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Abstract — We are developing autonomous underwater vehicles
for exploration and inspection tasks. Our objectives are to
enable these submersible robots to autonomously search in reg-
ular patterns, follow along fixed natural and artificial features,
and swim after dynamic targets. We have developed a method of
visually-guiding autonomous land vehicles using correlation-
based feature tracking to follow targets of interest. We have
used this method to fixate on visual features and generate
motion commands for the robot. We propose to use feedback
from the motion of the visual feature as reinforcement in a net-
work that learns stable control. We are now applying these tech-
niques to the control of our underwater vehicle, Kambara.

I.   Introduction
Australia has an extensive coastline and near-shore waters
that contain vast biological and mineralogical resources.
These areas are largely unexplored and unknown. Soon they
must be investigated and understood so that they can be
wisely developed and properly protected.

At the Australian National University we are embarking
on the development of autonomous underwater vehicles
(AUVs) for tasks in exploration and inspection. Our objec-
tives are to enable these submersible robots to autonomously
search in regular patterns, follow along fixed natural and arti-
ficial features, and swim after dynamic targets. These capa-
bilities are essential to tasks like cataloging reefs, exploring
geologic features, and studying marine creatures, as well as
inspecting pipes and cables and assisting divers.

In collaboration with the University of Sydney, we have
constructed a pair of underwater vehicles. They are mechani-
cally identical but each is equipped with different computing
and sensing components. The University of Sydney vehicle
carries high-resolution sonar sensors and research focuses on
using sonar for simultaneous mapping and localization.[1]
Our research focuses on visually-guided navigation, so our
vehicle has cameras and image processing hardware. We
have also designed a battery system and removable data
tether. In the future, we intend to bring the robots together for
cooperative tasks and for multi-modal site exploration. 

Our AUV is named Kambara, an Australian Aboriginal
word for crocodile. Kambara has a frame supporting thrust-
ers and watertight enclosures. Its thrusters enable roll, pitch,
yaw, heave, and surge maneuvers. The system has a maxi-
mum depth of 30m and an anticipated dive duration of 2
hours. Kambara carries the sensors and computers it needs
for autonomy. In operation, we envision Kambara will
receive only occasional supervisory commands, and control
its actions with its on-board resources. 

We have demonstrated a method of visually-guiding

autonomous land vehicles using correlation-based feat
tracking to follow targets of interest and to generate moti
commands for the robot.[2] Underwater, we will use ster
cameras and again apply feature-tracking techniques. 
will image and track features at high rates and use the r
tive motion of the feature to guide the motion of the AUV. 
this manner we intend to follow along a pipe, perform a g
search of the sea floor, or chase a fish.

In this paper we will describe the hardware and softwa
for our underwater vehicle, and describe algorithms 
vision-based vehicle guidance. This work has just begun
we report on design and intention rather than results. 
welcome comments on our approach.

II.   A Simple Underwater Vehicle
Kambara is a simple, low-cost underwater vehicle suitable
a testbed for research in underwater robot autonomy. Ka
bara’s mechanical structure is an open frame which rigi
supports five thrusters and two watertight enclosur
Mounted in the upper enclosure are processors, video dig
ers, analog signal digitizers, and communication comp
nents. A pan-tilt-zoom camera looks out through the fro
endcap. Also in the upper enclosure is a proprioceptive s
sor package consisting of a triaxial accelerometer, head
compass, and inclination sensor. 

The lower enclosure, connected to the upper by a flexi
coupling, contains batteries as well as power distribution a
charging circuitry. The batteries are 12V, sealed lead-a
with a total capacity of 1200W. Also mounted down belo
are depth, temperature and leakage sensors.

The frame has length, width, and height of 1.2m, 1.5
and 0.9m, respectively and displaced volume of appro

Figure 1: Kambara
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mately 110 liters. The mass of the frame, enclosures, and
thrusters is 66.5kg so the payload mass is 43.5kgs: 37.5kg
for batteries and 6kg is for sensors, computers, etc. 

Kambara is underactuated with thrusters to provide roll,
pitch, yaw, heave, and surge but not sway (lateral) motion.
It’s thrusters are built from commercially available electric
trolling motors. They have been modified with ducts to
improve thrust and have custom power amplifiers designed to
provide high current to the 24V brushed DC motors. We have
put substantial effort into developing compact high-effi-
ciency power amplifiers that mount inside the existing motor
housing. A quadrature encoder affixed to the end of the
motor shaft will enable closed-loop control PWM signal
varying the average voltage, hence velocity. 

As Kambara’s primary control computing is carried on-
board. This size requirement, to fit within the 25cm diameter
and 46cm length of the upper enclosure, and the nature of the
experiments we would like to perform led us to configure a
CompactPCI backplane. A 233MHz PowerPC processor pro-
vides adequate capacity for simultaneous filtering, vision
computation, and communication. The servo control of the
thrusters is handled by an independent Motorola 68332 pro-
cessor capable of producing PWM signals and receiving
encoder feedback. Also in the backplane are video digitizers,
and industry pack (IP) modules for serial communication,
digital I/O and analog to digital signal conversion. The com-
puting system runs under the VxWorks operating system.
The rugged enclosure of the CompactPCI system is shock-
mounted and electrically isolated.

In addition to the pan-tilt-zoom camera mounted in the
upper enclosure, two color cameras are mounted at 25cm
baseline in independent sealed enclosures attached to the
frame. Images from these cameras are digitized on-board.
The video signal from the stereo cameras is split and also
sent up the data tether at full resolution.

During development we will employ a removable fiber-
optic tether for command and data communication. The
tether contains six fibers: 2 (paired) for 100 Mbit/second
Ethernet communication, 3 for full-frame video, and 1 spare.
When the system achieves reliable autonomous performance,
we will not require real-time video and high-bandwidth com-
munication and will instead record relevant video on-board
and communicate at lower rates using acoustic transmission.

III.   An Architecture for Supervised Autonomy
Kambara’s software architecture is designed to allow auton-
omy of at various levels: at the signal level for adaptive
thruster control, at the tactical level for competent perfor-
mance of primitive behaviors and at the strategic level for
complete mission autonomy.

A. Software Modules
The software modules are designed as independent computa-
tional processes that communicate over an anonymous
broadcast protocol, organized as shown in Figure 2. The
Vehicle Manager is the sole downstream communication
module, directing commands to modules running on-board.
The Feature Tracker uses visual sensing to follow targets in
the environment and uses the relative motion to guide the
Swim Generator. The Swim Generator contains the thruster

control mapping and interprets motion commands to produ
control signals for the Thruster Controller, which run
closed-loop servo control over the thruster velocities. T
Peripheral Controller drives all other devices on the vehic
for example cameras or scientific instruments. The Sen
Sampler collects sensor information and updates the cont
lers and the State Estimator. The State Estimator filters s
sor information to generate estimates of vehicle positio
orientation and velocities. The Telemetry Router moves ve
cle state and acquired image and science data off-board. 

The Visualization Interface will transform telemetry into 
description of vehicle state that can be rendered in a th
dimensional view. The Operator Interface interprets telem
try and presents a numerical expression of vehicle state
provides method for generating commands to the Vehi
Interface for direct teleoperation of vehicle motion and f
supervisory control of the on-board modules. The Opera
Interface will operate in conjunction with the Visualizatio
Interface to preview vehicle actions.

The Swim Planner interprets vehicle telemetry to analy
performance and adjust behavior accordingly, for exam
adjusting velocity profiles to better track a pattern. A Terra
Mapper would transform data (like visual and range imag
into maps that can be rendered by the Visualization Interf
or used by the Swim Planner to modify behavior. The M
sion Planner sequences course changes to produce com
trajectories to autonomously navigate the vehicle to g
locations and carry out complete missions.

B. Operational Modes
The software architecture is designed to accommodat
spectrum of operational modes. Teleoperation of the veh
with commands fed from the operator directly to the contr
lers provides the most explicit control of vehicle actio
While invaluable during development, this mode is not pra
tical for long-duration operations. Supervised autonomy,
which complex commands are sequenced off-board and t
interpreted over time by the modules on-board, will be o

Figure 2: Architecture of on-board and off-board software modules
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nominal operating mode. Under supervised autonomy, the
operator’s commands are infrequent and provide guidance
rather than direct action commands. The operator gives the
equivalent of “swim to that feature” and “remain on station”.
In fully autonomous operation, the operator is removed from
the primary control cycle and planners monitor telemetry to
obtain state information and interact to generate infrequent
commands for the vehicle. The planners may guide the vehi-
cle over a long traverse, moving from one target to another,
or thoroughly exploring a site with no human intervention.

IV.   Vision-based Control of a Mobile Robot
Earlier work in the vision-based control of autonomous vehi-
cles was applied to the Marsokhod mobile robot.[2] An over-
view of the system is depicted in Figure 3. Input imagery
comes from a stereo pair of cameras mounted on pan-tilt
device. Outputs from this control system consist of angle
commands to the pan-tilt device, and steering and velocity
commands that drive Marsokhod to the target while keeping
the cameras gaze fixed on it.

Two correlation processes track the target. A feature
motion correlator tracks the target between previous and cur-
rent images from one of the cameras and commands the pan-
tilt head to keep the target feature centered in the camera’s
field-of-view. A feature range correlator correlates between
left and right images to find pixel disparity, and uses esti-
mated range in conjunction with the bearing data from the
feature motion correlator to guide the vehicle to the target.
The correlators use same binary correlation algorithm, which
was first described in [3]. This algorithm exploits the invari-
ance of the sign of the zero crossing in the Laplacian of the
Gaussian of an image. Even in the presence of noise and
image intensity shifts, this sign information is stable.[3]
Binary correlation offers more efficient implementation over
other schemes, such as sum-of-squared differences [4][5]
and frequency domain matching [6], since it uses logical
rather than arithmetic operations to match the binary sign
information, and operates on several pixels at once.

Input images are subsampled, then processed using a dif-
ference of Gaussian (DOG) operator. This operator offers
many of the same stability properties of the Laplacian opera-

tor, but is far simpler to implement on our hardware. W
maintain sixteen bit precision in computing this Gaussia
which allows us to use up to a 16 pixel wide Gaussian
computing the DOG image. By selecting different Gauss
sizes and differences, the overall sharpness of the filter 
be tuned to match to input images. The DOG image is th
binarized based on its sign information. This binary image
then processed by the correlator, which matches a small w
dow of a template image either from a previous frame 
from the paired stereo frame. A logical exclusive OR (XO
operation is used to correlate the template with the in
image; matching pixels will always give a value of zer
while non-matching pixels will give a value of one. A looku
table is then used to count the number of matched pixels.
performing correlation of the template over the entire imag
the correlator locates the peak where the best ma
occurred. The distance from center indicates pixel dispa
and thus either heading or range to the target.

A. Feature Tracking
We use a sequence of images from one camera of the

reo pair to track the feature. The target is centered within 
image from this camera and a target template is extrac
The target, and specifically the template, must exhibit su
cient texture to be distinctive from its surroundings[7]. W
have found that even though there are no structured targ
natural terrain has sufficient features of an appropriate sc
The motion correlator matches this template with subsequ
images taken as the vehicle advances.

The appearance of the target can change drastically as
vehicle approaches it. The greatest change in appeara
occurs when the vehicle nears the target, within two or th
meters. At longer distances, the image to image chang
appearance, and pixel correlation, is slight. Simply updat
the template every correlation cycle would seem to solve t
aspect change problem, but small (single pixel) tracki
errors integrate each time the template is updated. In 
worst case, this causes the correlator to slide off the fea
of interest. By using the same template for several corre
tion cycles, the effect of accumulated error can be reduce

Figure 3: Overview of vision-based control of mobile robot with actively pointed stereo cameras
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We found empirically that updating the template every five
correlation cycles, or about every 15cm of vehicle motion, is
sufficient to handle appearance change without suffering
from excessive accumulated correlation error.

B. Range Estimation
Range to a feature is estimated by correlating between left
and right stereo images. The range correlator extracts a tem-
plate containing the feature from the left image, and corre-
lates it against the right image to determine the disparity.
This disparity is then converted to an absolute range based on
a function determined in a calibration procedure.

An advantage of our approach is that a rough calibration is
sufficient. The stereo cameras mounted on a beam of impre-
cisely known baseline (approximately 25cm) and pointed so
that distant (farther than 50m) targets have zero pixel dispar-
ity. Relative roll about the optical axis is minimized by maxi-
mizing the distant target correlation. We calibrate the range
estimate by measuring the pixel disparity for targets placed at
various distances from the cameras. In general, disparity is
linearly related to the inverse range.[5] If we fit such a func-
tion to the disparity and target distance data, we obtain a
mapping between pixel disparity and range. 

C. Visually Guided Motion
The correlator determines the pan and tilt offsets of the fea-
ture relative to the center of the image. These offsets are con-
verted to absolute angles and used by the pan-tilt controller
to fix the gaze of the cameras at the feature, regardless of
vehicle motion. This gaze fixing is important because the
Marsokhod, will pitch and roll in response to disturbances.
The pan and tilt angles calculated in the pan-tilt controller
are combined with the range estimates from the range corre-
lator to command vehicle motion. The robot is steered left or
right to maintain a desired pan offset angle; this offset allows
the rover to closely approach a feature without self-occlud-
ing. As pan angle increases, the vehicle increases rotation
and slows. At extreme pan angle, it rotates in place.

In later development to reduce the area searched for a fea-
ture match, a two-layer, feedforward neural network learned
the relationship between vehicle orientation and velocities,
and the position of the template correlation peak in the next
time step. The network was trained using backpropagation

with a Levenberg-Marquardt training rule using the corre
tion peak that was actually found as the correct network o
put. A skid-steered vehicle has a nonlinear control mappi
yet with no model of the system the neural network can p
dict the motion of the correlation peak with 85% accurac
This is sufficient to reduce the area that must be search
thereby speeding up the tracking process.

V.   Learned Control with Visual Feedback 
We intend to apply a visually-guided control scheme 
Kambara, as diagrammed in Figure 4, based on the sys
previously described. We propose extending the techniqu
the domain of underwater vehicles. We first must identify
control mapping from desired position and orientation 
thruster speed. 

Control of an underwater vehicle is well-established as
nonlinear, time-varying problem.[8] Nonlinear, multivariat
control solutions have been developed for specific syste
[9], and sliding mode control, for example [10], is on
method for handling the dynamics and compensating 
changing external disturbances. Fuzzy techniques have 
been applied to compensate for changing dynamics.[11
seems that not only is the nonlinear system difficult to mod
many of the parameters required for the model are unkno
either because they are unobservable or because they 
with conditions not incorporated in the model. Hence mo
stable systems are developed in simulation and only w
considerable effort and expense are applied to a spe
vehicle with restrictions on its operating regime.[12] 

The difficulty in controlling underwater vehicles with a
nonlinear control law (or a linearized control law) is twofold
first system identification that leads to stable control und
the entire operating regime, and second, system adapta
that modifies gains to accommodate changing conditio
Kambara’s open-frame structure makes is particularly s
ceptible to nonlinear hydrodynamic forces. Further, o
intention to exercise all the available degrees-of-freed
make the control design problem difficult as obvious linea
izations are not possible.

Learning with an artificial neural network is one way t
develop this mapping.[13][14] To model a nonlinear syste
the neural-network must have multiple-layers and since th

Figure 4: Overview of vision-based control of an underwater robot
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effect of vehicle actions is felt over time it seems that a recur-
rent structure is necessary.[15] By continuing to train the net-
work during operation, the system can adapt to changing
conditions. Our approach is to instrument our AUV in its test
tank and learn control parameters under actual operation
with feedback of the vehicle’s position, orientation and
velocity. We can then construct the complete visually-guided
system using the Feature Tracker to generate the desired
position and orientation for the AUV. The yaw angle will be
controlled as the pan angle was previously. The tilt angle is
used to determine when and how to adjust depth—if the fea-
ture is below the cameras, tilt angle will decrease and Kam-
bara should dive, and vice versa with rising tilt angle.

The system developed for Marsokhod, which is also unac-
tuated for lateral motion, has an important property which we
exploit for Kambara. As a feature moves out of view later-
ally, the response of the system is to yaw to keep it in view.
Then as the feature moves away, the system approaches clos-
ing the distance. On a converging path it will yaw in the
opposite direction as the feature moves back across the field
of view. This yaw, surge, reverse yaw, accomplishes the nec-
essary sway translation. 

As we have shown previously, performance is improved if
the future feature location can be predicted. Our next step is
to combine the prediction of feature motion with the model
vehicle control response and develop a neural network-based
Swim Generator, the input layer of which would accept vehi-
cle position, orientation, velocity as well as feature location
and the output would produce commanded thruster speeds.

To accommodate the unknowns in time-varying, nonlinear
system, neural-network approaches are appropriate. Learn-
ing in neural networks can be categorized into supervised,
unsupervised, and reinforced.[15] In supervised learning,
each input pattern is associated with a correct output pattern.
The network weights are gradually adjusted so that error
between the network output and the correct output is
reduced. Such a strategy is not appropriate in the case of an
AUV where correct output is unknown. Unsupervised learn-
ing involves distinguishing unspecified patterns in the input
data in order to optimize some criterion defined on the out-
put. The weights and outputs converge to represent statistical
regularities in the input data. We have applied this method to
distinguishing between small and large feature motion but it
cannot produce the necessary discrimination to control
thrusters. Reinforcement learning adjusts network weights in
response to an evaluative signal, which unlike supervised
learning need not be a correct output pattern. Reinforcement
learning maximizes the probability that the network activity
will result in positive external reinforcement. 

Yuh [13] proposed a neural network controller to learn the
dynamics of an underwater vehicle and produce the appropri-
ate control signals for the vehicles thrusters. The network
was trained with reinforcement learning. The reinforcement
signal is provided by the error signal produced by the servo-
loops in trying to track the commanded reference. Ishii [14]
has constructed a adaptive controller trained through back-
propagation of simulated system response. Guo [16] has
developed an adaptive controller to maintain vehicle head-
ing. The neural network is initially trained with supervisory

learning rule with correct output coming from a linea
dynamics model, then reinforcement learning is applied w
tracking errors (as in [13]) as the feedback signal.

We intend to apply reinforcement learning with reinforc
ment provided by the position of the target in the visual fie
This method differs from previous approaches in that we w
couple the visual feature tracking directly to thruster contr
The input layer accepts a vector consisting of vehicle po
tion, orientation, linear and angular velocities, camera p
and tilt angles, and the image-plane location of the corre
tion peak, a hidden layer with recurrent links provides
memory effect and an output layer is trained to produce 
vector of thruster commands that cancel the motion of 
vehicle and the relative motion of the target.

VI.   Summary
We are embarking on the development of autonomous un
water vehicles for exploration and inspection tasks. We h
developed an architecture and a method of visually-guid
autonomous vehicles. We will extend this method to incorp
rate thruster control and use the relative motion of the vis
feature for reinforcement learning in an adaptive cont
scheme.
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