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Abstract. The watershed transform was proposed as a novel method
for image segmentation over 30 years ago. Today it is still used as an
elementary step in many powerful segmentation procedures. The wa-
tershed transform constitutes one of the main concepts of mathematical
morphology as an important region-based image segmentation approach.
However, the original watershed transform is highly sensitive to noise
and is incapable of detecting objects with broken edges. Consequently
its adoption in domains where imaging is subject to high noise is limited.
By incorporating a high-order energy term into the original watershed
transform, we proposed the viscous force watershed transform, which is
more immune to noise and able to detect objects with broken edges.

1 Introduction

Image segmentation for identification of homogeneous regions in an image has
been the subject of considerable research activities over the last three decades.
Here, segmentation refers to the process of partitioning a digital image into
multiple contiguous regions (sets of pixels, also known as super-pixels). Such
representations, over regions rather than individual pixels, may be more mean-
ingful and easier to analyse. For example, image segmentation can be used as a
pre-processing step for locate objects in images. More formally, image segmen-
tation can be thought of as the process of assigning a label to every pixel in an
image such that pixels with the same label share certain visual characteristics
and belong to the same region. Boundaries between regions are defined whenever
neighbouring pixels differ in their assigned labels.

Most image segmentation approaches can be divided into two classes, namely
region-based and edge-based. One of the earliest prototypes for region-based
segmentation is the Mumford-Shah functional [1, 2], whose piecewise formulation
is a spatially contiguous generalization of the Ising model [3]. Inspired by mean
intensities employed in the Mumford-Shah functional, graph-based algorithms
have been developed where globally optimal solutions (with respect to an energy
function) can be obtained (e.g., graph-cuts [4] and watershed algorithms [5]).
Other approaches, such as region-based level-sets (e.g., [1]), are similar but global
optima cannot, in general, be guaranteed.
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Fig. 1: Ultrasonic image segmentation: (a) Gallbladder sludge ultrasonic image
with predefined seeds (from http://www.ultrasound-images.com). Results pro-
duced by various algorithms: (b) Graph cuts; (c) Random walker [10]; (d) Meyer
flooding [11]; (e) Power watershed [12]; (f) Region scalable level-sets (RSF) [2];
(g) Distance regularized level-sets evolution (DRLSE) [13]; (h) Our viscous wa-
tershed.

Edge-based approaches often adopt line integrals along proposed boundaries
to score segmentations. The Snakes active contour model [6] is an early example
of this approach. Here, curvature and length constraints are encoded as regu-
larity terms into the integration of squared image gradients. Some variational
variants [7] successfully incorporate gradient vector flow energy into the integral
to enhance robustness. Level-set methods [8] define a powerful curve propagation
scheme which has been proposed as replacement to the arc-length function [9]
in active contour models for curve evolution. Unfortunately the quality of solu-
tions from these approaches rely on difficult to tune parameters which are image
specific.

Watershed image segmentation was originally proposed by Digable and Lantue-
joul [5], and later improved by Beucher and Lantuejoul [14]. The method has
been demonstrated as a powerful, non-parametric and fast technique for region-
based segmentation. In particular, watershed-based algorithms are widely used
in image segmentation because of their efficiency and accuracy when applied to
high-quality images. However, the watershed transformation suffers from poor
robustness that results in significant fluctuations of the segmentation when con-
tours are blurred or images are noisy. Moreover, the watershed transformation
cannot find the outlines of objects with broken edges. Consequently, leaks and de-
generacy may occur in results from watershed image segmentation (and indeed,
other seeded image segmentation techniques). Figure 1, for example, highlights
the failures of a number of segmentation algorithms on a low-quality image,
whereas the performance of our algorithm is significantly better.
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In this paper, we propose a new method that can significantly improve the
robustness of the watershed transformation by incorporating a high-order energy
term (that we designate viscous force). Our viscous force watershed transforma-
tion has two main advantages over the original watershed transformation:

1. Our high-order energy term can dramatically enhance the robustness of the
watershed transformation thereby making it more tolerant to noise and other
forms of image corruption.

2. Our viscous force watershed transformation can extract the contour of ob-
jects with broken edges, which is not possible using the conventional water-
shed transformation.

Importantly, our method retains the key strengths of the original watershed
transform—it is simple and fast. This makes our method of particular relevance
to application domains requiring segmentation of low-quality images (e.g. med-
ical ultrasonic images as shown in Figure 1).

2 Background and Related Work

The essential idea behind the watershed transformation can be understood from
a geographic analogy: We consider a grey-scale image as a topographic relief
where the intensity of a pixel is represented by the height of the relief. When
a drop of water falls on a topographic relief, it moves downhill coming to rest
within a local basin. By filling the topographic relief with water up to the point
where water from different local basins meet we can identify so-called watershed
lines. As a result, the landscape (or image) is partitioned into regions separated
by the watershed lines.

Despite its simplicity, the watershed transform suffers from several problems.
Primary amongst these is its high sensitivity to variations in the image gradient
resulting in significant over-segmentation of the image. To solve this problem,
marker-based approaches have been proposed within the watershed framework
(e.g., optimal spanning forest [15] or Meyer’s flooding [11]). Here markers (or
seeds) may be interactively placed by users or found automatically using prior
information to constrain the segmentation of the image into desired regions.

The most recent marker-based watershed image segmentation method is the
power watershed method [12], which casts the watershed algorithm as an energy
minimisation problem. As a consequence the method unifies various marker-
based image segmentation algorithms such as graph-cuts, random walker and
shortest path optimisation algorithms. This is achieved by replacing the objective
in the traditional watershed method with a pairwise energy terms, which, to
some extent, can partially improve robustness. However, without introducing
high-order energy terms, the power watershed method is still unable handle low
quality images or images corrupted by noise.

To address the problem of image corruption, Meyer [16, 17] proposed the
concept of viscous flooding. The idea of viscous flooding was inspired by mor-
phological operations and geometrical constraints, and can be incorporated into
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the watershed segmentation algorithm in two different ways. The first, proposed
by Meyer [16, 17], is to simulate a viscous fluid in the watershed line construc-
tion via the opening morphological operation. Here the magnitude of viscous
force only depends on the radius of the morphological operation rather than
neighbourhood intensity changes in the image.

The second method for incorporating viscous flooding into the watershed
transformation is via the topological relief regularisation [18]. The essence of
this approach is still based on morphological opening. However, the aim is to
regularise topographic relief directly with a morphological operation rather than
simulating the viscous fluid flooding as in the first approach [16]. Unlike these
approaches, our method directly connects neighbouring intensity changes to the
magnitude of the viscous force.

Edge-based image segmentation algorithms tackle the problem from a differ-
ent perspective. Many of these algorithms are based on the level-sets method [8],
which evolves a contour to segment regions from a rough initial boundary.
The most recent level-sets method is the distance regularised level set evolu-
tion algorithm (DRLSE) [13]. However, level-sets are not limited to edge-based
algorithms. The approach can also be extended to region-based segmentation
(e.g., [1]). The most recent level-sets approach belonging to this category is the
region scalable fitting level set (RSF) algorithm [2]. In both of these approaches,
however, level-sets methods can not guarantee the globally optimal result.

All of the methods described above may be considered as addressing energies
or external forces comprised of only unary and pairwise terms. Watershed seg-
mentations (Power watershed or Viscous watershed) only consider the low order
terms (e.g., opened sets). However, recent literature has found that the addition
of external force defined with higher order terms can help improve performance
in a variety of tasks [19, 20]. Although, level-set methods address image segmen-
tation as energies and external forces comprised through pairwise terms, they
failed to find the globally optimal result in most cases.

In this work, we propose a specific high-order term, which we call viscous
force. By incorporating this term, we are able to address the drawbacks of previ-
ous approaches in dealing with noisy or corrupted images. Moreover, unlike the
existing viscous watershed, our viscous force models neighbourhood intensity
changes resulting in more precise and reliable segmentations.

3 Viscous force into the watershed transformation

We begin our exposition by reviewing the fundamentals of the watershed trans-
formation [11]. We then present our high-order viscous force term and show
how it improves the segmentation accuracy and robustness without sacrificing
the performance even under low-quality imaging scenarios. We examine special
cases of this algorithm in the context of noisy images and images with missing
boundaries.

We will consider a finite grid of pixels. We embed the set of pixels within an
undirected graph, where the graph D = (V, E) consists of a set V = {1, 2, · · · , n}
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of vertices (or nodes) denoting the pixels and a set E ⊆ V×V of pairs of vertices
defining the connectivity structure, usually 4-connectivity or 8-connectivity. The
set E consists of unordered pairs of nodes (p, q) called an edge. In a weighted
graph, a non-negative scalar (weight) is associated with each edge (p, q) ∈ E
in the graph. We can now define a digital greyscale image as a 3-tuple D =
(V, E, W(·)), where (V, E) is a grid structured graph and W(·) is an edge weight
function W(p, q).

For many seeded image segmentation algorithms, the edge weights are deter-
mined by image intensity changes. One common format used by the graph-cuts
and random walker segmentation algorithms is to set

W(p, q) = exp(−β [I(p)− I(q)]
2
), (1)

where I(p) is the image intensity at node (pixel) p. However, a special topo-
graphic relief function W(·) = Tf(·) (mentioned later) will be employed in wa-
tershed segmentation.

Then, image segmentation proceeds to label each node (pixel) p with a label
from a fixed set C = {c1, c2, · · · , cn} according to its corresponding edge
weights. We first label some of the nodes (pixels) with these labels and treat them
as seeds. Then the seeded image segmentation for producing a segmentation is
to solve the problem [12, 10, 21]

arg min
x

∑
(p, q)∈E

W(p, q) [[xp − xq]] (2)

subject to x(c1) = 1, x(c2) = 2, · · · , x(cn) = n

where xp denotes the unknown label of node (pixel) p. After establishing a
function for the seeded image segmentation, there are some optimisation methods
to search for the minima, for example region scalable level set (RSF) [2], graph
cuts [4] and watershed algorithms [16].

As demonstrated in Figure 1, the above seeded image segmentation algo-
rithms, associated with different optimisation methods, are unable to produce
satisfactory segmentation results under low quality imaging. In other words,
no mater what kind of optimisation method is employed by the seeded image
segmentation, leaks and degeneracy frequently occur in the results under low
quality imaging. That means the problem lies in the objective function rather
than optimisation method. Thus, in this paper, we will incorporate a viscous
force into the weight function, in order to produce a better weighted graph for
segmentation.

3.1 Review of watershed transformation

We now describe how watershed segmentation simulates the fluid flooding and
finds the watershed lines based on the established topographic relief.

Let the topographic relief f(·) → [0, 255] have minima {mk}k∈K, shown in
Figure 2 (a), for some index set K ⊆ V. The catchment basin CB(mi) of a
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Fig. 2: Diagrams of minima, catchment basin and watershed line. From left to
right: (a) Local minima of relief; (b) Yielded catchment basins and corresponding
watershed lines.

minimum mi is defined as the set of nodes (pixels) p ∈ V\K, which are topo-
graphically closer to mk with topographic distance Tf (p,mk) than to any other
regional minimum ml with Tf (p,ml) (see Figure 2 (b)):

CB(mk) =
{
p ∈ V, k ∈ K | ∀l ∈ K\{k} : f(mk)+Tf (p, mk) < f(ml)+Tf (p, ml)

}
.

(3)
In an infinite graph, the watershed line of f is the set of pixels that specify the
boundaries between regions. Formally the watershed line is defined as the set of
pixels that does not belong to any catchment basin (see Figure 2 (b)):

Wshed(f) = V \

[⋃
k∈K

CB(mk)

]
. (4)

Let Wshed denote the label for the watershed line — Wshed /∈ K. The watershed
transform of f is a mapping λ : V → K ∪ {Wshed}, such that λ(p) = k if
p ∈ CB(mk), and λ(p) = W if p ∈ Wshed(f). So the watershed transform
of f assigns labels to the points of V, such that different catchment basins are
uniquely labelled, and a special label W is assigned to all points on the watershed
line.

Initially, we assume that the image I is lower complete; that means each
pixel which is not in a minimum has a neighbour with a lower grey value. A
plateau situation will be discussed later. The gradient magnitude ‖∇I(p)‖ of I
at a pixel p could be used to describe the topographic distance. But, in practice,
the lower slope LS(p) is actually calculated as the topographic distance due to
computational efficiency. It is defined as the maximal slope linking p to any of
its neighbour of lower altitudes. Formally,

LS(p) = max
q∈NG(p)

(
I(p)− I(q)

d(p, q)

)
, (5)

where NG(p) is the set of neighbours of the node (pixel) p of the grid D = (V, E),
and d(p, q) is the Manhattan distance between nodes (pixels) p and q. Then, the
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Fig. 3: Illustration of segmentations using predefined seeds in synthetic broken
boundary and noise scenarios. (a) Image with seeds; (b - h) Segmentation results
are yielded by Graph cuts, Random walker, Meyer flooding, Power watershed,
DRLSE, RSF, and viscous force watershed, respectively. See text for details.

topographic distance from p to a neighbouring node q is defined as

Tf (νp, νq) =


LS(p) · d(p, q), if I(p) > I(q)

LS(q) · d(p, q), if I(p) < I(q)
1
2 (LS(p) + LS(q)) · d(p, q), if I(p) = I(q).

(6)

The topographical distance along a path π = (p0, . . . , pl) between p0 = p and
pl = q in V is defined by:

Tπf (p, q) =

l−1∑
i=0

Tf (pi, pi+1). (7)

If an image is not lower complete the topographical distance between the interior
pixels of a plateau will be identically zero. Thus, the Manhattan distance to the
boundary of the plateau is usually computed instead of the topographic distance
in this situation.

3.2 Watershed transformation with viscous force

Let D = (V, E, Tf ) be a greyscale image. For any pair of vertices p, q ∈ V,
consider all paths from p0 = p to pl = q, whose vertices belong to the path
π = (p0, p2, . . . , pl) for which π ⊂ V.

Let Tπ?f (p, q) be the minimum-weight path among them. If pk is on the
shortest path Tπ?f (p, q), then we can break this path into two sub-paths: one
from p to pk as Tπf (p, pk), the other from pk to q like Tπf (pk, q). Then, each
vertices pi on the shortest path π? would satisfy the following properties:

Tπ?f (p, q) =

Tf (p, q), if (p, q) ∈ E

arg min
pk∈D,(pk,q)∈E

[
Tπ?f (p, pk) + Tπ?f (pk, q)

]
otherwise. (8)

However, Equation 8 only considers vertices on the path and ignores other ver-
tices in the neighbourhood. This property yields a weakness in the watershed
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transform, because “fluid” may leak out from broken edge or be interfered by
noisy pixels (see Figure 3). Thus, we introduce a high-order term to the topo-
graphic distance calculation, in order to improve robustness of the watershed
algorithm.

Intuitively, the idea of our high-order term can be motivated by the averaging
the cost of all paths in the neighbourhood of a given path rather than the
cost of the path itself. We expect the average path to be more robust to local
topographic variations (e.g. broken edges and noise). This energy term presents
as follows

T̂πf (p, q) =

l−1∑
i=0

{
Tf (pi, pi+1) +

1

2
[VF(pi) + VF(pi+1)]

}
. (9)

where VF(p) is the energy function associated with p, which calculates the aver-
aging topographic distance from point p on the path to the other points in the
neighbourhood. We define VF(p):

VF(p) =
1

C
ln

1 +
∑

q∈NG(p)

[
1− e−C·Tf (p,q)

] , (10)

where C is a positive constant, which controls the magnitude of the viscous force
per pixel. Smaller values of C produce a larger viscous force. In the other words,
the viscous force effects vanish for large C. In our experiments, we found that
setting C = 0.005 gives satisfactory results over a large range of images.

The size of the local neighbourhood NG(p) also affects the strength of the
viscous force. When the neighbourhood is too large, the total viscous force may
make fluid too thick to detect details of the topographic relief without a proper
C, and our algorithm tends to over-smooth the image. Additionally, the compu-
tational cost of the viscous force depends on the size of this neighbouring set.
We found that setting the neighborhood to 3× 3 or 5× 5 usually results in good
performance. Then, equation 9 can be efficiently solved by the dynamic program,
and Moore-Bellman-Ford algorithm is employed in this paper.

As shown in Figure 3(top row), the energy term assigns a high penalty value
to the weighted path going through the window to make it expensive and stop
the fluid from leaking out. Other seeded image segmentation approaches treat
the broken edges as a plateau and give some unreasonable results.

In Figure 3(bottom row), the viscous force will result in a constant topo-
graphical path cost over local regions in noisy scenarios, which can neutralise
the impact of noisy pixels. Other seeded image segmentation algorithms are af-
fected by noisy pixels critically, so most of them cannot locate the boundaries
of the structure or capture its shape.

After introducing the viscous force term into watershed transformation, we
generate a new viscous force watershed transformation in equation 9 and 10. We
can also incorporate our weight function, incorporating the viscous force, into
other seeded image segmentation approaches via the generic framework described
above (i.e. equation 2).
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Fig. 4: Illustration of F-measurement drawing in PR-chart under the different
magnitude of gaussian noise. Top row: F-measurement on original images, and
F-measurement on images corrupted by gaussian noise with standard deviations,
σ = 0.1, σ = 0.2. Bottom row: F-measurement on images corrupted by Gaussian
noise with standard deviations, σ = 0.3, σ = 0.4, and changes of F-measurements
over different levels of noise. Measurement software is provided by BSDS500
dataset.

4 Experimental results

We evaluate the performance of our proposed viscous force watershed trans-
formation against other seeded watershed image segmentation algorithms and
active contour models—specifically graph cuts, random walker, Meyer flooding,
power watersheds, DRLSE, and RSF. Our experiments use the 50 image Grab-
Cut dataset [23]. This dataset was first proposed for evaluating interactive image
segmentation algorithms. It provides foreground segmentation masks which we
use to generate the seeds by applying significant erosion.

Our viscous force watershed is targeted at low-quality image segmentation,
(see in Figure 1). To evaluate performance in this regime we corrupt the images in
the GrabCut dataset by adding zero-mean gaussian noise (σ ∈ [0.1 0.4]) to each
pixel. Quantitative evaluation is then performed using the precision-recall chart
and F-measurement metrics developed by [24] for boundary quality evaluation.
We also report ground truth covering and variation of information metric (VI)
for region covering evaluation [25, 24].
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σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4
MedF BestF MedF BestF MedF BestF MedF BestF MedF BestF

Graph cuts 0.700 0.792 0.659 0.727 0.564 0.592 0.520 0.537 0.496 0.511

Random walker 0.701 0.793 0.660 0.728 0.564 0.592 0.520 0.537 0.496 0.512

Meyer flooding 0.711 0.819 0.684 0.781 0.616 0.679 0.539 0.580 0.512 0.549

Power watershed 0.709 0.810 0.671 0.743 0.556 0.586 0.515 0.534 0.496 0.510

DRLSE 0.552 0.666 0.557 0.673 0.537 0.647 0.422 0.503 0.322 0.383

RSF 0.119 0.165 0.104 0.179 0.066 0.112 0.056 0.091 0.051 0.093

Viscous watershed 0.710 0.817 0.697 0.801 0.676 0.845 0.639 0.754 0.641 0.757

∆†
-0.001 -0.002 0.013 0.020 0.060 0.166 0.100 0.174 0.129 0.208

Table 1: F-measurement for boundary detection computed between the segmen-
tations yielded by seven algorithms and ground truth images in GrabCut data
set. †: ∆ shows difference in F-measurement between our algorithm and the best
algorithm among the remaining six.

4.1 Boundary quality

The F-measurement is particularly meaningful in the context of boundary maps.
It is reasonable to characterise higher level processing in terms of how true a
signal is required for R (recall) to be successful, and how much noise can be
tolerated P (precision). Then a balanced F-measurement can be calculated from
these quantities.

Table 1 shows the quantitative results for the seven algorithms being tested
under different Gaussian noise scenarios. We report two quantities. The first
(MedF) reports the median F-measurement across the 50-image dataset, and the
second (BestF) reports the best F-measurement over all images in the dataset.
These metrics (BestF and MedF) range from 0 to 1 corresponding to bad and
good matches, respectively.

Some qualitative results are shown in Figure 4. As these images and the
quantitative results show, segmentations produced by our viscous watershed on
original (noise free) images are as good as results produced by the other seeded
image segmentation algorithms. The difference of quantitative measurements is
marginal in the noise-free case, and the seeded image segmentation approaches
all perform much better than DRLSE and RSF. However, when segmenting in
the presence of Gaussian noise, our viscous force watershed method outperforms
the other six algorithms.

Additionally, Figure 4 shows that the F-measurement metric of our viscous
force watershed method drop much slower than the other algorithms as the
magnitude of noise increases. In other words, viscous force is more robust to
noise than the other seeded image segmentation algorithms.

4.2 Region quality

The Variation of Information metric (VI) was introduced for the purpose of
label comparison [25, 24]. It measures the distance between two segmentations
in terms of their average conditional entropies given by:

VI(S, S′) = H(S) +H(S′)− 2I(S, S′),
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Fig. 5: Example segmentations on the GrabCut dataset images under different
magnitudes of noise. For each image, top row: image with seeds, segmentations
yielded by graph cuts, random walker, and Meyer flooding, bottom row: seg-
mentations produced by power watershed, DRLSE, RSF and viscous watershed.
From top to bottom, the ceramic elephant image is the original one without noise
corruption, the fighter jet image is corrupted by a Gaussian noise with σ = 0.1,
and the scissors image is corrupted by a Gaussian noise with σ = 0.3.

where H and I are the entropies and mutual information between two segmen-
tations S and S′, respectively. Smaller VI means better segmentation.

Our second evaluation metric for region segmentation quality is ground truth
covering defined as

O(R,R′) =
|R ∩R′|
|R ∪R′|

, C(S′ → S) =
1

N

∑
R∈S
|R| · max

R′∈S′
O(R,R′),
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σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4
Cover VI Cover VI Cover VI Cover VI Cover VI

Graph cuts 0.971 0.200 0.954 0.295 0.939 0.373 0.937 0.386 0.937 0.384

Random walker 0.971 0.199 0.954 0.295 0.939 0.373 0.937 0.386 0.934 0.384

Meyer flooding 0.972 0.196 0.959 0.269 0.942 0.356 0.939 0.372 0.940 0.367

Power watershed 0.972 0.191 0.951 0.299 0.940 0.371 0.937 0.386 0.938 0.382

DRLSE 0.949 0.308 0.952 0.290 0.930 0.351 0.917 0.38 0.921 0.372

RSF 0.479 1.606 0.500 1.574 0.501 1.550 0.496 1.561 0.492 1.570

Viscous watershed 0.972 0.199 0.970 0.211 0.961 0.257 0.958 0.278 0.960 0.265

Table 2: Region evaluation ground truth covering and Variation Information
(VI), computed between the segmentations yielded by seven algorithms and
ground truth images in GrabCut dataset.

Algorithm Graph cuts
Random
walker

Meyer
flooding

Power wa-
tershed DRLSE RSF

Viscous
watershed

exec. time 247.4 ms 2.6 ms 6.8ms 353.8 ms 32.9s 4.87s 56.27ms

Table 3: Average executing time comparison among all these algorithms running
on a 2.66GHz Intel Core2 Quad CPU Q9700 platform with Ubuntu 11.10.

where R and R′ are the overlapped regions, the covering index C of the ground
truth S by a segmentation S′ respect to O(·), and, N denotes the total number
of pixels in the image.

The average over all 50 images of variation information and ground truth
covering are shown in Table 2. According to these metrics the viscous force
watershed performs better than all the other algorithms under noisy scenarios—
its segmentation has the smallest value of Variation Information and the highest
measurements in ground truth covering.

Last, we compare the running time of these different seeded image segmen-
tation algorithms (see Table 3). Our method along with the other graph-based
algorithms are much faster than the level sets approaches. Although, our method
is slightly slower than the random walker and Meyer’s flooding, it is still fast
enough for many real-time applications.

4.3 Precision and Robustness

One may consider using a pre-filter to smooth the images before applying the seg-
mentation algorithms as an alternative to our viscous force watershed method.
However, as shown in Table 4, per-filtering may improve the segmenting perfor-
mance slightly, but they are still not as good as our algorithm. We believe that
this is because the pre-noise filter decreases noise magnitude at the cost of losing
some high-frequency information. As such, precisely localizing boundaries and
edges is compromised.

The affect of viscous force is different from pre-filtering. The viscous force
watershed is designed to find an averaging weighted path over all paths around a
certain minimum path in a neighbourhood. Thus, unlike the pre-filtering process,
our method can not only enhance segmentation robustness, but can also preserve
high-frequency information (precision) instead of filtering it along with the noise.
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σ=0.2 Graph C. Random W. Meyer F. Power W. DRLSE RSF Viscous W.

MedF 0.600 0.600 0.628 0.587 0.569 0.067 0.676

BestF 0.604 0.604 0.630 0.598 0.665 0.1567 0.845

cover. 0.951 0.951 0.955 0.950 0.949 0.488 0.961

VI 0.309 0.309 0.286 0.313 0.296 1.587 0.257

Table 4: Performance evaluation on the pre-filtered images. Original images are
corrupted by a Gaussian noise (σ=0.2), A Gaussian filter (size=15× 15, σ=0.5)

.
5 Discussion and Conclusion

In this paper we developed a high-order external energy term (viscous force)
for image segmentation algorithms based on watershed. This energy term signif-
icantly improves the robustness of the watershed transformation. Specifically, our
modification renders the watershed tolerant to noise and capable of segmenting
object with broken edges.

Watershed-based algorithms have found many different applications in the
computer vision field that go beyond image segmentation, such as stereo disparity
map, video super-resolution and dynamic object detection [26–28]. By employing
our viscous force formulation to improve robustness, the watershed transform
may find even more applications within computer vision.

Our work, together with recent methods that unify the watershed transforma-
tion and graph-based segmentation techniques, suggest exciting future research
directions. Most promising of these, perhaps, is the generalisation of our high-
order viscous force approach to other seeded image segmentation algorithms
including graph-cut and random walker via a unifying framework.
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