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ABSTRACT: We have recently proposed a new algorithm for the automatic extraction of lip
feature points. Based on their positions, parameters describing the shape of the mouth are
derived. Since the algorithm is based on a stereo vision face tracking system, all measurements
are in real-world distances. In this paper, we evaluate the accuracy of the automatic feature
extraction algorithm by comparing its results with a manual feature extraction process. The
results show an average error of about 1-2mm for the internal mouth width and height. In the
second part of the paper, we present the design of an AV speech database for Australian
English for future experiments on the correlation of audio and video speech signals.

INTRODUCTION

Automatic speech recognition (ASR) systems typically use statistical models of spoken language and
allow continuous speech recognition in reasonably good acoustic conditions. In noisy conditions,
however, these systems can fail unpredictably. One way of overcoming some of the limitations of
audio-only ASR systems is to use the additional visual information of the act of speaking. An automatic
speech-reading, or lip-reading, system as part of an audio-video speech processing (AVSP) system is
expected to improve ASR in noisy conditions and can thus lead one step closer to more natural
human-computer interactions.

While there exist well-established ways of analysing the acoustic speech signal, it still is an open
research issue which parameters describe the visual speech information best. Two main approaches
to extracting visible speech features can be identified. First, implicit feature extraction methods use the
raw image data as input to a recognition engine (Hidden Markov Model, artificial neural network) which
learns the pixel patterns associated with certain lip movements (Meier et al.,, 1996, Movellan &
Chadderdon, 1996). Optical flow techniques also fall into this category (Mase & Pentland, 1991). A
principal component analysis (PCA) is often used to reduce the dimensionality of the input vector and
to define the main directions of variation. In the second approach, explicit feature extraction methods
use image processing techniques to find the location of certain feature points (e.g. lip corners) in the
image. Methods range from simple image-based approaches, such as thresholding (Petajan, 1984) or
integral projection (Yang et al., 1998), to complex model-based approaches, such as active contour
models (Bregler & Omohundro, 1994), active shape models (Luettin et al., 1996), or 3D lip models
(Revéret & Benoit, 1998, Basu et al., 1998).

We have recently (Goecke et al., 2000) proposed a new algorithm for the explicit extraction of the
positions of the lip corners as well as the mid-points of upper and lower lip on the inner lip contour
(Figure 1). When the mouth is fully closed, the inner lip contour is not visible. In that case, we define
the shadow line between the lips as the inner lip contour. The algorithm uses a combination of colour
image data and knowledge about the structure of the mouth area. It classifies the openness of the
mouth into three discrete states. In addition, the presence of teeth is also detected. We want to use
this explicit feature extraction algorithm to analyse the correlation between the audio and video part of
the speech data. We are particularly interested in determining which visual speech parameters carry
redundant information and can thus be used to improve recognition rates of ASR systems in noisy
conditions.



AUTOMATIC LIP FEATURE EXTRACTION
Our lip-tracking algorithm builds on a completely non-intrusive stereo vision face tracking system on a
Pentium Il PC (Newman et al., 2000) which estimates the head pose in 3D.
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Figure 1. Examples of lip features being tracked on the inner lip contour

Stereo vision has the advantage of obtaining measurements in real-world coordinates and has not
been used for AVSP before to our knowledge. The speaker is well-illuminated by a single light source
directly below the cameras to avoid inaccuracies caused by shadows. The mouth area in both camera
images is automatically determined and further processing limited to that area (Figure 2). A
combination of intensity and saturation values is used to find the feature points in the stereo images in
three steps. First, classify the mouth according to its openness into one of the three states: closed,
partially open, or wide open. This determines the techniques used in the next steps. Secondly, find the
lip corners in each image of the stereo image pair. Then calculate their respective 3D positions using
the known camera parameters. Thirdly, find the exact positions of the lip mid-points in 3D.

Figure 2. Automatically identified mouth regions in a stereo image pair

Our parameter set consists of mouth width, mouth height, protrusion of upper lip, protrusion of lower
lip, and the ratio of mouth width to mouth height. The protrusion parameters are determined as the
shortest distance from the mid-lip points to the straight line from one lip corner to the other. The ratio
parameter is included as a potentially more useful way of describing the protrusion because
preliminary experiments showed that the other two protrusion parameters can be unreliable.
Furthermore, each frame is labelled on the visibility of the upper and/or lower teeth. A confidence
measure based on the difference between the corresponding 2D mouth width and mouth height
distances in the stereo images is calculated. If the 2D distances in the two images do not agree, then
that is an indication that the algorithm has failed and the results are marked as unreliable.

VALIDATION OF THE AUTOMATIC FEATURE EXTRACTION ALGORITHM

Visual inspection of the extracted feature positions shows a high degree of accuracy (Figure 1). The
algorithm fails only in a few frames which are well detected by the confidence measure. To quantify the
error, a ground-truth would be required but cannot be obtained for practical reasons. However, a
software tool was developed (Tran, 2000) which compares the automatically extracted feature
positions with the results from a manual extraction by the user. Although the manual selection of
features potentially introduces a new source of error, the user, it gives a clear indication on the
goodness of the automatic feature extraction.

So far, the algorithm has been tested on three speakers. Each subject was asked to speak three
sequences exhibiting calibratory mouth movements:

1. bababa...
2. eoeo0eo0...



3. Joe took father's green shoe bench out.

The first sequence maximises vertical lip movement, while the second sequence emphasises
horizontal lip movement (rounding and stretching). The third sequence was taken from the design of
the XM2VTSDB database (Messer et al., 1999). It covers all viseme and phoneme categories in the
English language. Each sequence is about 4s long.

The user clicks the mouse on the position of each of the four lip feature points in each frame of the
sequences. While this is a tedious and error prone process for longer sequences, it is feasible for
these short sequences. The parameter set is computed in the same way in the automatic extraction
algorithm. Then, for each feature point and for each parameter, the average absolute error and the
standard deviation is calculated. The results are shown for each of the three sequences in Tables 1-3.

Mouth Width | Mouth Height | Protrusion | Protrusion | Width / Height
Upper Lip Lower Lip
Subject MH | 1.7 £ 2.1mm 1.9+24mm | 7.8+ 9.5mm | 6.2 £7.8mm 13+x21
Subject TG | 2.8 +10.2mm | 1.9+2.6mm | 7.1+8.4mm | 6.0+ 7.6mm 51+8.6
Subject RG | 0.8 £ 1.0mm 0.8+1.0mm | 6.7+8.6mm |4.8+6.2mm 41+111
Table 1. Average absolute error and standard deviation for sequence 1: "ba ba ba ..."

Mouth Width | Mouth Height | Protrusion | Protrusion | Width / Height
Upper Lip Lower Lip
Subject MH | 2.6 £ 4.0mm 1.4+1.8mm | 3.5+£4.5mm |5.9%7.3mm 20+39
Subject TG | 1.6 + 2.9mm 1.1+14mm | 6.0£7.6mm |5.3£7.4mm 0.7+£12
Subject RG | 1.7 £ 2.5mm 1.9+2.6mm | 4.2+6.0mm [4.8+7.0mm 0.5+0.7

Table 2. Average absolute

error and standard deviation for

sequence 2:"eoeoeo..."

Mouth Width | Mouth Height | Protrusion | Protrusion | Width / Height
Upper Lip Lower Lip
Subject MH | 2.3 £ 3.0mm 1.7+2.3mm | 6.6+8.5mm |5.8+7.5mm 15+26
Subject TG | 1.2+ 1.6mm 22+2.7mm | 4.9+65mm |5.0%6.6mm 19+28
Subject RG | 1.9 £ 2.8mm 1.2+1.6mm | 4.4+£57mm |3.4+4.5mm 09x21

Table 3. Average absolute error and standard deviation for sequence 3: "Joe took ..."

The comparison shows that the manual and automatic feature extractions yield similar results. They
only differ at about 1-2mm for the mouth width and mouth height. This a very accurate result given that
we use a totally non-intrusive lip tracking algorithm with no additional markers or made-up lips. The
standard deviation is 1-3mm except for subject TG in sequence 1 and subject MH in sequence 2. Their
larger values result from outliers where the algorithm failed to find a feature position close to the true
position. However, these failures were identified by the confidence measure. If we exclude these
outliers from the analysis, than the results from these two sequences are similar to the others.

Looking at each feature point separately reveals that the difference in the vertical position is less than
1 pixel. However, the difference in the horizontal position is 2-3 pixels on average. Using the stereo
disparity to recover depth information requires the same point being identified in both images.
Incorrectly placed feature points lead to less accurate depth information which affect the accuracy of
our parameters. The algorithm was less accurate than the human observer in the horizontal placement
of the lip corners for a partially open mouth because the inner lip contour could not be clearly
distinguished from the lip flesh in the lip corner area. On the other hand, the algorithm was more
accurate than the human observer in the horizontal placement of the mid-points of the lips. This is
because it calculates the horizontal position as being the one of the middle point between the lip
corners and thus ensures a corresponding horizontal position in both stereo images, whereas the user



is allowed to move the mouse freely. A more restrictive approach in which the human observer is
guided in a similar way as the automatic approach would yield even more accurate results. The error
for the protrusion parameters is considerably larger. The reasons need to be investigated in more
detail but problems in finding corresponding points in both images correctly will affect the protrusion
parameters more strongly. The width-to-height ratio is more accurate but also has its limitations. When
the mouth is closed, small changes in the measured mouth height trigger large changes in the ratio.
Furthermore, the difference between a small round mouth and a wide open mouth cannot be told from
the ratio because it is in both cases close to 1.

DESIGN OF THE AUDIO-VIDEO SPEECH DATABASE

We want to use our lip-tracking algorithm to investigate the correlation between audio and video
representations of spoken language. It has been shown in the past that the incorporation of information
about visible speech articulation in an ASR system can improve the recognition rate (cp. Stork &
Hennecke, 1996). This suggests that there is redundant information in the two modalities that can be
used if one of the two channels is affected by noise. All practical systems face noise, be it acoustic
noise, such as background noise, or visual noise, such as changes in illumination. However, little work
has been done on which audio and video parameters correlate most. The ultimate aim of the project is
to develop an adaptive algorithm which will flexibly rely more strongly on one or the other modality
depending on their respective noise levels. This requires a-priori knowledge of the varying correlation
of audio and video speech signals for a variety of speakers. We have therefore built an AV speech
database for the analysis of the underlying correlation. The data corpus was systematically designed to
cover the range of phonemes and visemes in Australian English in different situations while keeping
the size reasonably small for practical reasons. The database contains the following sequences.

I. Definition of the face model

A sequence is needed for establishing the face model for the stereo vision face tracking system. Facial
landmarks, like eye corners, are selected manually from frontal as well as left and right 45° views,
before the face tracking system automatically computes a 3D face model from these landmarks. The
face model is needed for estimating the general head pose.

II. Calibration sequences

The sequences "ba ba ba ..." and "ioioio .."H each repeated for about 10 seconds, are used for
calibrating the speakers. The first of the two sequences gives insight into the amount of vertical lip
movement, while the second sequence emphasises horizontal lip movement. These sequences can
also be used for determining the visual expressiveness of the speaker. For each sequence, the
average maximum mouth height and width, respectively, are determined for each speaker. The mean
value and the standard deviation of each of those two parameters over all speakers can then be
computed. Speakers with values in the margin of the overall distribution can be excluded from the
subsequent analysis if desired.

lll. Words

This is the core part of the database for the correlation analysis. There are 44 phonemes (24
consonant and 20 vowel ones) and 11 visemes (7 consonant and 4 vowel ones) in Australian English
(Plant and Macrae, 1977). According to the ANDOSL design, the phonemes can be categorised into
oral stops (/p/, v/, 1t/, I1d/, Ik/, Ig/), fricatives (/fl, Ivl, ITI, IDI, Isl, 121, ISI, 1Z], In]), affricatives (/tS/, /dZ/),
nasals (/m/, In/, IN/), liquids and glides (/I/, /r/, Iwl, ljl), short vowels (/I/, U/, IE/, I@/, /Ol, IVI, IA]), long
vowels (fi:/, lu:l, I@:/, lo:/, la:l), and diphthongs (/ei/, le@/, /@ul/, /oi/, /ail, laul, [i@/, lu@]/). Following
Plant and Macrae (1977) and Plant (1980), visemes of Australian English can be classified into bi-
labials (/p/, /b/, /m/), labio-dentals (/f/, /v/), inter-dentals (/T/, /D/), labio-velar glides (/w/, /9/), palatals
(/s/, itSl, Idz/), alveolar non-fricatives and plosives and velar plosives (/l/, In/, /jl, Ig/, /k/), alveolar
fricatives and plosives (/s/, /d/, /t/), front non-open vowels and front-close-onset diphthongs (/i/, /i:/, /I,
IE/, li@/), open vowels and open-onset diphthongs (/A/, /ail, e:l, IVI, @I/, leil), back/central non-open
vowels and diphthongs containing these vocalic positions (/@:/, /oi/, /u:/, /iu/, /U/), and back/central
open vowels and diphthongs containing these vocalic positions (/O/, /@ul/, /au/).

The phonemes and visemes are studied in a VCV- or CVC-context to be free of any phonological or
lexical restrictions. The vowel context is the wide open "ar". The voiced bi-labial /b/ is used as the
consonant context. Having a bi-labial context simplifies the visual analysis. Using /b/ instead of /p/



lengthens each word and thus gives more data to analyse, in particular for short vowels. On a negative
side, a bi-labial context causes strong coarticulation effects in the formants. However, these are quite
predictable for /b/ and we believe the advantages of having a bi-labial opening and closing before and
after the word for visual segmentation offsets the disadvantages from the coarticulation.

In order to overcome the typical articulation patterns associated with reading words from a list, each
word is put in a carrier phrase which reads "You grab /word/ beer." This is particularly important for the
VCV-words which have no bi-labial context otherwise. The list, ordered into phoneme categories, then
consists of:

e Short vowels: Bib, Bub (as in “should”), Beb, Bob, Bub (as in “cup”), Bab

e Long vowels: Beeb, Boob, Berb, Borb, Barb

« Diphthongs: Babe, Bareb, Boyb, Bibe, Bowb, Beerb, Bobe

e Oral stops: Arpar, Arbar, Artar, Ardar, Arkar, Argar

« Fricatives: Arfar, Arvar, Arthar (as in "thin"), Arthar (as in "that"), Arsar, Arzar, Arshar
«  Affricatives: Archar, Arjar

e Nasals: Armar, Arnar, Arngar

e Liquids and glides: Arlar, Ara, Arwar, Aryar.

Close examination of this list will reveal that a few phonemes are missing. These are the voiced
fricative /Z/ as in "azure" and the diphthong /u@!/ as in "tour". These phonemes have a low occurence
in Australian English. It was therefore quite likely that speakers would not pronounce the prompts for
these two phonemes correctly which will negatively affect the analysis. They were thus omitted in the
word list. Besides, these two phonemes were rather difficult to achieve in the suggested CVC- and
VCV-contexts. Furthermore, the neutral vowel /@/ and the neutral consonant /h/ were left out because
they add little to the correlation analysis. Thus we have a total number of 40 words.

IV. Digits

This sequence and the next one can be used as examples of applying the knowledge gained from the
analysis of the data in the previous word sequences to short sequences that are more application-
driven. The database includes a sequence of digits spoken in order from 0 to 9. Again, each digit is put
in the same carrier phrase "You grab /digit/ beer." to ensure lip closure before and after the digit.

V. Continuous speech

Finally, the database includes an example of continuous speech for each speaker. This is in the form
of the sentences: "Joe took father's green shoe bench out. Yesterday morning on my tour, | heard
wolves here. Thin hair of azure colour is pointless.” Analysing these sentences in more depth reveals
that all phonemes and visemes of Australian English as listed above occur in them.

This data corpus comprises 10 speakers and equal nhumbers of female and male speakers ensure a
fair gender balance. All speakers are native Australian English speakers and were 23-40 years old at
the time of the recordings.

CONCLUSIONS AND FUTURE WORK

We have presented a way of validating the results from an automatic lip feature extraction algorithm.
The results from a comparison with a manual feature extraction indicate strongly that the algorithm is
able to automatically, reliably and accurately find the features in which we are interested. Internal
mouth width and height were measured with an accuracy of about 1-2mm. The protrusion parameters
for upper and lower lip in their current way are of limited use. This is due to the fact that when the lips
are protruded, all parts move more or less together forward. Thus, there is little or no change of the
protrusion of the mid-points of the lips compared to the lip corners. The protrusion should instead be
measured against some other facial part which is more stationary, such as the nose tip, for example.

We have built an AV speech database for Australian English. This data corpus will be used to
investigate the correlation between audio and video in spoken language. The analysis will start with the
parameter set described but we also want to examine how these parameters change over time, i.e.
what are their velocity and acceleration patterns. As others have suggested, motion might be a more
important cue than shape in AVSP (e.g. Vatikiotis-Bateson et al., 1996). We are particularly interested



in determining where the redundant information in AV data lies. Once the correlation between audio
and video parameters is known, this knowledge can be applied to ASR systems to improve their
recognition rate in noisy environments where today's systems often fail.
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