
Control

Distributed, robust 
swarm control has 
been developed  
based on curva-
ture-driven curve 
evolution theory. 
Robust adaptation 
of larger swarms 
to isoclines of en-
vironmental fi elds could be established (simu-
lated). 

Mechatronics

Hulls, thrusters, micro-controllers, converters, 
sensors, communication buses, and software 
architectures are constructed and maintained. 
Most  components are extremely miniaturized, 
but still manufactured out of standard compo-
nents. Current sensing modalities include:

Accelerometers and Gyroscopes

Pressure (depth reading and leakage detection)

Optical sensors and transmitters

Acoustics (active and passive wide-band)

Magnetic sensing (compass)

Radio (long-wave)

Chemical, biological, photos, videos, small sam-
ples, … (application required sensing)

from here …  you can get 
the most re-

cent state of the project (including publications 
and videos) on the Serafi na  web-site: 

http://serafi na.com.au/

Contact the scientifi c team:

uwe.zimmer@ieee.org

Info about the products:

info@serafi na.com.au
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End-user applications:

Searching, exploration, 
mapping, …

Monitoring, inspection.

Scientifi c exploration:

Exploration of unknown ter-
ritory and marine life.

Seeking biochemical distributions  
and geological phenomena.

Science and Engineering:

Open and dynamic environments.
☞ the environment is fast and unpredictable.

Real autonomy required. 
☞ remote control is not an option.

Distributed control is put to a crucial test.

Distributed scheduling and communication un-
der low-range and low-bandwidth constraints

Sensor data fusion

Problems!The hard 
and thrilling 

issues exposed and addressed in the 
Serafi na project:

Establishment of an effective and ro-
bust distributed communication system, 
which enables the submersibles to stay 
informed, controlled and most of all: to-
gether!

Establishment of a distributed control sche-
ma, which solves the given group navi-
gation task effectively (energy is always a 
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Thrusters Battery

Motor Controllers

Pressure Sensor

Main Processor

Gyroscopes

Acceleration Sensor
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What? The Serafi na project intro-
duces schools of small auton-

omous vehicles to the underwater world. While 
each individual submersible might be equipped 
with a different set of sensors, they all share a com-
mon communication system. This enables them 
to organize the school as a single entity (distrib-
uted control), to disperse locally sensed data to 
many submersibles (e.g. for the purpose of sen-
sor data fusion), and to grow or shrink the current 
school.

Why? First: why small? In the case that 
the obvious limitation in payload 

does not pose a problem, a small submersible en-
joys many advantages. Easy handling (no winch, 
no crane, etc.), great robustness at reasonable 
costs, low (or no) threat 
to operators and envi-
ronment, enhanced fl ex-
ibility and speed of de-
ployment. 
The list of benefi ts of the 
Serafi na project can be 
broken down to the commercial application side,  
the perspectives of scientifi c exploration, and the 
gain for the artifact producing sciences (like us). 

critical limitation under water) and robustly (dis-
turbances are strong and unpredictable).

Combine multiple, distributed position-
related sensor readings into a com-

mon position ☞ Localization.

Perform a given task autonomous-
ly over hours or days and make it 
back to base.

Solutions! E ve r y 
part of 

the project can only be just touched upon 
here, so you might like to take the time, asking 
one of us for the details, and/or look up our pub-
lications.

Communication

Sensor modalities 
for communication 
purposes currently  
include long-wave 
radio, optical, and 
acoustical channels. 
They all have limit-

ed ranges, but different bandwidths and other 
critical characteristics. Local schedules are built 
dynamically to optimize omnicast communica-
tion.

Localization

By combining optical posture and range estima-
tion with active and passive  wide-band acous-
tical data as well as depth readings, imprecise 
local measurements converge to a common 
understanding of position, posture, and swarm 
constellation.
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Dynamical, distributed omnicast schedule
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