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Abstract

Biology often offers valuable example of systems both
for learning and for controlling motion. Work in ro-
botics has often been inspired by these findings in di-
verse ways. Though, the fundamental aspects that in-
volve visual landmark learning and motion control mech-
anisms have almost exclusively been approached heuris-
tically rather than examining the underlying princi-
ples. In this paper we introduce theoretical tools that
might explain how the visual learning works and why
the motion is attracted by the pre-learnt goal position.
Basically, the theoretical tools emerge from the nav-
igation vector field produced by the visual behaviors.
Both the learning process and the navigation scheme
influence the motion field. We apply classical mathe-
matical and dynamic control to analyze the efficiency
of our method.

1 Introduction

Animals, including insects, are proficient in navi-
gating and, in general, several biological schemas for
solving navigational tasks seem to be promising for
robotics applications. Basically biological systems in-
volve two fundamental mechanisms: visual learning
and visual motion control. There are, of course, di-
verse ways of implementing such mechanisms among
animals. Nevertheless, insects provide basic methods
that are extremely valuable for robotics. To this ex-
tent, the use of landmarks for piloting and for goal
identification is fundamental to orientation, although
other mechanisms, such as the optomotor response,
path integration and skylight navigation are clearly in-
volved [19]. However, whereas the optomotor response
and the path integration mechanism require no more

than an appropriately hard-wired neural network, the
use of the skylight compass and of landmarks requires,
in addition, a learning process that must take place in
every new situation.

On the other hand, referring to motion planning,
it is widely agreed that landmark-guided navigation
in insects is based on storing the image of the land-
mark(s) as some kind of a snapshot or a template [1, 4].
On its next journey, the insect navigator strives to ac-
complish a match between the currently viewed image
of the landmark(s) or of the goal and the snapshot
stored in memory. Many examples of the above men-
tioned abilities transposed to real robots can be found
in the review [18]. From these case studies the imple-
mentation of biological mechanisms appear to follow
a pragmatic approach where the final behavior is the
main objective. The learning and control aspects are
of utmost importance but a thorough study on the the-
oretical principles has only recently been performed
[13, 3]

Basically, the core of the theory is represented by
the navigation vector field, whose study provide two
main results:

• the visual potential function generating the field
represents the driving principle to perform vi-
sual guidance. When proven to be a Lyapunov
compliant function, we can state the navigation
system exhibits convergence to the goal.

• The conservativeness of the navigation vector
field deals with the concept of repeatability of
the trials and provides key information to per-
form landmark learning.

In this paper we address, in particular, principles
involved in landmark learning. Details about the navi-
gation system and the nature of the potential function
can be found in references [2] and [3] respectively.



The organization of the paper is as follows. In Sec-
tion 2 aspects both related to findings on biological
learning and to biological navigation will be intro-
duced. In Section 3 the theoretical principles specifi-
cally involved with visual learning and visual naviga-
tion are detailed. Final remarks conclude the paper.

2 Biological findings

Over many decades, studies of the visual perfor-
mance of bees have exploited the fact that bees keep
returning to a profitable feeding site once found, even
when it is an artificial food source established by an
experimenter.

2.1 Landmark learning

As soon as the bee encounters a novel place, she
turns by 180 degrees to inspect the place and performs
the initial phase of training, termed the Turn-Back-
and-Look (TBL) phase [10]. A similar behavior was
also observed in other insects thus categorizing this
phase a typical behavior of an insect when a new visual
learning phase is needed [20, 21].

In references [10, 11] and [14] the details and results
on the visual parameters learned by TBL are intro-
duced. Basically, findings show that TBL performed
on departure serves primarily for acquiring depth in-
formation by exploiting image motion, whereas color,
shape and size of landmarks are mainly acquired on
arrival.

Attempts to understand in detail the geometric sig-
nificance of learning flights have only recently been
made. Essentially, the flights are invariant in certain
dynamic and geometric structures thus allowing the
insects to artificially produce visual cues in specific
areas of the eyes [22]. Perhaps, the main reason is
that the precision for the homing mostly depends upon
the proximity of chosen landmarks to the goal [5]. In
fact, those flights need to be repeated whenever some
changes in the goal position occur [12].

2.2 Landmark guidance

Landmarks guidance in insects is retinoptically driven
and animals tend to reduce the discrepancies between
the stored view and the actual one by a matching pro-
cedure (reviews in [6] and [19]). The survey work pre-
sented in [18] addresses biological navigating behaviors
from a robotics point of view.

Referring to landmark guidance in bees, the seminal
work is presented in [4]. The authors show how bees

learn landmarks by storing an unprocessed two dimen-
sional snapshot of the panorama. The model matches
landmarks in the stored snapshot with landmarks in
the actual image. If this match is performed far from
the goal every matched pair could differ both in angu-
lar size and compass bearing. These differences drive
a bee toward the right position. Template matching
has also recently been noticed in ants [9].

The model introduced in [4] has some shortcomings
and interesting extensions have been addressed in re-
cent works [7, 3] by introducing omnidirectional vision
and color images.

3 The motion field

According to what has been previously expressed,
starting with local visual information, a vector needs
to be computed by the agent which will be used it to
perform the next movement. In our case, the compu-
tation of the navigation vector is based on information
involving the chosen landmarks. How to get naviga-
tion information from landmarks is briefly introduced
here for completeness and details can be found in [2, 3].

Basically, once landmarks have been learned, they
can provide two kind of information to perform mo-
tion:

• their actual size, compared to the size learned at
the goal site, reports how far/close the agent is
to the goal position

• their actual orientation, compared to the orien-
tation learned at the goal site, speaks about the
actual left/right shift of the agent.

This kind of data come from each individual land-
mark and we need to fuse them in order to get the
overall navigation vector. Intriguingly, the fusion pro-
cedure has strong biological bases as detailed in [18].

To formalize aspects related to the motion field gen-
erated in the environment, we call p the vector repre-
senting the robot’s Cartesian position [x y] in a world
reference W. We also define step k the discrete time
k of robot dynamic state.

Let �V (p(k)) = [Vx (p(k)) Vy(p(k))] be the output
of the motion strategy at a given step k, i.e. the robot
movement at step k. If the robot operates in posi-
tion mode, i.e. at each step it updates its Cartesian
position, then

p(k + 1 ) =p(k) + �V (p(k)) (1)

where p(k) represents the coordinates of robot at step
k, and p(k + 1 ) represents the new position at step



k + 1. The goal position is defined as an equilibrium
point p∗ for the system.

The computation over the whole environment of
vector �V defines a vector field V. Let us consider
a partial set of equivalent statements about a generic
vector field V [15].

• any oriented simple closed curve c:
∮
c
V · ds= 0

• V is the gradient of some function U : V= ∇U

The former is related to the concept of conservative-
ness of the field. The latter is concerned with the exis-
tence of a potential function generating an unique field.
From a different point of view, conservativeness is a
measure of the quality of landmark learning, whereas
the existence of a Lyapunov potential function indi-
cates the robot’s capability to reach the goal. The
following Section addresses the former aspect. Details
of the other aspect can be found in [2, 3].

The robot Nomad200 was used to accomplish the
tests. It includes the Fujitsu Tracking Card (TRV)
which performs real-time tracking of full color tem-
plates at a NTSC frame rate (30Hz).

4 Principles for landmark learning

A landmark must be reliable for accomplishing a
task as detailed in Section 2.1. Landmarks that ap-
pear to be appropriate for human beings are not nec-
essarily appropriate for other agents (animals, insects
or artificial beings) because of the completely different
sensor apparatus and matching systems [17]. There-
fore we need to state the meaning of landmark relia-
bility in advance for the system in use before to solve
the problem of selecting landmarks.

For our system, a template is a region of the grabbed
image identified by two parameters mx and my repre-
senting the sizes along X and Y axes. The size ranges
from 1 to 8, i.e. from small (21 pixels wide) to large (28

pixels wide) templates. The TRV can simultaneously
track many templates. For each template the card per-
forms a match in a sub-area of the actual video frame
adopting the block matching method [8]. This intro-
duces the concept of correlation between the template
being used and the actual video frame. The sub-area
is composed of 16× 16 positions in the frame usually
taken around the origin (ox, oy) of the template (its
upper-left corner). The whole set of computed correla-
tion measures forms the correlation matrix. Examples
of correlation matrices are reported in figure 1.

We can take advantage of the matrices to compute
a measure that states upon the reliability of the tem-
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Figure 1: Examples of correlation matrices. These are
computed within the local sub-area of the templates
(square box in the pictures).

plate under study [16]. As reported in [2, 13] we calcu-
late a figure r, ranging from 0 to 1, which states how
deep is the global minimum of the matrix in relation to
its neighborhood. Therefore, we define reliable land-
marks as templates which are uniquely identifiable in
their neighborhoods: the greater r the more uniquely
identifiable the landmark in its sub-area.

Once that the measure for the reliability of a land-
mark has been stated, the next step consists of search-
ing the whole panorama for landmarks. There are
several degrees of freedom in searching for the best
landmarks within a video frame [2], but some simplifi-
cations can be introduced: only square templates are
used, and the position of a landmark is searched for
by maximizing the following:

(o∗x, o∗y) = arg max
(ox,oy)∈grid

rl(ox, oy) (2)

where rl(ox, oy) identifies the reliability factor for a
landmark l whose origin is located in (ox, oy) rep-
resenting a generic place on the grid. The position
(o∗x, o∗y) represents the cells with the highest r. In or-



der to assure that different landmarks occupy different
positions, previously chosen coordinates are not con-
sidered. In figure 2, examples of landmarks chosen
have been reported. When different sizes are consid-
ered, different sets of landmarks are extracted.

The landmarks which have been statically chosen
are used for navigation tasks. This is done by test-
ing the landmarks to verify that they represent good
guides for navigation tasks.

TBL helps to verify landmarks by testing whether
during the motion the statically chosen landmarks are
robustly identifiable. Through a series of stereotyped
movements small perturbations (local lighting condi-
tions, changes in camera heading, different perspec-
tives and so on) can influence the reliability of the
statically chosen landmarks. Figure 3 shows the robot
moving away from the goal while the camera (arrows
pointing to the top) is continously pointing towards
the goal.

These perturbations to images naturally occur in
typical robot journeys thus allowing us to state that
the TBL phase represents a testing framework for land-
marks. In other words, the robot tries to learn which
landmarks are suitable for use in real navigation tasks
by simulating the conditions the robot will encounter
along the paths. At the end of the TBL process only
those landmarks whose reliability rl is above a certain
threshold ε are suitable to be used in navigation tasks.

The reliability factor rl for landmark l is contin-
uously computed during the TBL phase through the
following:

rl =
∑TBL

i=1 ri
l

TBL
(3)

where TBL is the total number of steps exploited till
that time, and ri

l is the reliability of landmark l calcu-
lated at time i. In the tests, at the end of the phase,
TBL usually consists of 400 steps (it takes about 13
seconds to be performed). The set of landmarks is
tracked along the whole TBL phase and rl is continu-
ously monitored for each landmark (details in [13]).

4.1 The quality of learning

There are strong connections between the learning
phase and navigation actions. The conservativeness of
the motion field bridges these two aspects.

A vector field V is said to be conservative when the
integral computed on any closed path is zero. Con-
versely, if the field is not conservative then diverse
potential functions can be associated with the field.
This translates into non-repeatability of robot naviga-
tion trails in [13].

Figure 2: Different choices of landmarks for different
landmark sizes. Landmarks are box-shaped.



Figure 3: The arcs performed by the robot to imple-
ment the TBL phase

If the vector field is defined on a connected set in
the environments, then the null circuitation property
is equivalent to [15]:

∂Vx(x, y)
∂y

=
∂Vy(x, y)

∂x
(4)

We can measure how this equation differs from the
theoretical null value as follows:

∂Vx(x, y)
∂y

− ∂Vy(x, y)
∂x

(5)

The property expressed by Equation 5 is referred to
as degree of conservativeness. The degree of conserva-
tiveness of the vector field computed with a threshold
set to 0 and landmarks sized 6 is shown in figure 4.
Only small regions of the whole area roughly satisfy
the constraint.
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Figure 4: Conservativeness of a vector field computed
with a TBL threshold of 0 and landmarks sized 6

A small change in the threshold for TBL can dra-
matically change the situation. In figure 5 the degree

of conservativeness for each point is plotted.
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Figure 5: Conservativeness of a vector field computed
with a TBL threshold of 0.1 and landmarks sized 6

A key consideration is concerned with the scale
along Z: it is about one order of magnitude less than
the one reported in figure 4. A trend toward a conser-
vative field is thus becoming evident.

The situation obtained with a threshold of TBL set
to 0.2 has been reported in figure 6. A large area of
the environment has a degree of conservativeness that
roughly equals 0.
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Figure 6: Conservativeness of a vector field computed
with a TBL threshold of 0.2 and landmarks sized 6

Similar considerations can be expressed dealing with
a different landmark size. For example, figure 7 shows
the case where the TBL threshold is 0.2 and land-
marks have a size of 4. The template of the graph is
the same as before. Therefore, with a good choice of
threshold the field becomes conservative regardless of
the size of the landmarks.
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Figure 7: Conservativeness of a vector field computed
with a TBL threshold of 0.2 and landmarks sized 4

5 Conclusions

Landmarks learning for robots can take inspiration
from Biology but it needs to be well formalized for
its efficient implementation in artificial agents. First,
a definition for landmark reliability must be stated.
Second, a measure that can assess about the quality
of the learning phase needs to be introduced.

In this paper, we have shown how both these as-
pects can be efficiently addressed. Particularly, we
have shown how the learning phase affects the naviga-
tion motion field. Further improvements to this study
can be achieved by the use of omni directional visual
sensors.
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