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Abstract

This paper presents a biologically-inspired method
for navigating using visual landmarks which have been
self-selected within natural environments. A landmark
is a region of the grabbed image which is chosen accord-
ing to its reliability measured through a phase (Turn
Back and Look - TBL) that mimics the behavior of
some social insects. From the self-chosen landmarks
suitable mavigation information can be extracted fol-
lowing a well known model introduced in Biology to
explain the bee’s navigation behavior. The landmark
selection phase affects the conservativeness of the nav-
1gation vector field thus allowing us to explain the nav-
igation model in terms of a visual potential function
which drives the navigation to the goal. The experi-
ments have been performed using a Nomad200 mobile
robot equipped with monocular color vision.

1 Introduction

Animals, including insects, are proficient in navi-
gating and, in general, several biological approaches
to solving navigational tasks seem to be promising for
robotics applications. In Biology the different meth-
ods of navigating have been categorized as [14]: guid-
ance, place recognition - triggered response, topological
and metric navigation.

An agent performs guidance when it responds to
stimuli. An improvement of this behavior being the
selection of actions as soon as a place (or an environ-
ment) has been recognized so introducing the place
recognition - triggered response. This represents the
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basic step for topological navigation, where places are
connected by means of qualitative links and actions.
The quantitative knowledge of those connections gives
rise to the concept of metric navigation. In order to
perform such tasks many animals usually deal with
identifiable visual objects in the environment called
landmarks [15].

The use of landmarks in robotics is well understood
[13]. One of the crucial point deals with the nature of
a landmark [3]: landmarks can be artificial or natural.
Of course it is much easier to deal with artificial land-
marks instead of dealing with natural ones, but the
latter are more appealing because their use requires
no engineering of the environment. However, a gen-
eral method for dealing with natural landmarks still
remains to be introduced. The main problem lies in
the selection of the most suitable landmarks [13, 11].

Recently it has been discovered that wasps and
bees perform specific flights during the first journeys
to a new place to learn color, shape and distance of
landmarks. Those flights are termed Turn Back and
Look (TBL) [5]. Once the place has been learnt using
landmarks, insects can then accomplish navigation ac-
tions accordingly. Cartwright and Collett introduced
a model to explain the bee’s behavior when she ap-
proaches pre-learnt places [4]. This algorithm could
be suitably used for robotics applications to do visual
guidance but it needs to be extended.

The aim of this paper is to introduce a biologically-
inspired visual guidance model for the robot homing
phase. The new system can deal with natural land-
marks extracted from the environment by adopting a
TBL phase (section 2). Using these landmarks an ex-
tension of the Cartwright and Collett model provides
us with the necessary navigation information for visual
homing (section 3). Furthermore, we show that TBL



affects the conservativeness of the navigation vector
field thus allowing us to compute a (unique) potential
function which drives the landmark navigation behav-
ior (section 4).

2 Learning Landmarks

A landmark must be reliable for accomplishing nav-
igation tasks, those which appear to be appropriate
for human beings are not necessarily appropriate for
robots because of the completely different sensor ap-
paratus and matching systems [13]. If the meaning
of reliability can be established then the problem of
selecting landmarks can be automatically solved.

To effectively use visual landmarks real-time perfor-
mance is needed, this can lead to the use of dedicated
hardware. The robot Nomad200 (Figure 1) that was
used to accomplish the tests uses the Fujitsu Track-
ing Card (TRV) which performs real-time tracking of
full color templates at a NTSC frame rate (30Hz). A
template is a region of the grabbed image identified
by two parameters m, and m, representing the sizes
along X and Y axes.

Figure 1: The Nomad200

For each template the Fujitsu system performs a
match in a sub-area of the actual video frame adopt-
ing the block matching method. This introduces the
concept of correlation given by the sum of the abso-
lute differences between the values of the pixels. To
track a template it is necessary to calculate the cor-
relation between the template and a frame not only
at one point on the frame but at a number of points
within a searching area. The searching area is com-
posed of 16 x 16 positions in the frame usually taken
around a specific point. The whole set of correlations
is referred to as the correlation matriz.

The matching system provides as an output the co-
ordinates of the position which represents the global

Figure 2: Various examples of correlation matrixes
around the templates (box shaped)

minimum in the correlation matrix. Different tem-
plates usually have different correlation matrixes (see
Figure 2). This approach strongly resembles the
region-based optical flow techniques [10]. There, the
flow is defined as the shift that yields the best fit be-
tween the image regions at different times. But in
order to select the best landmarks only static images
are considered in our approach.

Mori et al. [11] have taken advantage of the corre-
lation matrix to generate attention tokens from scenes
by using what they called the valley method. Extend-
ing the concept we introduce a measure given by:

r=1-2 (1)
which for our landmarks represents the reliability of a
template whose global minimum is g and local mini-
mum is g’. The latter is computed in a circle around
g. Therefore, we define reliable landmarks as templates
which are uniquely identifiable in a search area.

There are several degrees of freedom in searching for
the best landmarks within a video frame but some sim-
plifications can be made to speed up the whole search
process [1]. For example, only squared templates can
be considered, thus m, = my = Mmyy.



So far, we use landmarks that have been statically
selected from the goal image. We found that it is nec-
essary to test them in real situations in order to verify
whether they represent good guides for real navigation
tasks.

TBL helps to verify the usefulness of landmarks by
testing whether during the motion the statically cho-
sen landmarks still remain robustly identifiable [1, 5].
Through a series of stereotyped movements small per-
turbations (local lighting conditions, changes in cam-
era heading, different perspectives and so on) can in-
fluence the reliability of the statically chosen land-
marks. Figure 3 shows the robot moving away from
the goal and the camera (arrows pointing to the top)
is continuously pointing towards the goal.

Figure 3: The TBL phase

The robot tries to learn which landmarks can be
suitably used in real navigation tasks by simulating
the conditions the robot will encounter along various
possible paths to the goal.

At the end of the TBL process only those land-
marks whose reliability r; is above a threshold ¢ are
classified as suitable for navigation tasks. This allows
us to deal with reliable landmarks. TBL is performed
within a region two meters wide and three length and
takes about 13 seconds to be performed. In Figure 4
two pictures taken by a TBL phase exploited by the
robot are shown. The numbers associated with each
landmark represent r; at different times.

3 Navigation from landmarks

After reliable landmarks have been chosen then
navigation information can be extracted from them.
The underlying biological principle is that a real move-

Figure 4: Two images taken during a TBL phase

ment is represented by an attraction force. It is pro-
duced by taking into account that the agent tries to re-
store the original position and size of every landmarks
[4]. The Cartwright and Collett model takes into ac-
count only mono dimensional information therefore an
extension to the real 2D images is necessary. Two dif-
ferent kinds of information can be easily computed in
real time: the actual displacement of a landmark from
its position viewed from the goal place and its present
size.

Let d; the difference between the original and the
present position of a landmark [ and W; a weight given
by the ratio Jr\n[Zj where My, is the original magnifica-
tion value. The attraction strength given by landmark
[ is computed as the force produced by:

7 =d; - W, (2)

All the data coming from different landmarks must
be fused together and the averaging by confidence



paradigm is applied in our context [14, 6]. The in-
dividual data are weighted by introducing a sigmoid
function s(r;) ranging from 0 to 1. The confidence
given by the sigmoid function is based on the actual
value of the reliability factor r;. The overall navigation
vector can be thus calculated as:

L
> w-s(n)
V=V, V)= =—— 3)
> s(r)
=1

where L is the number of landmarks chosen after TBL,
r; is the reliability value of landmark [ and 7 is the
attraction force felt by landmark [. Lastly, V, and V
represent an estimation of the distance (along z and y
axes of the environment) from the actual position to
the goal position. The vector 1% represents the next
movement from the present robot position.

Figure 5 summarizes the situation where the pic-
ture represents a typical frame taken during a naviga-
tion test. In particular, the circle at the bottom-center
represents the overall attraction exerted by the goal.
Above the circle the variance of that attraction is re-
ported and under the circle the attraction vector is
broken down into a magnitude and an angle. In the
circle on the right the single attraction exerted by each
landmark is drawn. Each landmark has a number as-
sociated with it given by the value of the sigmoid func-
tion applied on its reliability measure. The arrows at
the top-center of the figure represent the motion com-
mands given to the robot. In the rectangle on the
left the visual potential field profile which has been
followed so far is drawn.

In Figure 6 the results of a navigation experiment
are shown. Most of the navigation trials reach the
goal position within an error range of 25 centimeters.
Some starting points, namely those labeled 3, 4 and 7
are not attracted by the goal. These failures can be
dealt with by introducing a potential field around the
goal position.

4 The visual potential field

The whole set of attractions felt by the robot can
be measured by placing the robot in different points
of an environment are represented by a vector field, as
shown in Figure 7.

A field of vectors V (g) is defined as a potential field
when it is produced by a differentiable function U
with:

Figure 5: A frame taken by a real navigation video
(see text on the left)

V(g) = VU(q) (4)

where ¢ is the actual configuration of the robot [9].
Classically, both U and ¢ are mathematically speci-
fied and researchers (see, e.g. [8, 7]) have addressed
the problem of choosing the best choice for U given a
set of sensors and the environment. In our case, the
configuration ¢ of the robot depends on the actual po-
sition of the robot: x, y and . Our approach consists
of calculating the shape of U(q) as a posterior, starting
from the vector field V(q).

To simplify the whole process of data collection a
fixed 0 is considered [2]. This means that only two
dimensions (z and y) are considered instead of three,
but the whole approach still remain valid.

Therefore, from equation 4 it can be stated that:

oU(z,y) 0U(z,y)
ox oy

V(z,y) = [Va(z,y) Vy(z,7)]
(5)

Now, in order to state that the vector field can
be derived from a potential function U a necessary
and sufficient condition is that the relation (Cauchy-
Riemann) holds [12].
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Figure 6: Navigation experiments
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that can be referred by with the term conservative-
ness.

In Figure 8 the degree of conservativeness for each
considered point is plotted: large areas of the whole
environment have aa‘;“” — aa‘;” roughly equal to O.

Furthermore, when the TBL threshold approaches
1 the conservativeness of the vector field tends to be-
come rapidly 0 everywhere [1]. This represents the
condition for computing the potential function which
drives the navigation process.

If the vector field is conservative then the calcu-
lation of the integral between two points is path-
independent. This can be taken advantage for com-
puting the potential function by allowing the goal po-
sition to have reference point co-ordinates. By setting
0 as the value of the potential at the goal, every other
point is thus referred to in terms of potential in ref-
erence to the goal position. With a TBL threshold of
0.25 the potential function is represented in Figure 9.

There are large areas of the environment from
which the goal position can be reached. Neverthe-
less, some starting points might lead to local minima
where the robot can become trapped. The situations
presented in the previous section can be clearly inter-
preted as attraction given by other minima that repre-
sent false goals. In [1] and [2] two different approaches

=0 (7)
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Figure 7: An example of a navigation field: directions
and modules (numbers)
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Figure 8: Conservativeness with ¢ set at 0.20. The
goal position is in (20, 25).

to deal with false goals have been tested: the use of
a bigger threshold for TBL and the use of the whole
snapshot instead of landmarks.

5 Concluding remarks

This paper has shown biologically-inspired learning
and navigation systems based on natural visual land-
marks. In particular the method for selecting land-
marks (TBL) can affect the conservativeness of the
navigation vector field thus allowing us to explain the
navigation method in terms of a potential function. A
panoramic field of view is thought to be necessary to
produce well-shaped potential basins where the goal
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Figure 9: Potential function: TBL threshold set at
0.25

is the only global minimum. Work in this direction is
necessary.

The presence of a navigation field is considered to
be important for further extending the method: sub-
goals can be automatically placed at the boundaries
of the basin of attraction. This can represent the ba-
sic step for topological navigations. Lastly, how to
deal with obstacles either static or dynamic represent
a mandatory development for the method.
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