scene-understanding research 
matures, larger and more diverse da-
tasets are becoming more important 
for applying existing scene-under-
standing algorithms and inspiring 
new ones. The PASCAL Visual Object 
Classes (VOC) dataset6 is a very large 
collection of images annotated with 
object-bounding boxes and pixelwise 
segmentation masks for 20 differ-
ent (foreground) object categories. 
It contains approximately 20,000 im-
ages organized into numerous chal-
lenges, with training, validation, and 
evaluation image sets pre-specified. 
Another large dataset of interest to 
scene-understanding researchers is 
the SIFT Flow dataset,29 a subset of 
outdoor images from the LabelMe im-

age repository (http://labelme.csail.
mit.edu), which contains 2,688 images 
annotated using 33 diverse object and 
background categories. Performing 
well on both these datasets requires a 
combination of many of the techniques 
described earlier. 

Accuracy of scene-understanding 
algorithms can be evaluated by many 
measures, including sophisticated 
boundary-quality metrics and inter-
section-over-union (Jaacard) scores. 
The simplest measure computes the 
percentage of pixels that were correctly 
labeled by the model on a “hold out,” 
or separate, set of images, referred to 
as the “test set” or “evaluation set.” As 
is standard practice when evaluating 
machine-learning algorithms, these 
images should not be viewed during 
training of the model parameters. For-
mally, we can write 

 acc= n
�ŷi = y*

i �   
n
i =1Σ

 (8) 

where yi is the label for pixel i predicted 
by the algorithm, y*

i is the ground-truth 
label for pixel i, and · is the indicator 
function taking value one when its ar-
gument is true and zero otherwise. An 
alternative evaluation metric that bet-
ter accounts for performance on rare 
categories is class-averaged accuracy, 
defined as 

Σ1
|L| �∈L

accclass–avg= �ŷi = �) ∧ (y*
i  = �)�   

n
i =1Σ

�y*
i  = ��   

n
i =1Σ

 (9)

The different accuracy measures defined 
by Equation 8 and Equation 9 are often 
referred to in statistics as “micro averag-
ing” and “macro averaging,” respectively. 

State-of-the-art performance on the 
semantic categories of the MSRC and 
Stanford Background datasets is ap-
proximately 86% and 77% pixelwise 
accuracy, respectively; class-averaged 
accuracies are typically 5%–10% less. 
On larger datasets, performance can 
be quite poor without top-down and 
contextual cues, especially on the less 
frequently occurring classes. 

Illustrating the effects of differ-
ent aspects of a scene-understanding 
model, Figure 7 includes results on an 
example image from the MSRC data-
set. Classifying pixels independently 
(left results column) produces very 
noisy predictions, as shown. Adding 
a pairwise smoothness term helps re-
move the noise (right side). However, 
when the features are weak (top row), 
the algorithm cannot correctly clas-
sify the object in the image, though 
the background is easily identified us-
ing local features. Stronger features, 
including local and global cues, as 
discussed, coupled with the pairwise 
smoothness term, produce the correct 

Figure 6. Combining bottom-up and top-down information in a CRF framework.2  
The bottom-up process forms region hypotheses and maps them to semantic labels.  
The top-down process represents part-based shape constraints on object instances. 
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with the same class as the surround-
ing background. The second duck 
is mislabeled as a boat. While this 
may seem absurd to humans, it is a 
reasonable mistake for an algorithm 
when considering the context is cor-
rect (boats also co-occur with water) 
and the model was trained on only a 
handful of images containing ducks. 

Conclusion 
We have explored scene understand-
ing as a pixel-labeling task, including a 
number of technical challenges facing 
scene-understanding algorithms and 
a glimpse at current trends toward ad-
dressing them. Active research along 
these lines and the growing availability 
of high-quality datasets reflect current 
scene-understanding research; for ex-
ample, better low-level feature repre-
sentations are being learned automati-
cally from large volumes of data rather 
than engineered by hand.26 Research-
ers are also looking toward mid-level 
visual cues (also called “attributes”) 
to overcome some of the limitations 
of scarce training data; for example, 
knowing an object has feathers nar-
rows the range of possible labels for 
that object.7 

Moreover, improved learning algo-
rithms based on structured-predic-
tion models31 means large numbers 
of parameters can be tuned simulta-
neously. This results not only in more 
optimal parameters but enables use 
of richer models (such as those with 
parameterized higher-order terms). 
Other models being studied are hy-
brid models (such as grid-structured 

labeling result (bottom right). 
These examples of semantic seg-

mentation are indicative of more 
general trends in scene-understand-
ing algorithms. More sophisticated 
features that incorporate contextual 
information (such as pixel location 
and global and shape-based features) 
perform much better than local ap-
pearance features, in general. More-
over, CRF models, with their pairwise 
smoothness priors, improve perfor-
mance over independent pixel clas-
sification, but the benefit decreases 
as the sophistication of the features 
used by the independent classifiers 
increases. This trade-off is to be ex-
pected, as these features allow both 
the baseline performance to increase 
and the features to encode contextual 
information that can act as a surro-
gate for the smoothness assumption. 

The qualitative results from the 
Darwin software framework (see Fig-

ure 8) also highlight a few points; 
as shown, the accuracy of the pre-
dictions is generally good, and the 
model is able to identify the bound-
ary between object categories quite 
well. The labeling of foreground 
objects occasionally leaks into the 
background. This leakage is more 
prominent in the MSRC results and 
can be attributed to, in part, rough 
ground-truth labeling in that dataset. 
In models that use superpixels, these 
boundary errors can also be caused 
by inaccurate over-segmentations. 

An interesting result is the label-
ing of the ducks in Figure 8 (MSRC, 
left column, third row down). Here, 
the water is classified correctly, but 
both ducks are labeled incorrectly. 
The white duck is mislabeled as wa-
ter by the model due to both confu-
sion of its local appearance with that 
of water and a strong smoothness 
assumption preferring to label it 

Figure 7. Example semantic segmentation for an image from the MSRC dataset. 

Shown are the original image (left) and color-coded pixel labels (right) from different scene-understanding models.  
The models vary by features (local appearance versus local and global appearance) and model complexity (independent 
pixel classification versus a CRF model with pairwise term); see Figure 8 for the related color legend. 
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Figure 8. Representative results on two standard scene-understanding datasets produced by the Darwin software library; shown are the 
original image and predicted class labels overlay; best viewed in color. 
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CRFs) combined with a shape-con-
straining counterpart (such as re-
stricted Boltzmann machines, or 
RBMs, and multi-scale patterns). 
Here, the CRFs capture appearance 
and smoothness, while the RBM and 
its variants encourages global consis-
tency over the shape of objects. The 
models are still in their infancy but 
show great promise. 

Another exciting direction is the 
use of non-parametric label-transfer 
techniques to allow for greater scal-
ability in terms of the size of the 
dataset and the diversity of object 
categories.29,36 These techniques over-
come (somewhat) the assumption of 
a closed-world set of labels implicit 
in the CRF formulation but intro-
duce other complications (such as 
more-expensive test-time computa-
tion) and the need to resolve language 
ambiguities (such as whether “water” 
and “river” are semantically equiva-
lent and, more important, refer to the 
same object). 

One may ask whether it is neces-
sary to label every pixel in an image. 
Indeed, for some scene-understand-
ing tasks (such as face detection), 
a rough bounding box may suffice. 
However, for a detailed description 
of a scene, along the lines envisaged 
by early computer-vision researchers, 
pixel-level labeling seems inevitable. 
Advances on this front (such as those 
discussed here) and their integration 
into coherent holistic models are get-
ting us closer to when a computer is 
indeed able to describe what it sees.  
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