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Abstract

At the Australian National University we are
developing an autonomous underwater vehicle
for exploration and inspection. Our aim is to
develop on-board intelligent control. We in-
tend that the vehicle will learn to control its
thrusters in response to command and sen-
sor inputs. Algorithms based on reinforcement
learning with continuous state and actions are
being developed for this purpose.

1 Introduction

Australia’s extensive coastline and near-shore waters
contain vast biological and mineralogical resources. Only
a small fraction of these areas have been explored in de-
tail. Those undersea areas which are developed require
continuous monitoring. This motivates us to develop the
tools needed for exploration and inspection.

At the Australian National University we develop-
ing an autonomous underwater vehicle (AUV) for these
tasks [Wettergreen et al., 1998]. We wish to enable sub-
mersible robots to autonomously search in regular pat-
terns, follow along fixed natural and artificial features,
and swim after dynamic targets. These capabilities are
essential to tasks like cataloguing reefs, exploring geo-
logic features, and studying marine creatures, as well as
inspecting pipes and cables and assisting divers.

1.1 AUV Control

There have been many approaches to the problem of
control of underwater vehicles, ranging from traditional
control techniques [Yoerger and Slotine, 1985] to sev-
eral different artificial network-based control architec-
tures [Lorentz and Yuh, 1996].

Most existing systems control the vehicle in only one
or two dimensions, for example yaw and surge, and as-
sume motion along other dimensions can be controlled
independently. The implementation of these controllers
usually requires a dynamic model of the vehicle. Move-
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ment between two points is typically considered a navi-
gation problem, separate to the control problem.

We are developing a system which learns to control an
AUV through experience of the real world. No explicit
model of the vehicle is given. Our current control ap-
proach is a connectionist implementation of model-free
reinforcement learning. The controller generates con-
tinuous outputs based on continuous state information;
this is achieved with the help of an unusual interpolator.
The controller learns in response to a scalar reward sig-
nal, attempting to maximise the total reward over time.
We are currently testing the controller in simulation.

1.2 Kambara

Our AUV is named Kambara, an Australian Aboriginal
word for crocodile. Kambara’s mechanical structure was
designed and fabricated by the University of Sydney. It
is a simple, low-cost underwater vehicle suitable as a
test-bed for research in underwater robot autonomy. At
the Australian National University we have undertaken
the task of equipping Kambara with power, electronics,
computing and sensing.

Kambara’s mechanical structure is an open frame
which rigidly supports five thrusters and two watertight
enclosures. Kambara’s five thrusters enable roll, pitch,
yaw, heave, and surge maneuvers. Hence, is is under-
actuated and not able to perform direct sway (lateral)
motion; it is non-holonomic.



Mounted in the upper enclosure are computers, elec-
tronics and a sensor package consisting of a triaxial ac-
celerometers, rate gyros, inclinometers and a magnetic
heading compass. The lower enclosure, connected to the
upper by a flexible coupling, contains batteries as well as
depth, temperature and leakage sensors. Kambara car-
ries all the sensors and computers it needs for autonomy.
In operation, we envision Kambara will receive only oc-
casional supervisory commands, and control its actions
with its on-board resources.

The following section contains a discussion of the con-
trol problem and some previous approaches. Section 3
describes our approach to the problem. Section 4 de-
scribes some preliminary experimental results gained
from simulation.

2 Approaches to AUV Control

In developing a control system for an AUV, the aim is
for the vehicle to be able to accurately follow a desired
trajectory regardless of the complexities of its own dy-
namics or the disturbances it experiences.

Traditional approaches to the control of such systems
proceed from dynamics modelling, to design of a feed-
back control law that produces control inputs to com-
pensate for deviation from the desired motion. This is
predicated on the assumption that the system can be
well-modelled and that specific desired motions can be
determined.

Non-traditional, specifically connectionist (artificial
neural network), approaches to motion control, can avoid
much of the modelling difficulty. Instead, networks are
constructed without any model of system dynamics. An
appropriate controller is developed through training and
the appropriate actions to move the vehicle along the
desired path slowly emerge.

2.1 Traditional Control of AUVs

Small, slow-moving underwater vehicles present a par-
ticularly challenging control problem. The dynamics of
such vehicles are nonlinear because of inertial, buoy-
ancy and hydrodynamic effects [Yoerger and Slotine,
1985]. Linear approximations are insufficient and non-
linear modelling and control techniques are needed to
obtain high performance [Fossen, 1995].

Nonlinear models of underwater vehicles have many
coefficients, for example those characterising vehicle hy-
drodynamics, that must be identified. Some model pa-
rameters remain unknown either because they are un-
observable or because they vary with un-modelled con-
ditions. To date, most stable systems are developed in
simulation and only with considerable effort and expense
are applied to a specific vehicle with restrictions on its
operating regime [Goheen, 1995].

Kambara has five thrusters, none of which are alone
capable of moving along or rotating the vehicle through
any single dimension. They are unmatched and uncal-
ibrated. Considerable effort has been made in recent
years to developing accurate models of thrusters [Yoerger
et al., 1990; Bachmayer et al., 1998]. The reason is that
thrusters are a dominant source of nonlinearity in vehicle
motion.

Kambara has only one plane of symmetry (vertical),
although center-of-mass and -buoyancy are not coplanar
with the vertical and the motors are slightly mis-aligned.
Vehicle asymmetry and thruster interaction during ma-
noeuvring lead to coupling between control parameters
which complicates high-performance control.

Yoerger and Slotine proposed a series of single-
input/single-output continuous-time controllers by using
sliding mode techniques and demonstrated the robust-
ness of these systems in the presence of uncertainties
[Yoerger and Slotine, 1985]. Sliding mode techniques
enable stable control of the system over a wide oper-
ating regime, as required for an AUV. Another advan-
tage is that adaptation can be incorporated to modify
the control law as it reaches the limits of its operating
regime. Cristi proposed an adaptive sliding mode con-
troller based on a primary linear model and bounds on
nonlinear disturbances [Cristi et al., 1990].

Refinements to sliding mode controllers continue to
produce one or two-dimensional controllers [Healey and
Lienard, 1993; Rodriques et al., 1997; Bartolini et al.,
1998]. A general full degrees of freedom solution to con-
trol of freely moving underwater vehicle remains elusive.

2.2 Connectionist Control of AUVs

Control using artificial neural networks offers a promis-
ing method of designing a nonlinear controller with less
reliance on developing accurate models. Controllers im-
plemented as neural networks can be more flexible and
are suitable for dealing with multi-variable problems.
Many approaches to neuro-control including reinforce-
ment learning are described in [White and Sofge, 1992].
Several different neural network based controllers for
AUVs have been developed [Lorentz and Yuh, 1996].
Sanner and Akin [Sanner and Akin, 1990] developed
a pitch controller trained by back-propagation. Training
of the controller was done off-line in with a fixed sys-
tem model. Output error at the single output node was
estimated by a critic equation based on the pitch error.
Ishii, Fujii and Ura [Ishii et al, 1995] developed a
heading controller based on indirect inverse modelling.
The model was implemented as a recursive neural net-
work which was trained offline using data acquired by
experimentation with the vehicle. The controller was
trained on-line. FError at the output of the controller
was estimated by propagating through the model to the



single output node which drove the steering thrusters
differentially.

Yuh [Lorentz and Yuh, 1996] has developed several
neural network based AUV controllers. Error at the out-
put of the controller was based on a critic equation which
uses an estimate of the upper bounds of the vehicle in-
ertia matrix to assign error to individual outputs. The
controller learned in simulation.

Venugopal [Venugopal et al., 1992] used a similar ar-
rangement to Yuh except that a gain matrix was in-
serted between the controller and the system model. It
reduced the reliance on known parameters of the vehicle
but made assumptions about the interactions between
various directions of motion [Lorentz and Yuh, 1996].

None of these systems appear to incorporate any plan-
ning ability at the controller level. These systems deal
with proscribed trajectories and set points, rather than
reaching a state through a sequence of steps. They still
require at least a partial model of the vehicle.

The resulting performance of these controllers has
been promising. The ability to learn or at least refine
the controller on-line in real time has been demonstrated
[Ishii et al., 1995] as has the ability to cope with changing
system parameters [Lorentz and Yuh, 1996].

We are aware of no AUV neurocontrollers that are
trained through reinforcement learning.

3 Reinforcement Learning for Control

For Kambara we are developing a model-free reinforce-
ment learning system with multiple continuous states
and multiple continuous actions. The lack of an explicit
a priori model makes the system adaptable and reduces
reliance on knowledge of the system to be controlled.
Our current implementation approach is a connection-
ist version of Watkins’s one step Q-learning algorithm
[Watkins, 1989] coupled with Baird and Klopf’s wire-
fitting interpolation method [Baird and Klopf, 1993].

3.1 Reinforcement Learning

The distinguishing characteristic of reinforcement learn-
ing systems is that they receive feedback from a scalar
reward which may be temporally distant from the ac-
tions carried out.

Reinforcement learning receives feedback from a critic
which evaluates the ongoing progress (unlike supervised
learning systems in which training requires the correct
output). In the case of an AUV, an extended sequence
of thruster commands is required to reach a goal. At
any instant it is difficult to determine whether individ-
ual thrusters are behaving correctly. Only after a period
of time can their collective performance be evaluated.
The reward follows, often with some delay, an action or
sequence of actions. Reward could be based on distance
from a target, roll relative from vertical or any other

measure of performance. The controller learns to choose
actions which, over time, will give the greatest total re-
ward.

The delay before reward leads to the “temporal credit
assignment” problem, identifying which parts of a com-
posite action caused the reward is the “structural credit
assignment” problem. The scalar reward value on its
own does not give enough information to determine what
part of a composite action was beneficial, or what part
of the state information was important for determining
the choice of this action. Thus reinforcement learning
systems require time for exploration of the state and ac-
tion spaces. An introduction to reinforcement learning
is given in [Sutton and Barto, 1998].

In many systems a model is used to ease the struc-
tural credit assignment problem [White and Sofge, 1992].
These methods could be described as indirect reinforce-
ment learning. This can increase the speed of learning,
but are only plausible if a fairly accurate dynamic model
is available. In situations where the complexity of find-
ing a model is higher than the complexity of solving the
control problem, the direct (model free) method may be
more appropriate.

3.2 Continuous States and Actions

Many real world control problems require actions of a
continuous nature, in response to continuous state mea-
surements. But most learning systems, indeed most clas-
sical Al techniques, are designed to operate in discrete
(or symbolic) domains.

It is possible to control small, lightweight robots using
discrete actions. These robots have less momentum due
to reduced mass and are less easily damaged by step
changes in requested motor speeds or oscillations in the
requested speed. An example of a successful discrete
state and action learning scheme for a small robot is the
genetic programming approach described in [Nordin and
Banzhaf, 1995].

Fine control of a larger robot (such as Kambara), as
needed for station keeping, cannot be carried out with
a few coarsely coded outputs. The commands to the
motor need to vary smoothly.

Systems in which state and action are discretised scale
poorly as the number of state and action variables in-
creases. Accurate control would require each variable to
be discretised to many levels.

It is possible to discretise the action in a different way,
by having an output which describes whether a variable
should be increased, decreased or left as it is. This re-
duces the number of outputs but increases the need to
store state information.

As these discrete systems may fail to generalise be-
tween similar actions they require larger quantities of



training data as the number of quantisation levels in-
creases.

A continuous variable should not be considered as
equivalent to an infinite number of discrete states, each
separated by an infinitely small difference from its neigh-
bour.

3.3 Continuous State O-learning

O-learning [Watkins, 1989] is an implementation method
for reinforcement learning method in which a mapping is
learned from a state-action pair to a value called Q. The
mapping eventually represents the reward (in the long
run) of performing an action in a state. A controller
then measures the state, chooses the action which has
the highest Q value and executes it. The Q function is
updated according to equation 1.

Q (x,u):=(1 - @) Q (x,u) + o (R + 7 max Q (Xi-1, W11))

(1)

Where Q is the value of performing action u in state x;
X is the state vector; u is the action vector; R is the
immediate reinforcement; « is a learning rate and « is
the discount factor.

Q-learning (and many other reinforcement learning al-
gorithms) are normally considered in a discrete sense.
This allows implementation in a simple lookup table.
When states are continuous a possible implementation
is to use an artificial neural network (or several artificial
neural networks) as an interpolator across states.

By using a neural network for each of the discrete ac-
tions, each network can output the Q value of performing
that particular action. An example of this approach is
[Lin, 1992].

This approach does not address the problem of contin-
uous actions. If a neural network had action and state
as inputs, and Q as an output, it would be necessary to
perform a guided search to find the optimal action, an
unattractive prospect. There is also no ability to gener-
alise between similar actions.

3.4 Interpolating Continuous Actions by
Wire-fitting

Baird and Klopf’s wire-fitting scheme offers a way to
implement reinforcement learning with continuous ac-
tions [Baird and Klopf, 1993]. The wire-fitting func-
tion is a moving least squares interpolator, closely re-
lated to Shepard’s function [Lancaster and Salkauskas,
1986]. The modification to Shepard’s function is a
smoothing factor which increases the influence of the
point at which f(x,u) is maximum. Equation 2 de-
scribes the wire-fitting function. f (x,u) is the interpo-
lated value of action u in state x given the set of points

Wy, (X),Y0..n (x). For Q learning, Q = f (x,u).

n yi(x)
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Where ¢ is the wire number, or point number; n is the
total number of wires; x is the state vector; u; (x) is
the ith action vector; y; (x) is the value of the ith action
vector; u is the action vector to be evaluated, c is a small
smoothing factor and e avoids division by zero.

The dimensionality of the action vectors u and u; is
the number of continuous variables in the action. For
a five motor AUV the dimensionality of these vectors
would be five. The number of wires, n, is currently cho-
sen empirically and reflects the number of fundamental
actions.

The wire-fitting function has several properties which
make it a useful interpolator for implementing O-
learning. Updates to the Q-function require max f (x, u)
which can be calculated quickly with the wire-fitting
function. wu for max f(x,u) can also be calculated
quickly. This is needed when choosing an action to
carry out. Wire-fitting also works with many dimen-
sional scattered data while remaining computationally
tractable; no inversion of matrices is required. Inter-
polation is local, only points nearby influence the value
of Q. It does not suffer from oscillations, unlike most
polynomial schemes. Importantly, partial derivatives in
terms of each y and u of each point can be calculated
quickly. These partial derivatives allow error in the out-
put of the Q-function to be propagated to the neural
network.

3.5 Continuous State and Action
Q-learning

The purpose of the wire-fitting function in the combined
wire-fitting /connectionist approach to Q-learning is to
assist in solving the structural credit assignment prob-
lem.

Figure 2 shows the structure of the learning system.
The state x is the input to a feed-forward neural network.
The output of this network is a number of points (ug, yx)
which represent some possible action which could be car-
ried out, and its expected total reward.

When the network is fully trained, the best action to
carry out is simply that given by the uy with the highest
y value. During training the y; value will not reflect the
value of executing the corresponding u; action. It is
likely than none of the wires will be representing the
most beneficial action. The training procedure is shown
in algorithm 1.

Partial Derivatives
In the training procedure (algorithm 1) partial deriva-
tives of Q (the output of the wire-fitting function) for
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1. Feed the current state (x) into the neural network.

2. Obtain the set of suggested actions and their values
(yx, uk) from the network output.

3. Choose an action to execute (u), usually by choosing the
wire with the highest y value, sometimes by exploring other
options.

4. Execute the action and store the next state and a scalar
reward from the environment.

5. Calculate the expected value Q of carrying out the action
u with the wire-fitting function.

6. Calculate a new value for Q based on the current value
of O, the instantaneous reward R and the expected re-
ward from the next state using the 1 step Q-learning rule
(equation 1).

7. Calculate new values for all wires ug..., and yo..., through
the partial derivatives of the wire-fitting function.

8. Train the neural network using back-propagation with the
new values of ug..., and yo..... Then repeat ...

Algorithm 1: Learning system training procedure

all ug. ., and yo.. , are needed (Step 7). Baird and Klopf
state that the wire-fitting function has partial derivatives
but do not describe them [Baird and Klopf, 1993].

Equation 3 is the partial derivative of Q in terms of
y (x),. This equation is inexact when yi = Ymax. In
this case the partial derivative can be calculated but it
is more complicated and time consuming. This partial
derivative in the current implementation is instead cal-
culated by finite differences.

Equation 4 gives the partial derivative of Q in terms
of u(x), ;, where j selects a term of the action vector
(uj is a term of the chosen action). Fortunately, the
summation terms in equations 3 and 4 have already been
found in the calculation of @ with equation 2 in step 5.

Change in Wire Values
With partial derivatives known it is possible to calculate
new values for all the wires ug_. , and yo.. . As a result
of this change the Q output from the wire-fitter should
move close to the new target Q.

If it was only possible to change one of the inputs (des-
ignated zx, which could be any y; or uy ;) we would use

u S
X \
\
Neural Wire R
Network Fitter l
X — <« Q
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Figure 2: Structure of the learning system

the definition of the derivative in equation 5 to calculate
this change according to equation 7.

09 AQ
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AQ = a—Q - Az, for small A (6)
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Azp = % for small A (7)
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However, as there are multiple inputs to the wire-fitter
that can be altered, a rule must be devised to change
these inputs by the minimum amount to change Q to
the required value. It is desirable to obtain most of the
change in Q by altering the inputs with the highest mag-
nitude partial derivatives, resulting in a rule given by
equation 8.

09

Oz

Scaling factor a must vary to change Q without over or
under correcting to the target Q value. By combining
equations 5,6 and 8 it is possible to solve for a, giving
the solution shown in equation 9.

Az = a(z) -AQ (8)

(9)



Combining equations 8 and 9 yields equation 10, the final
update rule.

1 09

G
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Azk = (10)

Empirical testing of this rule indicates that the change
in @ is very close to the desired change in Q.

4 Experimental Results

This learning method is currently being tested in a simu-
lated two dimensional environment in which actions oc-
cur accurately and observably. Soon it will be imple-
mented on Kambara to learn from scratch in the water.

4.1 Simulation Description

A simulated non-holonomic, two-dimensional AUV has
been devised with motors on the left and right sides.
The simulation includes momentum, angular momentum
and frictional effects. Sensors give the location of the
target in body coordinates as well as linear and angular
velocity. Reward is given after after each time step based
on the change in distance to the target. Moving toward
the target provokes a positive reward, conversely moving
away gives negative reward. A reward function which
gives more guidance, for example incorporating angle to
the target, should improve learning speed.
An image of the simulation is shown in figure 3.

4.2 Evaluation of performance

In repeated trials, simulated AUVs reach their first (ran-
dom) target location (within small bounds) about 70%
of the time. If more that 2000 time steps are taken with-
out reaching the target this is regarded as a failure. The

A
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Figure 3: An image from the simulation showing the
AUV approaching its third target

AUVs initially take a very round about route, moving
off in the wrong direction and spiralling around. If the
first target is reached, a second target is generated. This
target is reached by 88% of AUVs which reach the first
target with fewer steps taken.

Figure 4 shows the percentage of AUVs reaching the
nt" target having reached the (n — 1)** target and the
absolute percentage of AUVs reaching the n'* target.
Figure 5 shows the number of steps taken for successful
AUVs to reach the n'" target. These results from 300
simulation runs show that the performance of the system
is improving with time.
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Figure 4: Dashed line is percentage of simulated AUVs
reaching target n after reaching target n — 1, solid line
is percentage of AUVs reaching target n
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Figure 5: Number of steps taken to reach target n after
reaching target n — 1

5 Conclusion

There are many unresolved issues still be addressed in
implementing this control method on-board Kambara.



Further experiments are needed to identify the best neu-
ral network structure and learning parameters. Also we
will need to scale up to the full degrees of freedom and
test the robustness of this approach in the real world.
The promising first result is that with reinforcement
learning and without any model of system dynamics we
can develop a controller that will autonomously guide an
underwater vehicle to its target.
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