
Inertial Based Control on the Kambara

Project

David Gregory Biddle

3221429

23 June 2003

A thesis submitted in part fulfillment of the degree of Bachelor of

Engineering at the Australian National University

Supervisor: Dr Uwe Zimmer



i

Except where otherwise indicated, this thesis is my own original work.

David Biddle

23 June 2003



Abstract

This thesis presents details of the continuing efforts to develop a reliable naviga-

tion system for an autonomous underwater vehicle (AUV) at the Research School

of Information Systems and Engineering at the ANU. In particular, work on the

development of an inertial control system for the AUV, Kambara is described.

The design of the inertial control system is based on a detailed system model

describing the hydrodynamic motion of the vehicle. It incorporates four inertial

sensors taking 10 measurements on the current state of the AUV. A real time

analysis is performed to verify that the AUV will rapidly respond to feedback

commands in the real world environment. Testing is performed on the con-

trol design and the real time system. Results are presented which theoretically

demonstrate that the controller will stabilise the acceleration and velocity and

reach the target position of the AUV in the six degrees of freedom underwater

environment.
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Chapter 1

Introduction

1.1 Project Background

Throughout the history of mankind, humans have continued to explore and dis-

cover the world we inhabit. The ocean covers 70 % of the Earth´s surface and

is still relatively unknown, holding vast biological and mineralogical resources

which are of great interest to mankind. Currently we do not know enough about

our oceans to fully utilise these resources. The ocean must be investigated and

understood so that this environment can be sustainably developed and effectively

protected. [18]

The ocean is an extremely harsh environment characterised by complex phys-

ical and chemical variability at its surface and by depth dependant temperature,

light and pressure gradients. Sea water is highly corrosive of metals and, with

increasing depth, pressure effects pose fundamental challenges. The ocean floor

is erratically contoured and contains a vast array of biological life. Some marine

organisms may threaten the ever increasing shipping operations that occur world

wide. For Example, the sedentary fouling serpulid worm, Hydroides sanctaecru-

cis (Figure 1.1) is an invasive pest capable of damaging the hulls of ships and

many other submerged structures [13]. This marine pest, can form extensive and

dangerous reefs on wharves, pontoons and slow moving vessels. Research cur-

rently being undertaken by the CSIRO into this invasive marine pest relies upon

underwater observation of these pests in order to access their rate of colonisation

and spread.

The underwater environment is harsh to humans with no useable oxygen, high

pressure levels and its inherent resistance to movements. In order to investigate

this environment, underwater explorations have typically been carried out by hu-

mans aided by various apparatus. These apparatus help humans to freely move

and record data in the harsh underwater environments. Operations such as col-

lecting marine samples, laying underwater cables and inspection and construction

of underwater structures are examples of current endeavors. Remote operated

1



§1.2 Kambara System Description 2

Figure 1.1: Sedentary Fouling Serpulid Worm

vehicles (ROV) and unmanned underwater vehicles (UUVs) have become an im-

portant tool for facilitating the performance of these tasks. UUVs are typically

remote controlled from the surface and have been used in a wide range of opera-

tions including underwater research, deep water diver support, sea floor surveys

and underwater inspection of pipes and structures.

A significant amount of the work completed by UUVs involves long duration

and repetitive tasks. A degree of autonomy is desirable in these cases to remove

the dependencies from the remote user. In order to address this issue research

is currently being directed into Autonomous Underwater Vehicles (AUVs). A

number of research institutions and Universities around the world are undertaking

various AUV projects.

The Robotic Systems Laboratory (RSL), located within the Research School

of Information Systems and Engineering (RSISE) at the Australian National

University (ANU), is researching possible uses of AUVs. Currently, the RSL is

undertaking two projects, the Kambara project and the Kambrini project. The

Kambara project is currently examining the underwater navigation of the AUV

using sonar technology, while the Kambrini project involves research into a swarm

of small AUVs that are continually transferring data to each other.

1.2 Kambara System Description

Kambara is an AUV developed at the Robotics Systems Lab. The word Kambara

originates from an Aboriginal word meaning crocodile. Kambara is an aluminium

open frame low cost AUV, that is used as a basis for underwater research. Kam-

bara incorporates five thrusters and two cylindrical enclosures mounted on an

aluminium cylindrical frame. The frame is 1.2m long, 1.5m wide and has a
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height of 0.9m. The assembled vehicle displaces approximately 110 liters of wa-

ter. The mass of the frame, enclosers, and thrusters is approximately 68 kg in

air.

The five thrusters mounted in two planes, enable movement in five degrees

of freedom, namely roll, pitch, yaw, heave, and surge manoeuvres. There is no

thruster aligned to produce a thrust in the Y axis direction(lateral). Kambara is

therefore underactuated and not able to perform direct sway (lateral) motion.

Figure 1.2: Kambara

The upper enclosure houses a computer system, analog-to-digital converters,

communications equipment and a sensor suite. The sensor suite consists of a

triaxial accelerometer, digital compass, two digital inclinometers, rate-gyroscope,

depth sensor and temperature sensor. The lower enclosure contains six lead-

acid 12V batteries, power distribution and charging circuitry, and a leak sensor.

Stereo cameras and a specialised sonar sensor can be mounted on the front frame

of Kambara. All of the required processing power is present on-board Kambara.

Work previously completed on the control system for Kambara has incor-

porated a camera vision system. This control methodology utilising the visual

targeting of objects within the pool environment was capable of stabilising the

AUV and, tracking certain objects [16]. The Kambara project team has decided

that the use of underwater vision is unreliable in most genuine conditions and has

decided to rely on the inertial sensors for the fundamental control of the AUV.

Additional information on obstacles within the environment will be provided by

sonar technology.

A number of applications have been envisaged for Kambara, these include

underwater mapping, observing marine life, explorations into the deep sea and

under ice topped regions, and inspection and maintenance of underwater struc-

tures and cabling. These applications have use in the fields of marine biology,
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marine geology, underwater inspection and assistance. The main aim of the

Kambara project is to further underwater research particularly in the areas of

underwater vehicle control and guidance.

1.3 Other AUV Research Projects

The area of AUV’s is being researched by a number of Universities and research

centers around the world. Currently a wide variety of AUV’s are being developed

with the aim to further utilise the expansive underwater environment. A few of

the AUV’s currently in use are described below, including aspects relating to the

control methodologies implemented in the AUV’s.

The ”Oberon” is an AUV being developed at the Australian Centre for Field

Robotics, located at the University of Sydney. This AUV was created from

an identical design to Kambara, however its computation is performed on the

surface through a tether. Recent work performed on the ”Oberon” has been on

control design from a terrain-aided navigation technique based on simultaneous

localisation and map building. The low level control for this vehicle is made up

of two independent PID controllers used to manage the vertical and horizontal

motion of the AUV [15].

”ODIN” is an AUV that has been designed and built at the University of

Hawaii. The AUV has a near-spherical shape with eight marine thrusters. Recent

work performed on the AUV has been on adaptive control using quaternion based

control laws. This control methodology attempts to adapt the control model

during operation to accommodate the complex hydrodynamic effects [12].

The Department of Ocean Engineering at the Florida Institute of Technology

is primarily researching an autonomous underwater data acquisition system that

is capable of taking measurements of depths up to 6000 meters. This system

will be based on an AUV that is capable of refuelling and exchanging data at

an underwater station. This system is planning to utilise an experimental AUV

that will use neural networks and fuzzy logic to control the vehicle [19].

The problem of hydrodynamic effects is the main area of current investigation

and development into the control of AUV’s.

1.4 Contributions

During my time at RSISE I have contributed the following work:

• Investigated all the components and operation of the inertia sensors onboard
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Kambara. This has included ordering, wiring and mounting two inclinome-

ters.

• Investigated and verified the system model for the Kambara system.

• Derived a feedback stability controller for Kambara based on the system

model. This includes determination of the desired control parameters to

achieve the required output response.

• Programmed the Accelus Amplifiers to receive a pulse width modulated(PWM)

signal and to output the specified current to the thrusters. This has included

optimising the control parameters to obtain a desirable step response.

• Developed a real time system design for the implementation of the code.

• Implemented the controller, incorporating the real time design, in the pro-

gramming language Ada.

• Tested the implementation of the Ada code for both the control system and

for real time functionality.

• Assisted with the wiring and the mounting of the new hardware system

incorporating the amplifiers and sensors.

• Helped to debug the old code for Kambara which lacks certain functionality

after an upgrade of the VxWorks operating system.

1.5 Project Objectives

The agreed objectives for the project were:

• To become familiar with the sensors onboard and to ensure that the Sensor

Suite is capable of making the required inertial measurements.

• To develop a detailed system model for the Kambara System.

• To design a controller to stabilise Kambara.

• To implement a real time stabilising controller on Kambara using Ada under

the VxWorks operating system.

• To test and demonstrate the operation of the controller.
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1.6 Outline

The remainder of this thesis is specified as follows:

• Chapter 2 – A system model for Kambara is detailed in this section. The

attitude representation is described for both Euler Angles and Quaternions.

• Chapter 3 – The sensor suite containing the Inertial Sensors of Kambara is

investigated. The use and the physical specifications of each inertial sensor

is detailed.

• Chapter 4 – A vehicle controller is derived and presented. The controller

aims to stabilise Kambara in the six degrees of freedom underwater environ-

ment.

• Chapter 5 – The thruster controller utilising the amplifiers is defined.

• Chapter 6 – The real time requirements for Kambara are specified, and

the real time design is presented.

• Chapter 7 – Results from the implementation of the controller and the

real time system are presented and discussed. Possible avenues for further

testing are also examined.

• Chapter 8 – Conclusions and suggestions for future work for the inertial

control of the Kambara system are presented.

Supporting technical material for the forgoing Chapters is presented as follows:

• Appendix A MotionPak Data Sheet

• Appendix B Thruster Output

• Appendix C Depth Sensor Testing

• Appendix D Ada Controller Code

• Appendix E Inclinometer Testing Code

• Appendix F CD-ROM directory Structure



Chapter 2

System Model

In this chapter a mathematical model is detailed to describe the dynamic motion

of the rigid body Kambara vehicle. This model will be used to develop the

stability controller described in Chapter 4. The model is based on work previously

described by Fossen [10] and by Silpa-Anan [16]. Given the complication of fluid

dynamics in the six degrees of freedom problem possed by the Kambara vehicle, a

number of nonlinear effects are present in the system. The cause of these effects

include hydrodynamic drag, damping, and lift forces, Coriolis and centripetal

forces. Gravity and buoyancy forces, although compensatable, are also described

as factors occurring in the inertial control of Kambara.

An accurate model of the system is required to ensure that the Kambara

system can be accurately and reliably controlled. A modification of equations

derived by Silpa-Anan [16] is presented with a view to the creation of an inertial

control system for Kambara.

2.1 Reference Frame

A two coordinate system is used to describe the motion and the location of the

AUV. A world coordinate frame {W} is used to describe the position of the AUV

in reference to global coordinates. A local reference frame representing Kambara

{K} is fixed to the center of the rigid body. This frame is used to reference the

inertial sensor readings onboard Kambara to the world coordinate frame. The

reference frames are shown in Figure 2.1.

The reference frame for Kambara {K} utilises the X axis to represent the

forward direction of the submersible. The Y axis is perpendicular to this axis

with the positive direction towards the right of the submersible. The positive

direction for the Z axis is downwards.

7
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Figure 2.1: World and local Reference Frames

2.2 Attitude Representation

A number of different methods exist for the mathematical representation of the

attitude (or orientation) for the AUV. Two well known and used forms are X-Y-Z

Euler Angles and Quaternions. These methods are described below.

2.2.1 Euler Angles

The orientation of frame {W} in frame {K} is commonly specified in terms of

three X-Y-Z Euler Angles: roll (φ), pitch (θ) and yaw (ψ). These angles can

be measured using inertial sensors onboard Kambara as described in Chapter 3.

Figure 2.2 displays the Euler Angles.
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Figure 2.2: Euler Angles
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It is necessary to be able to convert parameters stated in terms of the Kam-

bara reference frame {K} into the world coordinate frame {W} parameters. In

particular, one needs to convert vehicle velocity v′ and vehicle angular velocity

w′ both expressed in terms of frame {K}, into world velocity and Euler Angle pa-

rameters . This can be performed by using the transformations v = R(φ, θ, ψ)v′

and w = T (φ, θ, ψ)w′ . These transformation matrices have been derived by

Craig [7] and are shown in Equations 2.1 & 2.2

R(φ, θ, ψ) =




cos θ cos ψ sin θ sin φ cos ψ − cos φ sin ψ sin θ cos φ cos ψ + sin φ sin ψ

cos θ cos ψ sin θ sin φ sin ψ + cos φ cos ψ sin θ cos φ sin ψ − sin φ cos ψ

− sin θ cos θ sin φ cos θ cos φ




(2.1)

T (φ, θ, ψ) =
1

cos θ




cos θ sin θ sin φ sin θ cos φ

0 cos θ cos φ − cos θ sin φ

0 sin φ cos φ


 (2.2)

Euler Angle representations such as the one above have several disadvantages.

All Euler Angle representations contain singularities, where the transformation

will be undefined for some angles. In the X-Y-Z Euler angular transformation

matrix (Equation 2.2), a singularity occurs at θ = ±π
2
. As θ approaches ±π

2
,

tan θ approach infinity and the transformation matrix is undefined. This results

in a loss of numerical accuracy for Euler Angles close to θ = ±π
2
.

An additional limitation of Euler Angles is with respect to computation time.

The transformations require the calculation of six trigonometric functions, which

are computationally expensive.

2.2.2 Quaternions

An alternate representation of the attitude that avoids the above problems can

be obtained by use of quaternions. A quaternion representation uses a fourth pa-

rameter to eliminate the singularity problems of Euler Angles. It also eliminates

the problem of evaluating trigonometric functions and provides for more stability.

Once the first quaternion is calculated, quaternions need only be updated with a

sequence of multiplications and additions.

Consider a quaternion q shown in Equation 2.3, where η is a scalar value and

ε is a 3 element vector.

Define a unit vector k =
[

kx ky kz

]T

and an angle θ such that rotation of

the world coordinate frame {W} about k by the angle θ results in frame {K}.
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q =

(
η

ε

)
(2.3)

where

ε =




ε1

ε2

ε3


 (2.4)

where

η = cos
θ

2
(2.5)

ε1 = kx sin
θ

2
(2.6)

ε2 = kyθ sin
θ

2
(2.7)

ε3 = kz sin
θ

2
(2.8)

Then, for example, a quaternion representing an orientation with frames {W}
and {K} overlapping is q =

[
1 0 0 0

]T

.

The transformation equations involving quaternions are given by ṙ = R(q)v′

and q̇ = 1
2
U(q)w′. From Fjellstad [9], the transformation matrices are given by

Equations 2.10 and 2.11

R(q) = I3×3 + 2 ∗ η ∗ S(ε) + 2[S(ε)]2 (2.9)

=




1− 2ε2
2 − 2ε2

3 2(ε1ε2 − ηε3) 2(ε1ε2 − ηε3)

2(ε1ε2 + ηε3) 1− 2ε2
1 − 2ε2

3 2(ε2ε3 − ηε1)

2(ε1ε3 − ηε2) 2(ε2ε3 − ηε1) 1− 2ε2
1 − 2ε2

2


 (2.10)

U(q) =

(
−εT

ηI3×3 + S(ε)

)
=




−ε1 −ε2 −ε3

η −ε3 ε2

ε3 η −ε1

−ε2 ε1 η


 (2.11)

Where the skew symmetric matrix operator S is defined as

S(a) =




0 −a3 a2

a3 0 −a1

−a2 a1 0


 (2.12)

The significance of such a matrix operator is that a vector cross product is
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reduced down to matrix multiplication. Now as R(q) and U(q) have full rank,

the equations contain no singularities. In addition the trigonometric functions

have been eliminated from these transformation matrices. The quaternions allow

for more stability as well as being a saving in computational efficiency.

2.2.3 Transformation from Euler Angles to Quaternions

The Kambara sensor suite directly measures the Euler Angles using the digital

compass and the two inclinometers. A transformation is required to convert the

Euler angles to Quaternions. The trigonometric functions must be determined

to perform this conversion.

The transformation is shown in Equations 2.13 to 2.16. These equations were

derived by Baker [2]

η = cos
φ

2
cos

θ

2
cos

ψ

2
+ sin

φ

2
sin

θ

2
sin

ψ

2
(2.13)

ε1 = cos
φ

2
cos

θ

2
sin

ψ

2
− sin

φ

2
sin

θ

2
cos

ψ

2
(2.14)

ε2 = cos
φ

2
sin

θ

2
cos

ψ

2
+ sin

φ

2
cos

θ

2
sin

ψ

2
(2.15)

ε3 = cos
φ

2
cos

θ

2
sin

ψ

2
− sin

φ

2
sin

θ

2
cos

ψ

2
(2.16)

2.3 Vector State Representation

This section describes the state space representation for the AUV.

2.3.1 Position State Vector

The position state vector PK is the current position of the submersible in the

world coordinate frame. The position is described in terms of X-Y-Z coordinates

and the orientation in Quaternions.
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PK =

(
x

q

)
(2.17)

x =




x

y

z


 (2.18)

q =




η

ε1

ε2

ε3


 (2.19)

The position vector is specified by x in meters and the orientation vector is

specified by q in Quaternions.

2.3.2 Velocity State Vector

The velocity state vector VK is the current velocity of the submersible in reference

to the world coordinate frame.

VK =

(
v

w

)
(2.20)

v =




u

v

w


 (2.21)

w =




p

q

r


 (2.22)

The velocity vector is specified by v in meters per second and the angular velocity

vector is specified by w in degrees per second.

2.3.3 Thrust State Vector

The thrust state vector T is the current thrust of the submersible in terms of

force and torque in reference to the world coordinate frame.
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T =

(
F

L

)
(2.23)

F =




X

Y

Z


 (2.24)

L =




K

M

N


 (2.25)

The force vector is specified by F measured in Newtons and the torque vector is

specified by L measured in degrees per second2.

2.4 Vehicle State Representation

A detailed vehicle state representation for Kambara has been derived by Silpa-

Anan [16], based on the general model proposed by Fossen [10]. The most signif-

icant of these equations, Equation 2.26, describes the hydrodynamic forces and

torques created by the motion of Kambara in underwater operation, as follows:

TRB = T−MAV̇ −CA(V)V −D(V)V −G (2.26)

Where:

TRB is the thrust on the rigid body.

T is the force and torque from the thrusters.

Ma is the hydrodynamic added mass to the inertia matrix.

CA is the Coriolis effect matrix.

D(V) is the hydrodynamic damping and lift.

G is the gravitational and buoyancy force and torque vector.

V is the velocity state vector.

V̇ = dV
dt

.

2.4.1 Thruster Forces and Torques

The relationship between the force and torque exerted on Kambara by the thrusters

is given by Equation 2.27.

T = LU (2.27)
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where U is a vector of thrusts given by

U =




T1

T2

T3

T4

T5




(2.28)

In the above equation:

T1 is the thrust from the left horizontal thruster (LH),

T2 is the thrust from the right horizontal thruster (RH),

T3 is the thrust from the front left vertical thruster (FLV),

T4 is the thrust from the front right vertical thruster (FRV),

T5 is the thrust from the rear vertical thruster (RV),

and are diagrammatically represented in Figure 2.3
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Figure 2.3: Thruster Layout

and where L is the thruster mapping matrix as defined in Section 2.4.8.

2.4.2 Mass and Inertia Matrix

The mass and inertia matrix is made up of the rigid mass and inertia of Kambara

vehicle. These parameters, as described by Silpa-Anan [16], were obtained by
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solid modelling of Kambara.

MRB =




117 0 0 0 0 0

0 117 0 0 0 0

0 0 117 0 0 0

0 0 0 10.7 0 0

0 0 0 0 11.8 0

0 0 0 0 0 13.4




(2.29)

2.4.3 Hydrodynamic Added Mass Matrix

This matrix represents the added mass to Kambara from the dynamic effects. As

the vehicle moves, a finite amount of water is connected to the vehicle, adding

additional mass. These effects were determined by Silpa-Anan [16], using exper-

imental methods, as follows:

MA
∼= diag

{
58.4 23.8 23.8 3.38 1.18 2.67

}
(2.30)

2.4.4 Hydrodynamic Added Mass Coriolis-Like Matrix

Additional mass is added to the system by pressure induced forces and moments

due to the forced motion of the rigid body vehicle. This effect is dependant on

the added mass MA and the vehicle state velocity. These effects were determined

by Silpa-Anan [16] and may be expressed as follows:

CA(v) =




0 0 0 0 23.8w −23.8v

0 0 0 −23.8w 0 58.4u

0 0 0 23.8v −58.4u 0

0 23.8w −23.8v 0 2.67r −1.18q

−23.8w 0 58.4u −2.67r 0 3.38p

23.8v −58.4u 0 1.18q −3.38p 0




(2.31)

2.4.5 Hydrodynamic Damping Matrix

All the remaining hydrodynamic forces and moments are represented by this

matrix. D(v) is typically a complex function of v. In this case the matrix is a

linear approximation of a quadratic lift plus drag and has been experimentally
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derived by Silpa-Anan [16], as follows:

D(v) =




120 + 90|u| 0 0 0 0 0

0 90 + 90|v| 0 0 0 0

0 0 150 + 120|w| 0 0 0

0 0 0 15 + 10|p| 0 0

0 0 0 0 15 + 12|q| 0

0 0 0 0 0 18 + 15|r|




(2.32)

2.4.6 Gravitational and Buoyancy Forces Vector

This vector represents the overall effect that gravity and buoyancy have on the

AUV. Before operation, the AUV needs to be calibrated by adding weights and

floats to the open frame of the vehicle. Provided this calibration is undertaken,

it is possible to disregard this force vector term in Equation 2.26

2.4.7 Thrust Mapping Matrix

For purposes of mapping the AUV position, the force and torque vector needs to

be adjusted so that it is in reference to the orientation of the individual thrusters

and not in the world coordinate reference.

L is a thrust mapping matrix which maps the producible force from the five

thrusters to the force and torque required in the world coordinate frame from the

thrusters. Its values, as experimentally derived by Silpa-Anan [16] are:

L =




1 1 0 0 0

0 0 0 0 0

0 0 −1 −1 −1

0 0 −0.28 0.28 0

−0.05 −0.05 −0.32 −0.32 0.43

0.47 −0.47 0 0 0




(2.33)

Equation 2.27 can be rewritten to target the producible thrust U, as follows

U = L†T (2.34)
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Where

L† = (L>L)−1L> (2.35)

=




0.5 0 0 0 0 1.0638

0.5 0 0 0 0 −1.0638

−0.0333 0 −0.2867 −1.7857 −0.6667 0

−0.0333 0 −0.2867 1.7857 −0.6667 0

0.0667 0 −0.4267 0 1.3333 0




(2.36)

2.5 Summary

This chapter describes the reference frames used to locate Kambara in the world

coordinate frame. The attitude is described in both Euler Angles and Quater-

nions. The system model for Kambara is fully described including simplifications

to the equations previously derived by Silpa-Anan [16] . A number of hydrody-

namic effects are included in the model.



Chapter 3

Sensor Suite

The inertial control of Kambara is dependant on the correct operation of the

inertial sensors onboard Kambara. The inertial sensors making up the Sensor

Suite are detailed in Table 3.1.

Sensor Name Manufacturer Model No. Output type

Compass Module Precision Navigation TCM2-50 Digital or Analog
Inclinometer US Digital A2I Digital
Pressure Sensor SensorTechnics PTE2005G1A Analog
MotionPak Systron Donner MP-GDDDQBBB-100 Analog

Table 3.1: Kambara Sensor Suite

All of the sensors are located in the top enclosure of the hull next to the CPU.

A picture of the sensor suite is shown in Figure 3.1. The pressure sensor is not

visible as it is mounted into the outer wall of the hull.

Figure 3.1: Kambara Sensor Suite

18
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3.1 Digital Compass - TCM2-50

The TCM2 compass module contains a biaxial electrolytic inclinometer and a

triaxial magnetometer system. The purpose of this sensor is to measure the

attitude in Euler Angles. The biaxial inclinometer has no mechanical moving

parts and it uses a fluid filled tilt sensor, which is an angle sensing device that uses

gravity as a reference to measure the orientation of the compass. The heading or

yaw orientation information is determined from the magnetometer system. The

specifications for the digital compass are shown in Table 3.2.

Heading Tilt Magnetometer
Full scale range 0...360◦ ±50◦ ±80µT
Accuracy - Tilted ±1.5◦ ±0.4◦ ±0.2µT
Resolution 0.1◦ 0.3◦ 0.01µT
Accuracy - Tilted ±0.3◦ ±0.3◦ ±0.2µT
Frequency 16Hz
Operating range -20◦C ... 70◦C

Table 3.2: Compass Specifications

There are three major limitations to this module, namely :-

• Diminished performance under acceleration;

• Limited tilt range of 50 degrees; and

• Sampling Speed.

The fluid filled tilt sensor is the fundamental cause of these limitations. It

is inaccurate in situations where there are sudden changes in heading, as the

result of the fluid in the inclinometer becoming turbulent (or sloshing). The

settling time for the sloshing fluid is 300ms. Acceleration exerted on the fluid

will also cause it to tilt due to inertial effects, causing a decrease in accuracy. A

relationship between acceleration and tilt error is provided by the manufacturer

in the TCM2 user’s manual. In order to help minimise these error problems, two

360 ◦ inclinometers were installed in the AUV to perform this function.

The triaxial magnetometer system is utilised in the inertial sensor suite for

the control of Kambara. There is a potential error from magnetic field distortion

caused by the close operation of the triaxial magnetometer system, to that of

the CPU. This device must be calibrated to adjust for these effects. In addition,

the thrusters onboard Kambara create a varying magnetic field. These varying

effects are some distance away from the sensor and are considered insignificant.
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Figure 3.2: Compass Sensor(left) & Inclinometers(right)

3.2 360◦ Absolute Inclinometers

The inclinometers are a new addition to the sensor suite of Kambara. The in-

clinometers, made by US Digital, measure the full 360◦ degree range for both

the pitch and yaw angles. The sensor measures the absolute angle value refer-

encing gravity as opposed to the less accurate incremental sensors. Each sensor

measures the rotational angle on a single axis in reference to gravity. The incli-

nometers are used in addition to the magnetometer to measure the attitude of

Kambara. The device communicates by digital signals through the serial port.

The specifications for the inclinometers are shown in Table 3.3.

Operating Range 0.0 ... 359.9◦

Position Error ±0.3◦ typical,±0.3◦ max
Settling time 250 ms
Position Update Rate 8 ms
Operating Temperature -25◦C ... 70◦C

Table 3.3: Inclinometer Specifications

The inclinometers have been selected to minimise the errors created in mea-

suring the pitch and yaw angles. They have been wired and mounted into the

sensor suite. Testing has been performed on the sensors to ensure correct opera-

tion. In order to perform this testing, specific commands were sent to the sensors

using specially created Ada code as shown in Appendix E. The inclinometers

were tilted and the angle of rotation was compared to the sensor readings. The

sensors produced output to the accuracy specified in the manufacturer’s data

sheets.
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3.3 MotionPak

The Systron Donner MotionPak is a 6 DOF inertial sensing system. It contains

three orthogonally mounted linear servo accelerometers, three micromachined

quartz angular rate gyroscopes and a temperature sensor. The Motion Pak pro-

duces output in the vehicles reference frame {K}. These readings must later

be translated to the world coordinate frame {W}. The specifications for the

MotionPak are shown in Table 3.4.

Gyroscope Accelerometer
Full scale range ±2g ±2g
Output voltage swing ± 2.5V ± 7.5V
Sensitivity
At 22 ◦C 25mV/◦/s 3.75V/g
Temperature < 0.03%/◦C < 0.03%/◦C
Bias
At 22 ◦C 0◦/s 0g
Drift 22 ◦C to TMAX < 3◦/s < 100µg/◦C
Bandwidth (-90 ) > 60Hz > 300Hz
Operating range -40◦C ... 80◦C

Table 3.4: MotionPak Specifications

The MotionPak requires calibration by a scale factor and a bias for each value

it generates. The manufacturer has provided a data sheet for this particular sen-

sor as shown in Appendix A. Testing of this sensor by Cvetanovski [8] produced

significantly improved scale factors for the acceleration values. A summary of

the scale factors and biases are shown in Table 3.5

Axis Scale Factor Bias

Linear X* 2.611203 m/s2/V 0.036094 m/s2

Linear Y* 2.660585 m/s2/V 0.056003 m/s2

Linear Z* 2.670453 m/s2/V -0.033754 m/s2

Angular X** 40.31608 ◦/s/V 0.10 ◦/s
Angular Y** 40.12519 ◦/s/V 0.01 ◦/s
Angular Z** 40.09241 ◦/s/V 0.07 ◦/s
* From p21, Cvetanovski [8]
** Derived from Appendix A

Table 3.5: MotionPak Calibration Values
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Figure 3.3: MotionPak(left) & Pressure Sensor(right)

3.4 Pressure Sensor

The pressure sensor is used to measure the depth in the Z coordinate of Kambara

in the world coordinate frame. The sensor is made by SensorTechnics and is

encased in stainless steel. The specifications for the pressure sensor are shown in

Table 3.6.

Full scale range 0 ... 3.5m
Output Range 1 ... 6V
Bias 1V
Scale Factor(25◦C) 0.7V/m
Thermal Effects Typ ±0.6%, Max 2.5% FSO
Non-linearity Typ ±0.2%, Max 0.5% FSO
Repeatability ±0.1% FSO
Output Noise 0.04% FSO
Cutoff frequency 1kHz
Operating range 0◦C ... 70◦C
FSO – Full Scale Output

Table 3.6: Pressure Sensor Specifications

The pressure sensor must be mounted into the side of the hull as it requires

contact with the water to measure the pressure accurately. Testing performed

on the sensor by Beswick [3] shows that the device is sensitive to changes of 5

mm in depth. The results are shown in Appendix C. Note that this sensor has

been deliberately chosen to have a limited depth range so that greater accuracy
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could be achieved in shallow water testing. For additional testing in the sea

environment this sensor will need to be replaced by one with a greater depth

range.

3.5 Sensor Communications

To utilise the sensors onboard Kambara the controller operating on the CPU must

be able to reliably access the data from the sensors in real time. The data must

be in a form that accurately represents the measured values, without excessive

signal noise. As shown in Table 3.1, there are two types of outputs from the

sensors, these being analog and digital.

To access the digital sensor outputs, Kambara has a serial port allowing access

to two digital RS-292 data channels. The digital compass and inclinometers

require these ports to transmit their measured values. These sensors must be

initialised from the CPU with calibration information and with the required

sensor data, which the CPU will be expecting. Once initialised, the compass unit

will continue to automatically return readings of its current position through the

serial connection. The inclinometers, however, need to be sent a request command

from the CPU. Once the inclinometers receive this command the current position

will be measured and returned through the serial connection.

For the two analog sensors, a more detailed process is required to obtain the

data from the sensors. The process is as follows:

• Filter the analog output signal through a low pass filter;

• Convert the analog data using an analog to digital converter (ADC); and

• Adjust the value using the specified bias and scale factor values.

The use of a low pass filter to improve the signal produced by these devices

was investigated by Bethlehem [4]. The implemented low pass filters remove

the spikes in the output of the MotionPak rate gyroscope and remove the high

frequency, white Gaussian noise that occurs in the system.

The analog to digital conversion is performed by the iPADIO card which is

capable of converting 50 channels of data. To ensure that the final value obtained

by the controller is the correct measured value, each reading must be adjusted

by Equation 3.1, as follows:

FinalValue = ScaleFactor ∗Voltage + Bias (3.1)

The communication between the different components of Kambara is repre-

sented by Figure 3.4
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Figure 3.4: Communication of Sensor and Output Data



Chapter 4

Kambara Controller

The inertial control of the Kambara system is dependant on the correct operation

of the inertial sensors and the correctness of the system model. The aim of the

Kambara controller is to:

• Stabilise the Kambara vehicle in the six degrees of freedom environment;

• Track the AUV to a target position, denoted by a reference signal specified

by the user; and to

• Execute control of the vehicle in the real time environment.

This chapter derives and presents the control system for Kambara.

4.1 Controller Derivation

Following the method outlined in Franklin [11], and specifically the Laplace

Transform methodology, a mathematical description for the AUV is derived.

Given the System model detailed in Chapter 2, Equation 2.26 can be rewritten,

targeting the force and torque vector of the thrusters, as follows:

TRB = T−MAV̇ −CA(V)V −D(V)V −G (4.1)

T = TRB + MAV̇ + CA(V)V + D(V)V + G (4.2)

Using the position vector described in Chapter 2, namely:

P =

(
x

q

)
(4.3)

Ṗ = V =

(
v

w

)
=

dP

dt
(4.4)

P̈ = V̇ =
dV

dt
(4.5)

25
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and given that the force on the rigid body is described by the following

TRB = MP̈ =




Mx 0 0 0 0 0

0 My 0 0 0 0

0 0 Mz 0 0 0

0 0 0 Jψ 0 0

0 0 0 0 Jθ 0

0 0 0 0 0 Jφ




P̈ (4.6)

Let

A = MA + M (4.7)

And

B = CA(V) + D(V) (4.8)

Substituting Equations 4.7 and 4.8 into Equation 4.2 yields

T = AP̈ + B(Ṗ)Ṗ + G (4.9)

Now an expression for the relationship of the forces managed by the controller

of the AUV is presented, namely:

T = −A(k1Ṗ + k2P) + B(Ṗ)Ṗ + G (4.10)

By substituting for T in Equations 4.10 and 4.9, we obtain

−A(k1Ṗ + k2P) + B(Ṗ)Ṗ + G = AP̈ + B(Ṗ)Ṗ + G (4.11)

Leaving

−A(k1Ṗ + k2P) = AP̈ (4.12)

As A is a positive diagonal matrix it is invertible, giving

0 = P̈ + k1Ṗ + k2P (4.13)

Taking the Laplace Transform, Equation 4.13 may be expressed as

0 = s2P(s)− sP(0)− Ṗ(0) + k1sP(s)Ṗ− k1P(0) + k2P(s) (4.14)

Therefore

P(s) =
Ṗ(0) + (s + k1)P(0)

s2 + k1s + k2

, (4.15)

where the parameters k1 and k2 are control parameters, that can be adjusted

so that the output performs as required.
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4.2 Reference Values

In order to make the controller track to a reference value for the position, velocity

and acceleration, an alternative relationship is now derived for the main controller

equation(Equation 4.10).

Let the reference r be represented by

r =




rx

ry

rz

rφ

rθ

rψ




(4.16)

As we are designing a stability controller, set the values of ṙ and r̈ to 0.

ṙ = r̈ =




0

0

0

0

0

0




(4.17)

Including the reference r into the controller specified in Equation 4.10 yields

T = −A(k1Ṗ + k2(P− r)) + B(Ṗ)Ṗ + G (4.18)

And substituting into Equation 4.9

−A(k1Ṗ + k2(P− r)) + B(Ṗ)Ṗ + G = AP̈ + B(Ṗ)Ṗ + G (4.19)

Leaving

−A(k1Ṗ + k2(P− r)) = AP̈ (4.20)

As A is a positive diagonal matrix it is invertible

0 = P̈ + k1Ṗ + k2(P− r) (4.21)

Let

e = P− r (4.22)

As ṙ and r̈ = 0, the simplified equation becomes

0 = ë + k1ė + k2e (4.23)
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Now we can choose the control parameters k1 and k2 to shape the error func-

tion. The error function is the difference between the target reference value and

the current value. The aim is to minimise the error function by reducing rise

time, without causing overshoot. The control parameter design is investigated in

Section 4.3.

The user of the control system can now specify the reference signal to be used

as input. When the controller receives the reference signal it will attempt to

track the reference signal. In the case of the position vector, the controller will

attempt to reach both the position and the orientation specified in the reference

signal. Currently the X and Y position values cannot be tracked as there is no

way of accurately measuring these values using inertial sensors.

This controller can be adjusted to track the velocity in addition to the posi-

tion of the vehicle. In this case the velocity can be obtained by integrating the

acceleration values obtained from the MotionPak, while the angular velocities

can be directly measured by the MotionPak. So a reference can be specified by

the user and the error function for the tracking of the velocity state vector can

be obtained.

The acceleration cannot be tracked using this method. There is no accurate

way of determining the angular acceleration from the sensor readings. The value

can be approximated by calculating the change of velocity over a given time

period and establishing its average value.

Once Kambara is fully autonomous the reference value will be updated by

a different system. This system would be a navigation system which controls

the current position and the velocity of the AUV. Current work is being under-

taken using Sonar technology to generate and record local area information. This

information can be used to navigate in the underwater environment.

The compass, inclinometers and pressure sensors update the values of the

current position. These values return into the control system providing feedback

of how well the controller is tracking the reference values. These values must be

gathered and ready to use when required by the controller.

The output of this model is in the form of thrust values for regulation of

the thrusters by the amplifiers. The hardware IP68322 card is responsible for

transmitting PWM values to the thrusters. A low level software interface exists

between the CPU and this card. This interface is not currently working as further

described in Chapter 7, a situation which has prevented dynamic testing of the

AUV control system described in this chapter.

The control diagram illustrating the feedback loop for the Kambara control

system is shown in Figure 4.1.
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Figure 4.1: Feedback Control System for Kambara

4.3 Control Parameter Design

The control parameters k1 and k2 have been investigated to obtain optimal values

for the output of the system. It is important that the system is able to track the

reference value with a minimal steady state error. In addition overshoot is to be

avoided, as the thrusters will have to change the direction of their output when

the overshoot occurs. A fast rise time is not crucial in this analysis as the AUV

is not required to quickly reach the target values.

Simulations have been performed using the computer program Matlab, incor-

porating the the final control design, represented by Equation 4.23. The results

of the simulations were gathered and compared. A selection of the results are

shown in Figures 4.2 to 4.5. The design parameters of k1 = 10 and k2 = 0.1

were chosen for the control parameters, as these parameters produced the best

performing step response of the output (Figure 4.5). With these parameters, the

step response has a small steady state error, no overshoot and an acceptable rise

time.
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Figure 4.2: System Step Response: k2 = 10,k1 = 1
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Figure 4.3: System Step Response: k2 = 5,k1 = 10
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Figure 4.4: System Step Response: k2 = 1,k1 = 2
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Figure 4.5: System Step Response: k2 = 0.1,k1 = 10



Chapter 5

Thruster Controller

In addition to the controller for Kambara, which generates the required thrust

commands, further control is required to ensure that the thrusters efficiently reach

and accurately maintain the required thrust. This control function is represented

by the green section in Figure 4.1.

5.1 Thrusters

The five thrusters are Minnkota Turbo Pro 324 units, which operate at 24V. A

large continuous current of up to 10A is required by the thrusters to produce

a thrust of approximately 60 N. To achieve this level of continuous current an

amplifier is required. A data sheet showing the performance of this motor under

different operating conditions is provided at Appendix B.

5.2 Accelus Amplifiers

The previous amplifiers that were used to output the current to the thrusters were

originally made by students and mounted on the cylindrical frame of Kambara.

Recently, a decision was made to replace the amplifiers with commercial models

that could be mounted inside the hull of Kambara. The new amplifiers, are the

Accelus model made by Copley Controls Corp and were chosen so that they could

produce a high level of continuous current. Summary information detailing the

performance characteristics of these amplifiers is shown in Table 5.1, and the unit

is illustrated in Figure 5.1

These amplifiers have a number of built-in features for DC brush and brush-

less motors. They need to be calibrated by programming with detailed motor

information. The amplifier has non-volatile flash memory, which it uses to store

the motor data. These values are used to maximise the efficiency of the motors

by generating the highest motor torque over a wide speed range.
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Model Accelus ASP-090-36
Continuous Current 12A
Peak Current 36A
Continuous Output Power 1.0 kWatts

Table 5.1: Accelus Amplifier Summary Information

Figure 5.1: Accelus Amplifier

The inputs to the amplifiers must also be specified. The amplifiers have been

programmed to receive a 100% pulse width modulated(PWM) signal, a direc-

tional signal and an enable signal. The input signals are generated by the IP68332

card as specified in Section 4.2. The amplifiers generate a current for the motors

of the thrusters. An error message is sent to the CPU, should any errors occur

during operation.

5.3 Thruster Control System

These amplifiers have a built-in PID control system for regulation of the velocity,

position or current of the motors. Feedback is required for these control loops,

typically obtained using encoders on the thrusters. No encoders are present on

the thrusters of the AUV, so only the current can be controlled using the back

EMF current as feedback. As a result the amplifiers had to be programmed using

the current feedback loop. Two control parameters had to be specified by the user

to ensure that the controller performed as required. These control parameters

are specified by Cp and Ci.

Testing has been performed to help determine the optimal values for these

control parameters. A thruster was wired to an amplifier and the step response

for a change in current was measured on a digital oscilloscope. The results of

this testing were gathered and compared. A selection of the results are shown

in Figures 5.2 to 5.6. The design parameters of Cp = 2000 and Ci = 500 were

chosen for the control parameters, as these results produced the best performing

step response (Figure 5.6).
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Figure 5.2: Thruster Step Response: Cp = 100,Ci = 50

Figure 5.3: Thruster Step Response: Cp = 1500,Ci = 0

Figure 5.4: Thruster Step Response: Cp = 3000,Ci = 500

Figure 5.5: Thruster Step Response: Cp = 1500,Ci = 200

Figure 5.6: Thruster Step Response: Cp = 2000,Ci = 500



Chapter 6

Real Time Analysis

Kambara is required to operate in an environment where its real time operational

factors are crucial for reliable and accurate control results. The Kambara con-

troller requires access to the most recent readings from the inertial sensors. It

must also quickly make decisions on how to control the vehicle based on these

values. Failure to meet these demands results in the processing of incorrect data

by the controller and the transmission of incorrect values to the amplifiers, mak-

ing the system unstable. To ensure that the system is able to operate in the real

time environment the following requirements must be met:

• To retrieve the 10 different sensor values from the sensors arriving at different

frequencies;

• To perform the calculations required in the control system on the most recent

sensor data;

• To operate within a time period of 0.2s, to ensure that the controller is able

to quickly respond to changes; and

• To efficiently output values to the amplifiers.

6.1 Operating System and Programming Language

To ensure that Kambara can operate effectively in the real time environment, the

operating system VxWorks, running the programming language Ada, has been

selected. Both the operating system and programming language offer well proven

real time capabilities and support by providing predictability.

The development of the operating system, based on VxWorks is performed

on its host machine, thereby making it ideal for Kambara. This is because the

development is performed externally on more powerful machines and then down-

loaded when required for use. As an example, the U.S. National Aeronautics and
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Space Administration’s (NASA) “Mars Exploration Rovers” project utilises this

operating system due to its reliability under extreme circumstances [14].

The Ada programming language provides not only features commonly found

in other programming languages, but also provides additional support for con-

trolling hardware to meet real time deadlines. Some current applications utilising

the real time features in Ada include: commercial jets; air traffic control systems;

NASA’s Space Shuttle and Space Station Environment; automated manufactur-

ing systems; continuous medical monitoring systems and real-time embedded

control of copier and duplicator products [1]. These projects demonstrate the

reliable, real time capabilities of Ada in a practical, applied sense.

6.2 Real Time System Design

To meet the real time design requirements, a real time implementation approach

has been developed. The design attempts to ensure that Kambara will correctly

execute in the real time environment without any timing implications. The design

also utilises a number of real time features built into the Ada programming

language. The real time features most be carefully monitored to ensure that

they do not introduce unpredictable synchronisation effects to the system.

The design uses multiple tasks or threads running concurrently on the CPU.

These tasks each place a demand on the CPU when they have work that needs

computation. Four tasks have been implemented in the design where three tasks

are responsible for gathering sensor readings and the fourth runs the control

routine. These tasks all access one protected object called the protected sensor

object. This arrangement is illustrated in Figure 6.1.

Protected Sensor
Object

Task 1
Controller

Task 2
Inclinometer

Task 4
Analog

Task 3
Compass

Figure 6.1: Real Time System Data Flow

The protected sensor object is the centre of the real time design. This object
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is responsible for keeping track of the latest sensor readings. Using the protected

feature of Ada ensures that only one task can access the object at any given time.

If another task wants to access the object while it is currently being accessed by

another task, then the task must wait until the object is free. This ensures

that the data is always valid, by ensuring that multiple tasks cannot be updating

values at the same time, while the controller task is trying to retrieve information

on the current sensor readings.

Three of the tasks are responsible for gathering the sensor readings and up-

dating the protected object. These tasks will get informed when an interrupt

occurs in the system, notifying that the appropriate port is waiting to be read.

Each task, upon receiving a relevant interrupt signal will read the value from the

appropriate port. Any adjusting or filtering that needs to be applied to these

signals will be performed by the task, and the task will then update the protected

object.

The remaining task which performs all the calculations for the control system

is the controller task. This task commences by reading a complete set of the

sensor readings from the protected object. The task then performs a number of

calculations on the sensor values and outputs appropriate values to the amplifiers.

This task is delayed at the end of its execution to ensure that it runs to a specified

time period. The time period is specified in the mathematical expressions and

ensures that all of the sensor values are updated at least once before the values

are recalculated. The synchronisation of these tasks is examined in Chapter 7.



Chapter 7

System Testing

This chapter examines the implementation of the code for the control system

specified in Chapter 4 and the real time analysis aspects specified in Chapter

6, with a view to accurately control the Kambara system. The response of the

controller from a full range of sensor inputs is initially examined. The real time

aspects are then examined by investigating the occurrence of the major events

in individual components of the system and, finally, the possibility of real time

pool testing of the AUV is discussed.

7.1 Controller Response

To ensure that the system implementation is working as expected, a number of

tests have been performed. These tests aim to ensure that, as the different sensor

readings enter the system, the controller reacts by producing appropriate outputs

to the thrusters. The final version of the code, used to generate these values, is

listed in Appendix D. The code was generated using the texts [6] and [5].

For each sensor value a full range of the possible inputs to the system have been

created. They have been introduced into the controller in a similar method to that

of the real time sensor readings. The effect on the output to the five thrusters

is measured and examined for each sensor value that is used in the Kambara

controller. The thruster layout of Kambara has been previously described (See

Figure 2.3).

7.1.1 Acceleration Testing

The acceleration values are updated by the MotionPak sensor. The reaction force

of the thrusters should be increasing as the acceleration increases and should be

in the opposing direction. As there are no thrusters in the Y direction, the motion

in this direction is not controlled. A separate controller could be developed to

attempt to oppose these forces. However these forces in past testing have not
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been significant, as shown by Silpa-Anan [16]. The results of testing performed

on the acceleration values are shown in Figure 7.1 and, at the end of this Chapter,

in Figure 7.5.

Figure 7.1: Acceleration in X direction

Examining Figure 7.1, it can be seen that as the acceleration increases in the

positive x direction, the controller will increase the negative thrust in the left and

right horizontal thrusters. This will act to counter the motion of the vehicle. The

vehicle will, as a result of this thrust, also tilt forwards as the thrusters are below

the centre of mass. The vertical thrusters are required to produce a small force

to counter this effect. These effects demonstrate that the controller will attempt

to nullify these forces and stabilise the AUV. A similar stabilising effect occurs

in the Z direction and the output is shown in Figure 7.5

7.1.2 Angular Velocity Testing

The angular velocity values are updated by the MotionPak. The reaction force

of the thrusters should be increasing as the angular velocity increases and should

be in the opposing direction. Due to the alignment of the thrusters, it is possible

to control the velocities in each of the angular axis. The output values should

be of a lower magnitude than the acceleration values due to the dynamics of the

vehicle. The results of testing performed on the angular velocity values are shown

in Figures 7.2, 7.6 and 7.7.
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Figure 7.2: Angular Velocity in X direction

Figure 7.2 demonstrates that as the angular velocity increases in the positive

direction around the X axis, the controller will increase the negative thrust in

the front left vertical thruster and the positive thrust in the front right vertical

thruster. This will act on the vehicle by opposing the motion and attempting to

reduce this value to zero. There is no effect on the other thrusters as the front

vertical thrusters are able to oppose the motion without causing additional effects

to the vehicle. The magnitude of the resulting thrust is less than the acceleration

values as expected, as the buoyancy of the vehicle will assist in cancelling this

effect. These effects demonstrate that the controller will attempt to nullify these

effects and stabilise the AUV. A similar stabilising effect occurs for the angular

velocities in the Y and Z directions, where the output is shown in Figures 7.6

and 7.7

7.1.3 Position Testing

The position values which are updated by the sensors are the depth in Z di-

rection and the angular displacements measured in Euler Angles. The depth is

measured by the pressure sensor, while the inclinometers and compass measure

the Euler Angles. The reaction force of the thrusters should be increasing as

the displacement from the target value or reference value increases and should

be in the opposing direction. Currently, there is no accurate way of measuring
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the displacement in the X or Y direction, so these displacement values are not

measured. The results of testing performed on the acceleration values are shown

in Figures 7.3, 7.8, 7.9 and 7.10.

Figure 7.3: Displacement in Z direction

By examining Figure 7.3, it can be seen that as the depth increases in the

positive Z direction, the controller will increase the negative thrust in the front

left, front right and rear vertical thrusters. This will act to counter the motion

of the vehicle. There is no effect on the other thrusters as the vertical thrusters

are able to oppose the motion without causing additional effects to the vehicle.

These effects demonstrate that the controller will attempt to reach the target

reference value and stabilise the AUV.

A similar effect can be seen for the rotations around the X and Z axis in Figures

7.8 and 7.10. However, this implementation has been made using Euler Angles

and the Y axis has an undefined effect due to the singularities, which can be seen

in Figure 7.9. This demonstrates that the controller becomes unstable when the

angle θ = ±π
2

is approached. To address this issue, a conditional statement was

included in the code and the corresponding output performed as expected, as

shown in Figure 7.11.
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7.1.4 Overall Effects

The preceding results demonstrate that the controller is able to appropriately

react to changes in the sensor readings to stabilise the motion of the AUV, across

the full range of possible input values.

7.2 Real Time Integration

In order to ensure that the system will operate in the real time environment with

precision, the implementation of the real time analysis specified in Chapter 6 was

examined. These tests are intended to prove that the protected sensor object is

able to effectively manage the sensors’ readings and the controller task is able to

quickly perform its mathematical operations.

Initially the timing for the main controller task was taken to ensure that the

operations could be performed in the specified time frame. On the testing ma-

chine, which had a 1Ghz processor, one full execution of the task was completed

in 0.6 ms. Kambara has a Force CPCI-3740 processor which has a speed of 233

Mhz and theoretically allows Kambara to complete this task within 5ms.

A detailed test was performed to examine when the protected sensor object, as

described in Chapter 6, gets accessed by the various tasks. The time was recorded

when each task accessed the protected sensor object. The aim of the test was to

ensure that the object gets updated at the frequencies which the sensors produce

output, as specified in Chapter 3, without causing unpredictable synchronisation

tasks. A timeline based on these results was created to demonstrate the operation

of the system. The timeline can be seen in Figure 7.4. This figure does not include

access by the controller task which retrieves the information from the protected

object every 0.1 seconds.

These results confirm that the AUV is able to run in the real time environment.

The sensors update their values as specified by the frequencies that they produce

data. The controller accesses the protected object and is able to retrieve the

most recent updated readings. Potentially the controller could be updated at a

faster rate of almost 0.07s, being dependant on the slowest sensor. However if the

output changes too frequently, the thruster controller will not be able to reach

the value specified by the main controller.

7.3 Further Testing

Once it has been determined that the controller attempts to stabilise the system

and that the controller can operate in the real time environment, real world
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0.0s 0.1s0.05s

Compass

Analog

Inclinometer

Figure 7.4: Timeline, Representing Access to the Protected Sensor Object

testing can begin. A pool built for the testing of Kambara is located at the rear

of RSISE and is available for controlled testing of the submersible.

Unfortunately due to circumstances outside of my control, Kambara has not

been available for pool testing for the duration of my time at RSISE. At the

time of writing this thesis the low level code written to communicate between

the CPU and the multiple cards operating on the PCI bus was not working.

This vital communication enables access to the serial ports, the ADC channels

and the IP68332 card which generates the PWM signals. As a result all of the

sensors cannot be accessed on Kambara and the output cannot be sent to the

amplifiers. The old software is to be replaced and the design and implementation

tasks for this work could take up to two months to complete. The next step in

progressing this project is to perform pool testing and gather results on the real

world performance of the control system.

7.4 Possible Errors in the Controller

This control design is reliant on the system model accurately representing the

hydrodynamic effects which will occur during operation of the AUV. The system

model presented in Chapter 2, includes a number of terms to attempt to fully

define these effects. However, a number of these values have been simplified and
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have been determined experimentally, introducing inaccuracies to the system.

The problem of inaccuracies in hydrodynamic effects has been investigated and

has resulted in control approaches by other AUV’s that are adaptive or robust to

these effects [12]. A similar system model, as described by Silpa-Anan [16], was

able to be used with the aid of vision to reliably control the vehicle in controlled

pool testing. This demonstrates that the system model is capable of performing

in the tank environment.

An additional source of errors will be generated by the inertial sensor suite.

These sensors will all introduce errors to the system, through inaccuracies in

measuring the required inertial data. These sensors are precision devices and

the typical maximum error that is expected from the sensors is 1%, in readings

from the pressure sensor. The remaining sensors in the suite produce outputs

with errors of less than 1%. In addition these sensors all need to be calibrated

and correctly aligned for operation, introducing additional errors to the measure-

ments. If the sensors are correctly positioned and calibrated it is anticipated that

the errors generated from the sensors will be insignificant in testing and will not

prevent effective control of the AUV’s motion.

Figure 7.5: Acceleration in Z direction
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Figure 7.6: Angular Velocity in Y direction

Figure 7.7: Angular Velocity in Z direction
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Figure 7.8: Angular Displacement in X direction

Figure 7.9: Angular Displacement in Y direction Showing Singularities
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Figure 7.10: Angular Displacement in Z Direction

Figure 7.11: Non Singularity Angular Displacement in Y direction



Chapter 8

Conclusion

This thesis originally aimed to create a control system for the Kambara system.

This design was to utilise the inertial sensors onboard Kambara and to demon-

strate their real time capabilities in controlling the AUV. The implementation

of the design was also to be fully tested to demonstrate the functionality of the

AUV.

The work presented in this thesis has met all of the project objectives, exclud-

ing the final testing in the pool environment. A control system had been created

based on a detailed system model that utilises the inertial sensors. The real time

issues have been analysed and incorporated into the control design. The imple-

mentation of this design has been tested and demonstrates that it will stabilise

Kambara in the six degrees of freedom underwater environment.

The final demonstration of the stability control for Kambara by physical test-

ing in underwater environment has not been able to occur. This has been due to

a low level software bug in previous versions of the code for Kambara. The next

step to develop this project is to undertake pool testing to demonstrate the op-

eration of the AUV. This will require the low level software to be reimplemented

providing reliable access to all hardware components on the AUV.

Once the operation of the stability controller has been demonstrated on the

AUV, additional work can be undertaken on the controller to enable it to track a

reference velocity. This will enable the control of simple movements of the AUV

in the underwater environment.

The tested velocity controller can then be used as a reliable basis for further

work in terms of underwater guidance and mapping tasks. These tasks would

provide the reference signal to the velocity controller enabling navigation of the

underwater environments. Kambara contains a sonar sensor and cameras which

can be used to provide information about the current environment of the AUV,

to assist in this process.

Once Kambara can reliably control the velocity of the vehicle, a number of

underwater tasks can be performed by the AUV. These tasks include observing
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marine life, explorations into the deep sea and under ice-topped regions, and the

inspection and maintenance of underwater structures and cabling. This work

will have applications in the fields of marine biology, marine geology, underwater

inspection and assistance. Research into the underwater environment will help

us to understand more about this under utilised resource. Investigation could,

for example, include the detailed study of the dispersal and colonisation of the

sedentary fouling serpulid worm pictured in Figure 1.1. The biology of these

marine pests could possibly, then be understood and a method of solving the

problem they create could be achieved. Significant savings may be achievable in

the cost of maintaining ship’s hulls free of marine fouling organisms, also helping

to limit the potential for translocation of organisms with invasive characteristics

in different marine environments.

The work completed in this thesis acts as a solid basis for further development

of the inertial control of Kambara. Further development on this control design

will assist in the evolution of the AUV concept and the potential for realising

future applications.
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Appendix A

MotionPak Data Sheet

Figure A.1: Manufacturer’s data sheet for the MotionPak
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Appendix B

Thruster Output

The output of the thrusters was obtained experimentally by S. Sukkarieh[17].

They show the output response of the thrusters in both the forward and reverse

directions, and with and without the duct on.
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Figure B.1: Minnkota Thruster Output Results



Appendix C

Depth Sensor Testing

The results of testing performed by Beswick [3] produced the results shown in

Figure C.1.

Figure C.1: Pressure Sensor Output

54



55

The linear output is 14mV/cm. Additional testing by Beswick [3] on a smaller

depth scale demonstrated (See Figure C.2) that the sensor is sensitive to depth

changes of 0.5 cm.

Figure C.2: Sensitivity Testing of Pressure Sensor



Appendix D

Ada Controller Code

The controller code shown below includes the following files:

• Main3.adb;

• Protected Sensor Data Package.ads; and

• Protected Sensor Data Package.adb.

-- -*- Mode: Ada -*-

-- Filename : Main3.adb

-- Description : Main routine for the Controller of Kambara.

-- Author : David Biddle

-- Created On : Wed 5th March 2003

-- Last Modified By: David

-- Last Modified On: Mon 11-06-03

-- Update Count : 4

-- Status : Under Development

with Ada.Text_IO; use Ada.Text_IO;

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

with Protected_Sensor_Data_Package; use Protected_Sensor_Data_Package;

with System.Storage_Elements; use System.Storage_Elements;

with Ada.Float_Text_IO; use Ada.Float_Text_IO;

with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;

with Ada.Real_Time; use Ada.Real_Time;

procedure Main3 is

task Controller;

task Serial_Inclinometer;

task Serial_Compass;

task Analog_Sensors;

task body Controller is

type Float_Array is array (1 .. 6) of float;

type Thrust_Array is array (1 .. 5) of float;
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type Short_Float_Array is array (1 .. 3) of float;

type Matrix is array (1..3, 1..3) of Float;

--Special testing type

type Long_Float_Array is array (1 .. 17) of float;

Zero_Vector : Float_Array := (others => 0.0);

Short_Zero_Vector : Short_Float_Array := (others => 0.0);

Sensor_Data : Protected_Sensor_Data_Package.Sensor_Data_Type := (others => 0.0);

-- Refrence values (what we are trying to achieve)

R : Float_Array := Zero_Vector;

-- Cos and Sine values of the angular sensor readings

C : Short_Float_Array := Short_Zero_Vector ;

S : Short_Float_Array := Short_Zero_Vector ;

-- Rotational Matrix ensuring the values form the MotionPak are

-- referenced to the world reference frame

M,N : Matrix;

-- World Acceleration Value

Acc : Float_Array := Zero_Vector;

-- A constant vector used in determining thrust

A : Float_Array := Zero_Vector;

-- Current World Angular Velocity values

Odot, Odot2 : Short_Float_Array := Short_Zero_Vector;

-- Current World Velocity value

U : Short_Float_Array := Short_Zero_Vector;

-- Previous orld Velocity Value

V : Short_Float_Array := Short_Zero_Vector;

-- Current Approximate Displacement Value from initial position

Dis : Float_Array := Zero_Vector;

-- Previous Approximate Displacement Value from initial position

Dis_Last : Float_Array := Zero_Vector;

-- The sensor readings to compare to the reference signal

Sensor : Float_Array := Zero_Vector;

-- Interim results to help determine the total thrust

B : Float_Array := Zero_Vector;

-- Error signal, difference between the reference and signal values

E : Float_Array := Zero_Vector;
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-- Gravitional and buoyancy forces placed on Kambara

G : Float_Array := Zero_Vector;

-- Interim results to help determine the total thrust

L : Float_Array := Zero_Vector;

-- Thrust required to control Kambara

T : Float_Array := Zero_Vector;

-- Required thrust for the five thrusters

Output_Thrust: Thrust_Array := (1 => 0.0, 2 => 0.0, 3 => 0.0, 4 => 0.0, 5 =>0.0);

Time_Period, Time_Sq, D : float := 0.0;

-- Control Variables

K1,K2 : float := 0.0;

-- Sensor variables

D_dash : float := 0.0;

O : Short_Float_Array := Short_Zero_Vector;

A_dash : Short_Float_Array := Short_Zero_Vector;

Odot_dash : Short_Float_Array := Short_Zero_Vector;

X : constant Integer :=1;

Y : Constant Integer :=2;

Z : constant Integer :=3;

Tf,Tf2 : Time;

Nano1 : Time_Span;

Timeval : Integer;

Real_Time : Duration;

begin

--Wait for other sensors to initialise

delay 0.2;

Protected_Sensor_Data.Set_Start;

Tf := Clock;

loop

Sensor_Data := Protected_Sensor_Data.Get_Sensor_Data;

O(X) := Sensor_Data(1);

O(Y) := Sensor_Data(2);

O(Z) := Sensor_Data(3);

D_Dash := Sensor_Data(4);
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A_Dash(x) := Sensor_Data(5);

A_Dash(y) := Sensor_Data(6);

A_Dash(z) := Sensor_Data(7);

-- Obtain and normalised angular values from degrees per sec

Odot_Dash(x) := Sensor_Data(8)/10.0;

Odot_Dash(y) := Sensor_Data(9)/10.0;

Odot_Dash(z) := Sensor_Data(10)/10.0;

-- Time Period is how long each iteration of entire control loop takes

Time_Period := 0.1;

-- User Defined reference values

R(1) := 0.0;

R(2) := 0.0;

R(3) := 1.5;

R(4) := 0.0;

R(5) := 0.0;

R(6) := 0.0;

-- The angles for the rotation matrix M

C(x) := Cos(O(x), 360.0);

C(y) := Cos(O(y), 360.0);

C(z) := Cos(O(z), 360.0);

S(x) := Sin(O(x), 360.0);

S(y) := Sin(O(y), 360.0);

S(z) := Sin(O(z), 360.0);

-- Simplified rotation matrix

M(1,1) := C(z)*C(y);

M(1,2) := -1.0*S(z)*C(x) + S(x)*C(z)*S(y);

M(1,3) := S(z)*S(x) + C(z)*S(y)*C(x);

M(2,1) := S(z)*C(y);

M(2,2) := C(z)*C(x) + S(z)*S(y)*S(x);

M(2,3) := -1.0*S(x)*C(z) + S(z)*S(y)*C(x);

M(3,1) := -1.0*S(y);

M(3,2) := C(y)*S(x);

M(3,3) := C(y)*C(x);

-- Rotate the Acceleration and Angular Velocity values to ensure in

-- parallel to world reference frame

if (((O(y) < 100.0) and (O(y) > 80.0)) or ((O(y) < 280.0) and (O(y) > 260.0))) then

-- Allow for Singularities in Euler Angles for 80.0 to 100 degrees

if O(y) > 180.0 then
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C(y) := Cos(260.0, 360.0);

else

C(y) := Cos(80.0, 360.0);

end if;

N(1,1) := 1.0;

N(1,2) := (S(y)*S(x))/C(y);

N(1,3) := (S(y)*C(x))/C(y);

N(2,1) := 0.0;

N(2,2) := C(x);

N(2,3) := -1.0*S(x);

N(3,1) := 0.0;

N(3,2) := S(x)/C(y);

N(3,3) := C(X)/C(y);

for I in X..Z loop

for J in X..Z loop

Odot(I) := Odot(I) + N(I,J)*Odot_dash(J);

end loop;

end loop;

if O(y) > 180.0 then

C(y) := Cos(280.0, 360.0);

else

C(y) := Cos(100.0, 360.0);

end if;

N(1,1) := 1.0;

N(1,2) := (S(y)*S(x))/C(y);

N(1,3) := (S(y)*C(x))/C(y);

N(2,1) := 0.0;

N(2,2) := C(x);

N(2,3) := -1.0*S(x);

N(3,1) := 0.0;

N(3,2) := S(x)/C(y);

N(3,3) := C(X)/C(y);

for I in X..Z loop

for J in X..Z loop

Odot2(I) := Odot(I) + N(I,J)*Odot_dash(J);

Acc(I) := Acc(I) + M(I,J)*A_Dash(J);

end loop;

end loop;

-- Determine the linear approximation of the value close to the singularities

if O(y) > 180.0 then

for I in X..Z loop

Odot(I) := ((280.0 - O(y))/20.0) * Odot(I) + ((O(y) - 260.0)/20.0) * Odot2(I);

end loop;



61

else

for I in X..Z loop

Odot(I) := ((100.0 - O(y))/20.0) * Odot(I) + ((O(y) - 80.0)/20.0) * Odot2(I);

end loop;

end if;

else

-- As Y axis angle is not close to singularities perform normal calculations

N(1,1) := 1.0;

N(1,2) := (S(y)*S(x))/C(y);

N(1,3) := (S(y)*C(x))/C(y);

N(2,1) := 0.0;

N(2,2) := C(x);

N(2,3) := -1.0*S(x);

N(3,1) := 0.0;

N(3,2) := S(x)/C(y);

N(3,3) := C(X)/C(y);

for I in X..Z loop

Acc(I) := 0.0;

Odot(I) := 0.0;

-- Clean V and U for testing purposes

-- V(I) := 0.0;

-- U(I):=0.0;

end loop;

for I in X..Z loop

for J in X..Z loop

Acc(I) := Acc(I) + M(I,J)*A_Dash(J);

Odot(I) := Odot(I) + N(I,J)*Odot_dash(J);

end loop;

end loop;

end if;

-- Determine the velocity and acceleration. Making assumption

-- that the acceleration is constant over the time period

Time_Sq := Time_Period*Time_Period;

for I in X..Z loop

V(I):= Acc(I) * Time_Period + U(I);

Dis(I) := (Acc(I)/2.0)*Time_sq + U(I)*Time_Period + Dis_Last(I);

end loop;

for I in X..Z loop

-- Normalise the value of the Velocity
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U(I):= V(I);

Dis_last(I) := Dis(I) ;

end loop;

-- Adjust the depth value to ensure referenced to the centre of the submarine

-- Sensor suite is away from the centre of the sub

D := D_Dash;

-- Actual Sensor Values

Sensor(1) := 0.0;

Sensor(2) := 0.0;

Sensor(3) := D;

Sensor(4) := O(x);

Sensor(5) := O(y);

Sensor(6) := O(z);

-- Solve T = G + B(Xdot)Xdot - A(K1xdot + K2(x-R)

-- B(Xdot)Xdot values

B(1) := ((120.0 + 90.0*(abs V(x))) * V(x)) + 23.8*V(z)*Odot(y) - 23.8*V(y)*Odot(z);

B(2) := ((90.0 + 90.0*(abs V(y))) * V(y)) - 23.8*V(z)*Odot(x) + 58.4*V(x)*Odot(z);

B(3) := ((150.0 + 120.0*(abs V(z))) * V(z)) + 23.8*V(y)*Odot(x) - 58.4*V(x)*Odot(y);

B(4) := ((15.0 + 10.0*(abs Odot(x))) * Odot(x)) + 1.49*Odot(z)*Odot(y);

B(5) := 34.6*V(x)*V(z) + ((15.0 + 12.0*(abs Odot(y))) * Odot(y)) + 0.71*Odot(x)*Odot(z);

B(6) := -34.6*V(x)*V(y) + ((18.0 + 15.0*(abs Odot(z))) * Odot(z)) - 2.2*Odot(x)*Odot(y);

-- A values

-- A = Ma + Mrb; Diagonal Matrix

A(1) := 175.4;

A(2) := 140.8;

A(3) := 140.8;

A(4) := 14.08;

A(5) := 13.6;

A(6) := 16.07;

-- For the control variables. Which are constant in execution

-- K1 := 10.0;

-- K2 := 0.1;

K1 := 2.0;

K2 := 1.0;

-- e := Sensor - R;

E(1) := Sensor(1) - R(1);

E(2) := Sensor(2) - R(2);

E(3) := Sensor(3) - R(3);

E(4) := Sensor(4) - R(4);

E(5) := Sensor(5) - R(5);

E(6) := Sensor(6) - R(6);
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-- Adjust Angular error to ensure in the normalised range

for I in 4..6 loop

if E(I) <= -180.0 then

E(I) := 360.0 + E(I);

elsif E(I) >= 180.0 then

E(I) := 360.0 - E(I);

end if;

E(I) := E(I)/180.0;

end loop;

-- Adjust Depth error to ensure in the normalised range

E(3) := E(3)/10.0;

-- Gravitational and Buoyancy force values

-- The Weight and buoyancy of the sub has changed so this

-- value should be remeasured

-- Assume that this will always be approximately zero.

-- Future attempts to control Kambara will begin with

-- balancing the sub to ensure that no stationary forces

-- will occur. These values will need to be updated in this

-- is not the case.

G(1) := 0.0;

G(2) := 0.0;

G(3) := 0.0;

G(4) := 0.0;

G(5) := 0.0;

G(6) := 0.0;

-- L = A(K1xdot + K2(x-R))

L(1) := A(1) * ( K1 * V(x) + K2*E(1));

L(2) := A(2) * ( K1 * V(y) + K2*E(2));

L(3) := A(3) * ( K1 * V(z) + K2*E(3));

L(4) := A(4) * ( K1 * Odot(x) + K2*E(4));

L(5) := A(5) * ( K1 * Odot(y) + K2*E(5));

L(6) := A(6) * ( K1 * Odot(z) + K2*E(6));

-- Torque required by thrusters in the 6 defined axis

T(1) := G(1) + B(1) - L(1);

T(2) := G(2) + B(2) - L(2);

T(3) := G(3) + B(3) - L(3);

T(4) := G(4) + B(4) - L(4);

T(5) := G(5) + B(5) - L(5);

T(6) := G(6) + B(6) - L(6);
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-- Determine output values to thrusters by translating the

-- values so they can be produced by the 5 thrusters.

-- left_horizontal

Output_Thrust(1) := 0.5 * T(1) + 1.0638 * T(6);

-- right_horizontal

Output_Thrust(2) := 0.5 * T(1) - 1.0638 * T(6);

-- front_left_verticle

Output_Thrust(3) := 0.0 + 0.0333*T(1) + 0.2867*T(3) + 1.7857*T(4) + 0.6667*T(5);

-- front_right_verticle

Output_Thrust(4) := 0.0 + 0.0333*T(1) + 0.2867*T(3) - 1.7857*T(4) + 0.6667*T(5);

-- rear_verticle

Output_Thrust(5) := -0.0667*T(1) + 0.4267*T(3) - 1.3333*T(5);

New_Line;

Put_Line( "Thrust needed from the Left Horizontal" );

Ada.FLoat_Text_IO.Put(Output_Thrust(1));

New_Line;

Put_Line( "Thrust needed from the Right Horizontal" );

Ada.Float_Text_IO.Put(Output_Thrust(2));

New_Line;

Put_Line( "Thrust needed from the Front Left Verticle" );

Ada.Float_Text_IO.Put(Output_Thrust(3));

New_Line;

Put_Line( "Thrust needed from the Front Right Verticle" );

Ada.Float_Text_IO.Put(Output_Thrust(4));

New_Line;

Put_Line( "Thrust needed from the Rear Verticle" );

Ada.FLoat_Text_IO.Put(Output_Thrust(5));

New_Line;

-- Send Output_Thrust values to the thrusters

Nano1 := Nanoseconds(1);

tf2 := Clock;

Timeval := (Tf2-TF) / Nano1;

Real_Time := (Timeval) * 0.000000001;

delay ( 0.1 - Real_Time);

tf := Clock;

-- End of the infinite loop

end loop;

end Controller;
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task body Serial_Inclinometer is

-- Once the Serial Card is fully operational these values will be

-- obtained from the sensors each iteration.

Roll_Angle,Pitch_Angle : Float:=0.0;

begin

loop

delay 0.008;

Roll_Angle:=0.0;

Protected_Sensor_Data.Set_Roll_Angle(Roll_Angle);

-- 8ms rounded up

delay 0.008;

Pitch_Angle:= 260.0;

Protected_Sensor_Data.Set_Pitch_Angle(Pitch_Angle);

end loop;

end Serial_Inclinometer;

task body Serial_Compass is

-- Once the Serial Card is fully operational this value will be

-- obtained from the sensor each iteration.

Yaw_Angle : Float:=0.0;

begin

loop

-- 16 Hz frequency of the compass data

delay 0.0625;

Yaw_Angle:=0.0;

Protected_Sensor_Data.Set_Yaw_Angle(Yaw_Angle);

end loop;

end Serial_Compass;

task body Analog_Sensors is

-- Once the ADC Card is fully operational these values will be

-- obtained from the sensors each iteration.

Depth,

Acc_X, Acc_Y, Acc_Z,

Ang_Velocity_X, Ang_Velocity_Y , Ang_Velocity_Z: Float:=0.0;

begin

loop

-- Update every 60 Hz slowest speed of Motion Pak

delay 0.0167;

Depth := 1.5;

Acc_X := 0.0;

Acc_Y := 0.0;

Acc_Z := 0.0;

Ang_Velocity_X:=0.0;

Ang_Velocity_Y:=0.0;
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Ang_Velocity_Z:=0.0;

Protected_Sensor_Data.Set_Depth(Depth);

Protected_Sensor_Data.Set_Acc_X(Acc_X);

Protected_Sensor_Data.Set_Acc_Y(Acc_Y);

Protected_Sensor_Data.Set_Acc_Z(Acc_Z);

Protected_Sensor_Data.Set_Ang_Velocity_X(Ang_Velocity_X);

Protected_Sensor_Data.Set_Ang_Velocity_Y(Ang_Velocity_Y);

Protected_Sensor_Data.Set_Ang_Velocity_Z(Ang_Velocity_Z);

end loop;

end Analog_Sensors;

begin

null;

end Main3;

-- -*- Mode: Ada -*-

-- Filename : Protected_Sensor_Data_Package.ads

-- Description : Most recent copy of sensor values

-- Author : David Biddle

-- Created On : 18th May 2003

-- Last Modified By: David Biddle

-- Last Modified On: .

-- Update Count : 2

-- Status : Under Construction

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

with Ada.Float_Text_IO; use Ada.Float_Text_IO;

with Ada.Real_Time; use Ada.Real_Time;

package Protected_Sensor_Data_Package is

type Sensor_Data_Type is array (1 .. 10) of float;

protected Protected_Sensor_Data is

procedure Set_Roll_Angle(Roll_Angle : in FLOAT);

procedure Set_Pitch_Angle(Pitch_Angle : in FLOAT);

procedure Set_Yaw_Angle(Yaw_Angle : in FLOAT);

procedure Set_Depth(Depth : in FLOAT);

procedure Set_Acc_X(Acc_X : in FLOAT);

procedure Set_Acc_Y(Acc_Y : in FLOAT);

procedure Set_Acc_Z(Acc_Z : in FLOAT);

procedure Set_Ang_Velocity_X(Ang_Velocity_X : in FLOAT);

procedure Set_Ang_Velocity_Y(Ang_Velocity_Y : in FLOAT);
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procedure Set_Ang_Velocity_Z(Ang_Velocity_Z : in FLOAT);

function Get_Sensor_Data return Sensor_Data_type;

private

Sensor_Data : Sensor_Data_type;

end Protected_Sensor_Data;

end Protected_Sensor_Data_Package;

-- -*- Mode: Ada -*-

-- Filename : Protected_Sensor_Data_Package.adb

-- Description : Protected Object containing most recent sensor readings

-- Author : David Biddle

-- Created On : Mon 3rd March 2003

-- Last Modified By: David Biddle

-- Last Modified On: 11-06-03

-- Update Count : 2

-- Status : Use with caution

with Ada.Text_IO; use Ada.Text_IO;

with Ada.Float_Text_IO; use Ada.Float_Text_IO;

with Ada.Real_Time; use Ada.Real_Time;

package body Protected_Sensor_Data_Package is

protected body Protected_Sensor_Data is

Procedure Set_Roll_Angle(Roll_Angle : in FLOAT) is

begin

Sensor_Data(1) := Roll_Angle;

end Set_Roll_Angle;

Procedure Set_Pitch_Angle(Pitch_Angle : in FLOAT) is

begin

Sensor_Data(2) := Pitch_Angle;

end Set_Pitch_Angle;

Procedure Set_Yaw_Angle(Yaw_Angle : in FLOAT) is

begin

Sensor_Data(3) := Yaw_Angle;

end Set_Yaw_Angle;

Procedure Set_Depth(Depth : in FLOAT) is

begin

Sensor_Count := Sensor_Count +1;

Sensor_Data(4) := Depth;
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end Set_Depth;

Procedure Set_Acc_X(Acc_X : in FLOAT) is

begin

Sensor_Data(5) := Acc_X;

end Set_Acc_X;

Procedure Set_Acc_Y(Acc_Y : in FLOAT) is

begin

Sensor_Data(6) := Acc_Y;

end Set_Acc_Y;

Procedure Set_Acc_Z(Acc_Z : in FLOAT) is

begin

Sensor_Data(7) := Acc_Z;

end Set_Acc_Z;

Procedure Set_Ang_Velocity_X(Ang_Velocity_X : in FLOAT) is

begin

Sensor_Data(8) := Ang_Velocity_X;

end Set_Ang_Velocity_X;

Procedure Set_Ang_Velocity_Y(Ang_Velocity_Y : in FLOAT) is

begin

Sensor_Data(9) := Ang_Velocity_Y;

end Set_Ang_Velocity_Y;

Procedure Set_Ang_Velocity_Z(Ang_Velocity_Z : in FLOAT) is

begin

Sensor_Data(10) := Ang_Velocity_Z;

end Set_Ang_Velocity_Z;

function Get_Sensor_Data return Sensor_Data_type is

begin

return Sensor_Data;

end Get_Sensor_Data;

end Protected_Sensor_Data;

end Protected_Sensor_Data_Package;



Appendix E

Inclinometer Testing Code

The Ada code used to test the operation of the inclinometers shown below, in-

cludes the following files:

• Test3.adb;

• Protect Roll Sensor Package.ads; and

• Protect Roll Sensor Package.adb.

Almost identical code that was created to get readings from the inclinometer

sensor, measuring the pitch angle, has been included in the CD.

-- -*- Mode: Ada -*-

-- Filename : Test3.adb

-- Description : Test Serial connection to Inclinometers

-- Author : David Biddle

-- Created On : Mon 3rd March 2003

-- Last Modified By: .

-- Last Modified On: .

-- Update Count : 0

-- Status : Use with caution

with Ada.Text_IO; use Ada.Text_IO;

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

with Protected_Roll_Sensor_Package; use Protected_Roll_Sensor_Package;

with Protected_Pitch_Sensor_Package; use Protected_Pitch_Sensor_Package;

with System.Storage_Elements; use System.Storage_Elements;

procedure Test3 is

Roll_Position:Integer;

Pitch_Position:Integer;

begin

Protected_Roll_Sensor.Get_Roll_Address;

Roll_Position := Protected_Roll_Sensor.Get_Roll_Position;

Put(Roll_Position);
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New_Line;

Roll_Position := Protected_Roll_Sensor.Get_Roll_Position;

Put(Roll_Position);

New_Line;

Roll_Position := Protected_Roll_Sensor.Get_Roll_Position;

Put(Roll_Position);

New_Line;

Protected_Pitch_Sensor.Get_Pitch_Address;

Pitch_Position := Protected_Pitch_Sensor.Get_Pitch_Position;

Put(Pitch_Position);

New_Line;

Pitch_Position := Protected_Pitch_Sensor.Get_Pitch_Position;

Put(Pitch_Position);

New_Line;

Pitch_Position := Protected_Pitch_Sensor.Get_Pitch_Position;

Put(Pitch_Position);

New_Line;

end Test3;

-- -*- Mode: Ada -*-

-- Filename : Protected_Roll_Sensor_Package.ads

-- Description : Serial connection to Inclinometers

-- Author : David Biddle

-- Created On : Mon 3rd March 2003

-- Last Modified By: David Biddle

-- Last Modified On: .

-- Update Count : 0

-- Status : Use with care

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

package Protected_Roll_Sensor_Package is

protected Protected_Roll_Sensor is

procedure Get_Roll_Address;

function Get_Roll_Position return Integer;

end Protected_Roll_Sensor;

end Protected_Roll_Sensor_Package;

-- -*- Mode: Ada -*-

-- Filename : Protected_Roll_Sensor_Package.adb

-- Description : Serial connection to Inclinometer measuring Roll Angle

-- Author : David Biddle

-- Created On : Mon 3rd March 2003



71

-- Last Modified By: David Biddle

-- Last Modified On:

-- Update Count : 0

-- Status : Use with caution

with Ada.Text_IO; use Ada.Text_IO;

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

with Serial_Ports; use Serial_Ports;

with System.Storage_Elements; use System.Storage_Elements;

package body Protected_Roll_Sensor_Package is

Port : Serial_Ports.Serial_Port;

Device : constant String := "/dev/ttyS1";

Roll_Address : Integer:=0;

Data : Storage_Array(1..1000);

Last : Storage_Offset;

protected body Protected_Roll_Sensor is

procedure Get_Roll_Address is

-- See A2 Communications Protocol for Inclinometer protocol.

Multiple_Byte_Request_CMD : constant Storage_Array := (1 => 2#1111_1111#);

Read_Roll_CMD : constant Storage_Array := (1 => 2#0000_0110#,

2 => 2#0000_0000#,

3 => 2#0000_0000#,

4 => 35,

5 => 78);

begin

Open_Serial_Port(Port, Device);

Setup_Serial_Port(Port, Baud_9_600);

delay 0.02;

Write(Port, Multiple_Byte_Request_CMD);

delay 0.02;

Write(Port, Read_Roll_CMD);

Read(Port, Data, Last);

delay 0.02;

Read(Port, Data, Last);

Roll_Address := Integer(Data(6));

end Get_Roll_Address;

function Get_Roll_Position return Integer is

Roll_Position_CMD : Storage_Array := (1 => 2#0001_0000#);
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Rotation_Sum : Integer:=0;

begin

Roll_Position_CMD(1) := Storage_Element(Integer(Roll_Position_CMD(1)) + Roll_Address);

Write(Port, Roll_Position_CMD);

delay 0.01;

Read(Port, Data, Last);

for i in Data’First..Last loop

if i /= Data’First then

Rotation_Sum := Rotation_Sum*256 + Integer(Data(i));

end if;

end loop;

return Rotation_Sum;

end Get_Roll_Position;

end Protected_Roll_Sensor;

end Protected_Roll_Sensor_Package;



Appendix F

CD-ROM directory Structure

There are 3 directories in the CD-ROM. These are as follows:

• Thesis - contains all the Latex files used to reproduce this thesis

• Ada - The Ada Code for the implementation of the controller and the testing

of the inclinometers is included.

• Amplifiers - The files used to encode the Accelus Amplifiers.
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