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Abstract— We are developing autonomous underwater vehicles
for exploration and inspection tasks. Our objectives are to
enable these submersible robots to autonomously search in reg-
ular patterns, follow along fixed natural and artificial features,
and swim after dynamic targets. We have developed a method of
visually-guiding autonomous land vehicles using correlation-
based feature tracking to follow targets of interest. We have
used this method to fixate on visual features and generate
motion commands for the robot. We propose to use feedback
from the motion of the visual feature as reinforcement in a net-
work that learns stable control. We are now applying these tech-
nigues to the control of our underwater vehicle, Kambara.

I. Introduction

Australia has an extensive coastline and near-shore wate
that contain vast biological and mineralogical resources
These areas are largely unexplored and unknown. Soon th¥yre 1: Kambara
must be investigated and understood so that they can d@#onomous land vehicles using correlation-based feature
wisely developed and properly protected. tracking to follow targets of interest and to generate motion
At the Australian National University we are embarkingommands for the robot.[2] Underwater, we will use stereo
on the development of autonomous underwater vehicleameras and again apply feature-tracking techniques. We
(AUVs) for tasks in exploration and inspection. Our objecwill image and track features at high rates and use the rela-
tives are to enable these submersible robots to autonomouslig motion of the feature to guide the motion of the AUV. In
search in regular patterns, follow along fixed natural and artizis manner we intend to follow along a pipe, perform a grid
ficial features, and swim after dynamic targets. These cap®arch of the sea floor, or chase a fish.
bilities are essential to tasks like cataloging reefs, exploringIn this paper we will describe the hardware and software
geologic features, and studying marine creatures, as wellfas our underwater vehicle, and describe algorithms for
inspecting pipes and cables and assisting divers. vision-based vehicle guidance. This work has just begun so
In collaboration with the University of Sydney, we haveve report on design and intention rather than results. We
constructed a pair of underwater vehicles. They are mechanelcome comments on our approach.
cally |denF|caI but each is equpeq Wlth' different computing Il. A Simple Underwater Vehicle
and sensing components. The University of Sydney vehicle ) ) . )
carries high-resolution sonar sensors and research focuse&ambara is a simple, low-cost underwater vehicle suitable as
using sonar for simultaneous mapping and localization.[#] testbed for research in underwater robot autonomy. Kam-
Our research focuses on visually-guided navigation, so de@ra’s mechanical structure is an open frame which rigidly
vehicle has cameras and image processing hardware. $ports five thrusters and two watertight enclosures.
have also designed a battery system and removable d¥@unted inthe upper enclosure are processors, video digitiz-
tether. In the future, we intend to bring the robots together f8fS, analog signal digitizers, and communication compo-
cooperative tasks and for multi-modal site exploration. ~ nents. A pan-tilt-zoom camera looks out through the front
Our AUV is named Kambara, an Australian AboriginaBndcap. Also in the upper enclosure is a proprioceptive sen-
word for crocodile. Kambara has a frame supporting thrustor package consisting of a triaxial accelerometer, heading
ers and watertight enclosures. Its thrusters enable roll, pit§@Mmpass, and inclination sensor. )
yaw, heave, and surge maneuvers. The system has a maxhe lower enclosure, connected to the upper by a flexible
mum depth of 30m and an anticipated dive duration of goupling, contains batteries as well as power distribution and
hours. Kambara carries the sensors and computers it neglggrging circuitry. The batteries are 12V, sealed lead-acid
for autonomy. In operation, we envision Kambara wilvith a total capacity of 1200W. Also mounted down below
receive only occasional supervisory commands, and cont®E depth, temperature and leakage sensors.
its actions with its on-board resources. The frame has length, width, and height of 1.2m, 1.5m,

We have demonstrated a method of visually-guidingnd 0.9m, respectively and displaced volume of approxi-




mately 110 liters. The mass of the frame, enclosures, gnd ) AR

thrusters is 66.5kg so the payload mass is 43.5kgs: 37.3Kg p operator —» Manager » Feature

for batteries and 6kg is for sensors, computers, etc. [¢—— Interface EEET
Kambara is underactuated with thrusters to provide roll, N

pitch, yaw, heave, and surge but not sway (lateral) motic‘n:’. Visualization » swim

It's thrusters are built from commercially available electri¢ imertace Generator

trolling motors. They have been modified with ducts to . .~ R

improve thrust and have custom power amplifiers designed¢e— Planner d

provide high current to the 24V brushed DC motors. We haye

put substantial effort into developing compact high-effi—» swim —» JJoe

ciency power amplifiers that mount inside the existing motpr | 2™ "] Corroier

housing. A quadrature encoder affixed to the end of tie N

motor shaft will enable closed-loop control PWM sign Mapper »

varying the average voltage, hence velocity. Sampler
As Kambara’s primary control computing is carried on Amage

board. This size requirement, to fit within the 25cm diametger g S

and 46¢cm length of the upper enclosure, and the nature of the

experiments we would like to perform led us to configure Telemetry N4

CompactPCl backplane. A 233MHz PowerPC processor pro-

vides adequate capacity for simultaneous filtering, vision Off-board telemetry On-board control

computation, and communication. The servo control of thegure 2: Architecture of on-board and off-board software modules
thrusters is handled by an independent Motorola 68332 pros . manping and interprets motion commands to produce
cessor capable of producing PWM signals and receivi

encoder feedback. Also in the backplane are video di itize%%mrm signals for the Thruster Controller, which runs
) P 9 E?OSed—loop servo control over the thruster velocities. The

and industry pack (IP) modules for serial Communlc"’lt'orl"f_’eripheral Controller drives all other devices on the vehicle,

digital I/O and analog to digital signal conversion. The co C e
puting system runs under the VxWorks operating systergz example cameras or scientific instruments. The Sensor
f

The ruaaed enclosure of the CompactPCl svstem is sho ampler collects sensor information and updates the control-
99 . : P Y s and the State Estimator. The State Estimator filters sen-
mounted and electrically isolated.

In addition o the pan-tilt-zoom camera mounted in thg2" Information to generate estimates of vehicle position,
b Srientation and velocities. The Telemetry Router moves vehi-
upper enclosure, two color cameras are mounted at 25

baseline in independent sealed enclosures attached to% state and acquired image and science data off-board.

frame. Images from these cameras are digitized on-boa&%.she Visualization Interface will transform telemetry into a

The video sianal from the stereo cameras is split and al cription of vehicle state that can be rendered in a three-
9 P ditnensional view. The Operator Interface interprets teleme-

seBtquJi[;)] thge?/?atl?) t?;girt ?/t/éuuvirl?sgrlr?tllgn' a removable ﬁbergry and presents a numerical expression of vehicle state. It
9 P ploy rovides method for generating commands to the Vehicle

optic tether for command and data communication. Tfﬁ’?terface for direct teleoperation of vehicle motion and for

E}ttr? eerrng'? Qé?rl]nrﬁu?i)é;tli%enrsé ?or(?uallll-rﬁgznfeozliégg EI;/Inbc;tlls icg?%ipervisory control of the on-board modules. The Operator
. . ’ Paltyierface will operate in conjunction with the Visualization
When the system achieves reliable autonomous performanlch

we will not require real-time video and high-bandwidth com- Rerface to preview vehicle actions.

munication and will instead record relevant video on-boar The Swim Planner interprets vehicle telemetry to analyze
: . . S éﬁjerformance and adjust behavior accordingly, for example
and communicate at lower rates using acoustic transmissi

) : ébjusting velocity profiles to better track a pattern. A Terrain
[ll. An Architecture for Supervised Autonomy  Mapper would transform data (like visual and range images)

Kambara’s software architecture is designed to allow autofflo maps that can be rendered by the Visualization Interface
omy of at various levels: at the signal level for adaptiver Used by the Swim Planner to modify behavior. The Mis-

thruster control, at the tactical level for competent perfoplon Planner sequences course changes to produce complex

mance of primitive behaviors and at the strategic level f{irale‘?to”es to autonomously navigate the vehicle to goal
complete mission autonomy. ocations and carry out complete missions.

A. Software Modules B. Operational Modes

The software modules are designed as independent compdfaé Software architecture is designed to accommodate a
tional processes that communicate over an anonymotRECrum of operational modes. Teleoperation of the vehicle
broadcast protocol, organized as shown in Figure 2. T th commands fed from the operator directly to the control-
Vehicle Manager is the sole downstream communicatiofS Provides the most explicit control of vehicle action.
module, directing commands to modules running on-board/Nilé invaluable during development, this mode is not prac-
The Feature Tracker uses visual sensing to follow targetstif! for long-duration operations. Supervised autonomy, in
the environment and uses the relative motion to guide tH&iCh complex commands are sequenced off-board and then

Swim Generator. The Swim Generator contains the thrus{Bferpreted over time by the modules on-board, will be our



nominal operating mode. Under supervised autonomy, thar, but is far simpler to implement on our hardware. We
operator's commands are infrequent and provide guidangmintain sixteen bit precision in computing this Gaussian,
rather than direct action commands. The operator gives thhich allows us to use up to a 16 pixel wide Gaussian in
equivalent of “swim to that feature” and “remain on station"computing the DOG image. By selecting different Gaussian
In fully autonomous operation, the operator is removed frosizes and differences, the overall sharpness of the filter can
the primary control cycle and planners monitor telemetry toe tuned to match to input images. The DOG image is then
obtain state information and interact to generate infrequdsiharized based on its sign information. This binary image is
commands for the vehicle. The planners may guide the vettien processed by the correlator, which matches a small win-
cle over a long traverse, moving from one target to anothdow of a template image either from a previous frame or

or thoroughly exploring a site with no human intervention. from the paired stereo frame. A logical exclusive OR (XOR)
IV. Vision-based Control of a Mobile Robot pperat.ion is qsed to correlate the template with the input

image; matching pixels will always give a value of zero,

Earlier work in the vision-based control of autonomous Vemvh”e non_matching pixe|s will give a value of one. A |ookup
cles was applied to the Marsokhod mobile robot.[2] An ovetaple is then used to count the number of matched pixels. By
view of the system is depicted in Figure 3. Input imagefyerforming correlation of the template over the entire image,
comes from a stereo pair of cameras mounted on panHie correlator locates the peak where the best match
device. Outputs from this control system consist of anglgccurred. The distance from center indicates pixel disparity

commands to the pan-tilt device, and steering and velociiyd thus either heading or range to the target.
commands that drive Marsokhod to the target while keepirAg Feature Tracking

the cameras gaze fixed on it. W fi f f th
Two correlation processes track the target. A feature W€ US€ @ sequence of images irom one camera of the ste-

motion correlator tracks the target between previous and c[ff® Pair to track the feature. The target is centered within the
rent images from one of the cameras and commands the g€ from this camera and a target template is extracted.
tilt head to keep the target feature centered in the camer target, and spec_lfleally the template, must ?Xh'b't suffi-
field-of-view. A feature range correlator correlates betwedfi€nt texture to be distinctive from its surroundings|7]. We
left and right images to find pixel disparity, and uses estieVe found that even though there are no structured targets,

mated range in conjunction with the bearing data from t tural t_errain has sufficient featu_res of an appropriate scale.
feature motion correlator to guide the vehicle to the targ e motion correlator matches this template with subsequent

The correlators use same binary correlation algorithm, whidHages taken as the vehicle advances. .
was first described in [3]. This algorithm exploits the invari- | € @ppearance of the target can change drastically as the

ance of the sign of the zero crossing in the Laplacian of t§giCle approaches it. The greatest change in appearance
Gaussian of an image. Even in the presence of noise urs when the vehicle nears the target, within two or three

image intensity shifts, this sign information is stable.[31€ters- At Ionggr (_jistlancesi the "T‘agl‘? rt]o imag'T cha(;tge in
Binary correlation offers more efficient implementation ovefPPearance, and pixel correlation, is slight. Simply updating
other schemes, such as sum-of-squared differences [4]j3f {emplate every correlation cycle would seem to solve this
and frequency domain matching [6], since it uses logicgPPect change problem, but small (single pixel) tracking
rather than arithmetic operations to match the binary si@ifors integrate each time the template is updated. In the
information, and operates on several pixels at once. orst case, this causes the correlator to slide off the feature
Input images are subsampled, then processed using a eff_mterest. By using the same template for several correla-
ference of Gaussian (DOG) operator. This operator offet@n cycles, the effect of accumulated error can be reduced.

many of the same stability properties of the Laplacian opera-
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Figure 3: Overview of vision-based control of mobile robot with actively pointed stereo cameras



We found empirically that updating the template every fiveith a Levenberg-Marquardt training rule using the correla-
correlation cycles, or about every 15cm of vehicle motion, t®n peak that was actually found as the correct network out-
sufficient to handle appearance change without sufferipmit. A skid-steered vehicle has a nonlinear control mapping,
from excessive accumulated correlation error. yet with no model of the system the neural network can pre-
B. Range Estimation dict the motion of the correlation peak with 85% accuracy.

Range to a feature is estimated by correlating between ﬂg};s is sufficient to reduce the area that must be searched,

and right stereo images. The range correlator extracts a t 2reby speeding up the track.ing p.rocess.
plate containing the feature from the left image, and corre- V. Learned Control with Visual Feedback

lates it against the right image to determine the disparityse intend to apply a visually-guided control scheme to

This disparity is then converted to an absolute range based@\hara. as diagrammed in Figure 4, based on the system
a function determined in a cahbrapon procedure. ... _previously described. We propose extending the technique to
An advantage of our approach is that a rough calibrationgs, 4omain of underwater vehicles. We first must identify a

sufficient. The stereo cameras mounted on a beam of IMPEGk o] mapping from desired position and orientation to
cisely known baseline (approximately 25cm) and pointed $f,ster speed.

that distant (farther than 50m) targets have zero pixel disparcontro| of an underwater vehicle is well-established as a

ity. Relative roll about the optical axis is minimized by MaXiponlinear, time-varying problem.[8] Nonlinear, multivariate

X : : . ; 3Bntrol solutions have been developed for specific systems,
estimate by measuring the pixel disparity for targets placed[g’ and sliding mode control, for example [10], is one

various distances from the cameras. In general, disparity isinoq for handling the dynamics and compensating for
linearly related to the inverse range.[5] If we fit such a funganging external disturbances. Fuzzy techniques have also
tion to the disparity and target distance data, we obtainp@en applied to compensate for changing dynamics.[11] It
mapping between pixel disparity and range. seems that not only is the nonlinear system difficult to model,
C. Visually Guided Motion many of the parameters required for the model are unknown
The correlator determines the pan and tilt offsets of the fegither because they are unobservable or because they vary
ture relative to the center of the image. These offsets are c@fth conditions not incorporated in the model. Hence most
verted to absolute angles and used by the pan-tilt controlgéable systems are developed in simulation and only with
to fix the gaze of the cameras at the feature, regardlessconsiderable effort and expense are applied to a specific
vehicle motion. This gaze fixing is important because theehicle with restrictions on its operating regime.[12]
Marsokhod, will pitch and roll in response to disturbances. The difficulty in controlling underwater vehicles with a
The pan and tilt angles calculated in the pan-tilt controllgonlinear control law (or a linearized control law) is twofold:
are combined with the range estimates from the range corfigst system identification that leads to stable control under
lator to command vehicle motion. The robot is steered left te entire operating regime, and second, system adaptation
right to maintain a desired pan offset angle; this offset allowidat modifies gains to accommodate changing conditions.
the rover to closely approach a feature without self-occluambara’s open-frame structure makes is particularly sus-
ing. As pan angle increases, the vehicle increases rotatgptible to nonlinear hydrodynamic forces. Further, our
and slows. At extreme pan angle, it rotates in place. intention to exercise all the available degrees-of-freedom
In later development to reduce the area searched for a fawke the control design problem difficult as obvious linear-
ture match, a two-layer, feedforward neural network learnéghtions are not possible.
the relationship between vehicle orientation and velocities, Learning with an artificial neural network is one way to
and the position of the template correlation peak in the ned@velop this mapping.[13][14] To model a nonlinear system
time step. The network was trained using backpropagatie neural-network must have multiple-layers and since the
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effect of vehicle actions is felt over time it seems that a recdearning rule with correct output coming from a linear
rent structure is necessary.[15] By continuing to train the netynamics model, then reinforcement learning is applied with
work during operation, the system can adapt to changitrgcking errors (as in [13]) as the feedback signal.
conditions. Our approach is to instrument our AUV in its test We intend to apply reinforcement learning with reinforce-
tank and learn control parameters under actual operatiorent provided by the position of the target in the visual field.
with feedback of the vehicle’s position, orientation andhis method differs from previous approaches in that we will
velocity. We can then construct the complete visually-guidembuple the visual feature tracking directly to thruster control.
system using the Feature Tracker to generate the desiféw: input layer accepts a vector consisting of vehicle posi-
position and orientation for the AUV. The yaw angle will baion, orientation, linear and angular velocities, camera pan
controlled as the pan angle was previously. The tilt angleasd tilt angles, and the image-plane location of the correla-
used to determine when and how to adjust depth—if the fa@n peak, a hidden layer with recurrent links provides a
ture is below the cameras, tilt angle will decrease and Kammemory effect and an output layer is trained to produce the
bara should dive, and vice versa with rising tilt angle. vector of thruster commands that cancel the motion of the
The system developed for Marsokhod, which is also unaeehicle and the relative motion of the target.
tuated for lateral motion, has an important property which we
exploit for Kambara. As a feature moves out of view later- VL. Summary
ally, the response of the system is to yaw to keep it in vieWe are embarking on the development of autonomous under-
Then as the feature moves away, the system approaches c\gger vehicles for exploration and inspection tasks. We have
ing the distance. On a Con\/erging path it will yaw in théGVG'OpEd an architecture and a method of visually-guiding
opposite direction as the feature moves back across the fi@ifonomous vehicles. We will extend this method to incorpo-
of view. This yaw, surge, reverse yaw, accomplishes the néate thruster control and use the relative motion of the visual

essary sway translation. feature for reinforcement learning in an adaptive control
As we have shown previously, performance is improved §cheme.
the future feature location can be predicted. Our next step is References
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