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Abstract

This paper introduces a theory to formally and prac-
tically analyze the robustness issues of visual guidance
methods for robot navigation. The first aspect is re-
lated to the convergence of the navigation system to
the goal. It will be shown how the dynamic system
which drives the strategies can be analyzed by using
classical concepts such as the Liapunov functions. The
second aspect concerns the conservativeness of the re-
sulting navigation vector fields. It will be shown how
this deals with the repeatability of the trials. Further-
more, the selection of the best landmarks to perform
the navigation processes strongly affects the conserva-
tiveness thus providing a formal way to do landmark
learning. The theory has been tested with two different
visual methods that have been derived from the biologi-
cal world: the snapshot model and the landmark model.
The former considers a portion of the full panorama
taken by a color camera to accomplish navigating ac-
tions. The latter is a more sophisticated approach
which uses the most suitable visual landmarks to cal-
culate navigation movements.

1 Introduction

A key problem in robotics is the development of ef-
fective visual navigation strategies and a crucial aspect
is concerned with the search for robust yet practical
solutions [6]. Interestingly, animals, including insects,
are robustly able to achieve visual navigation. Ento-
mological studies have discovered several mechanisms
of visual navigation that offer valuable ideas for robot
navigation (see review [21]).

Therefore, the selection of relevant visual features,
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their use in visual navigation models and the ability
to work with practical solutions have been widely ad-
dressed in literature often starting from a biological
background (e.g. [15, 22, 14, 20, 3, 16, 9, 8, 5]).

All these aspects are of utmost importance but a
thorough study on the reciprocal effects for the final
visual behavior still has to be performed. In [2] we
show how the feature selection phase strongly affects
the final navigation process. In [4] and [5] we have
shown how different visual guided navigation strate-
gies operate with the same driving principle.

In this paper we present a theory that studies two
of the main aspects related to the concept of robust-
ness: i.e. repeatability and convergence [1]. Two main
results are presented:

e the wvisual potential function that represents the
driving principle to perform visual guidance is
proven to be a Liapunov function and therefore
can state about the convergence of the navigation
system to the goal.

e The conservativeness of the navigation vector
field deals with the concept of repeatability of
the trials and provides key information to per-
form landmark learning.

These results are not limited to only visual guid-
ance, but apply to broader classes of algorithms whose
driving principle is similar to the system dynamic
model reported in Equation 1.

The main contribution of this paper is the theory
itself which can provide a useful base to develop new
visual guided strategies or tune existing visual mech-
anisms measuring their effects involving robustness.

The organization of this paper is as follows. In Sec-
tion 2 the mathematical aspects related to visual guid-
ance strategies are detailed. In particular, in Section



2.1 issues concerning the visual potential function and
how this can be interpreted as a Liapunov function are
presented. In Section 2.2 formal studies related to the
concept of conservativeness of the navigation field are
introduced. In Section 3 the results of two different
tests involving both convergence and repeatability are
detailed. Concerning the experimental aspects, both
methods use a color camera with approximately the
same field of view and resolution. The different guid-
ance approaches have been tested in different environ-
ments of comparable sizes while the agents are differ-
ent (details can be found in Section 3) as described
later.

2 Theory

Starting with local sensor information, a vector
needs to be computed by the agent which will use it
to perform the next movement. If vector 1% represents
the next movement with a module and a direction rel-
ative to the actual robot position, considering an agent
with two D.O.F., for sake of simplicity, the system dy-
namical model to perform guidance is therefore given
by:

Y
ok +1) = 2(k) + Ke®).00)
y(k +1) = y(k) + Vy (2(k), y(k))

where z(k) and y(k) represent the coordinates of robot
at step k; xz(k + 1) and y(k + 1) represent the new
positions the robot will move to. Clearly, an important
equilibrium point (z*,y*) for the system is given by
the coordinates of the goal position.

Lastly, Vi (z(k),y(k)) and V;(z(k), y(k)) represent
the displacements computed at step k following a
generic guidance model. Those displacements are re-
lated to the position at step k given by (z(k),y(k)).

Some examples of computing vector 1% starting
from visual inputs can be found in e.g. [3, 16] for the
so called snapshot model and in e.g. [5] for the land-
mark model. The working hypotheses for the methods
is that visual information about the goal has been pre-
viously grabbed. Details of both models are presented
in Section 3.

Both approaches, however, share a similar navigat-
ing principle. The computation over the whole envi-
ronment of vector V' defines a vector field V. Several
interesting considerations can be suitably extracted by
analyzing its properties. Those studies can be further
generalized to address theoretical aspects related to
the concept of robustness.

Let us consider a partial set of equivalent state-
ments about a generic vector field V [13].

H
e any oriented simple closed curve c: [V -ds=0

e V is the gradient of some function U: V = VU

Both these conditions are of utmost importance for
guidance strategies. The former is related to the con-
cept of conservativeness of the field. The latter is con-
cerned with the existence of a potential function that
uniquely generates the field.

From another point of view, the former is concerned
with the repeatability of the experiments, the latter is
concerned with their convergence to the goal. The
following Sections address the two aspects in turn.

2.1 Convergence

Supposing that all the necessary hypotheses hold,
the dynamic system presented in Equation 1 can be
considered continuous-time with the following (leaving
out the vector notations):

L(t) = V(x(t)) (2)
where x represents the generic coordinates and an
equilibrium point z* is located at the goal position.

The basic idea for verifying the stability and the
convergence of a dynamic system is to seek an aggre-
gate summarizing function on the states of the system
itself [12].

In particular, when a dynamic system can be rep-
resented by # = f(z) with a fixed point z*, and it
is possible to find a Liapunov function, i.e. a conti-
nously differentiable, real-valued function U(z) with
the following properties [19]:

1. U(z) > 0 for all z # z* and U(z*) =0

2. U(z) < 0 for all z # 2* and U(z*) = 0 (all tra-
jectories flow downhill toward x*)

then z* is globally stable: for all initial conditions
z(t) = x* as t — oo.

The system depicted in Equation 2 is of type & =
f(z) but, unfortunately, there is no systematic ways
to construct Liapunov functions.

In our case, by considering the vector field the guid-
ance system produces an important Liapunov function
that can be constructed by integrating the right-hand
side of the system Equation 2 as reported in [12].

Our approach consists of calculating the shape of
U a posterior, starting from the vector field V. Clas-
sically, U is mathematically specified once given the



sensors and the environment (see e.g. [10] and review
in [11]).

The scalar function U can thus be given by integrat-
ing the conservative field V in question [17] taking into
account that the field must be inverted in sign [11]:

Z )
Uly)=—  V-ds (3)
0.0
where the path of integration, following the infinitesi-
mal piece of motion ds, is arbitrary. The scalar func-
tion U is referred to as the potential of the conservative
field V in question.
The scalar product reported by Equation 3 can be
further simplified by following a particular curve c.
Therefore, more effectively, it can be written as:

z
U(‘T:) y) =

X Zy

Vi(X,py)-dX —
Px Py

Vy(e,Y)-dY (4)

where U(z, y) is the potential function and the path of
integration is along the semi-perimeter of the rectangle
connecting (px,py) to (z,y), i.e. the horizontal line
segment from the initial point (px,py) to the vertical
line through (z,y) and then along the vertical line
segment to (z,y).

An advantage of this method is the use of the goal
position as the referring point (px,py). Every other
point is thus referred to in terms of potential in refer-
ence to the goal position.

If the visual potential function has a basin of at-
traction where the minimum is at the goal position
then for the considerations expressed above homing
is intrinsically stable, when starting navigating from
part of the environment.

2.2 Repeatability

As described above, a vector field V is said to be
conservative when the integral computed on any closed
path (circuitation) is zero.

If the field is not conservative (when the Equation
stating that the circuitation is null does not hold any-
more for at least one curve) then the integration de-
tailed in Equation 3 can lead to an infinite number of
results depending on the integrating curve c.

This means that, the potential function is no longer
entirely determined by the extreme points of the inte-
gration process. This potential function can be con-
sidered as multi-valued: for every reference position,
a general position will have more than one potential
value according to the path chosen for integration.
This sort of multi-valued potential function can be

translated in non-uniqueness of the vector field. In
other words, repeatedly placing the robot in the same
point within a non-conservative area, different paths
can be followed.

Theoretically, as the field is not unique, the re-
peatability of navigation paths does not hold and this
can lead to unpredictable results.

A practical measure of the conservativeness of the
field appears to be essential to assess the quality of
the navigation process. To this extent, if the vector
field is defined on a connected set then the Equation
stating that the circuitation must be null is equivalent
to [18]:

WVu(z,y) _ 0Vy(z,y)
oy Oz

(5)
In other terms:

Vi(z,y)  OVy(z,y)
oy ox
Hereafter, the result of Equation 5 will be referred to
with the term of conservativeness.

=0 (6)

3 Experiments with visual guidance

In this Section we present two models of visual guid-
ance to test the theory above presented. In choos-
ing the experiments we have the following objective:
showing how to practically assess the robustness of a
particular guidance model.

The approaches we chose to deal with are the snap-
shot model and the landmark model. In addition,
two different agents are used to accomplish the experi-
ments: a tripod with a camera for the snapshot model
and a Nomad200 for the landmark model. Details on
the experiments can be found in [3, 16, 5, 2].

For both models, in order to measure the vector
field, the agent was manually placed at various points
in the environment. The position of the agent progres-
sively covered a grid in the environment where each
cell is approximately as big as the base of the agent
itself.

From those points, applying one of the navigation
methods, a displacement vector is computed. The it-
eration of the method over the whole environment and
the collection of every displacement vector produces a
vector field, as shown in Figure 1.

After collecting the whole set of vectors, it is neces-
sary to compute the cross derivatives and evaluate the
conservativeness condition and integrate the values to
calculate the potential function, given by Equations 6
and 4 respectively.



O coaL posiTion

AR PENEN
BLEPYN &<

7
®,p.

\
§
SUEVE/ B/ ESESELEN

&1
N
of
=]

y
\
3

g
S
R
&
=
5
&
8

N
N
N
7

&
a
=
&

g 7578\ 8
TR7ETET ﬂnr:*!y
Y

N &7

5187

1020 cm

mNE\‘\

o
I
N

VEVEVE7E T8 b Bt

(32 1=

M@NEMﬁNgN
71878V

2R Y
ESENEN
CESESENg

S %

a8

60cm

[ —

B reee gm0

@ coon

|

720cm

Figure 1: An example of a navigation field: directions
and modules (numbers)

3.1 Tests with the snapshot model

For the snapshot approach the main idea is that an
estimate of the vector pointing from the current po-
sition of the agent to the pre-learnt goal can be com-
puted comparing position and amplitude of matching
areas in the considered images. The matching between
the goal image and the actual view is performed using
an affine model. All possible affine transformations
and shifts of the actual image in the allowed range are
computed and the one that best fits the goal image is
chosen. From the parameters of the affine transforma-
tion the algorithm computes an estimate of the robot
displacement from the goal position, i.e. its current
position.

Examples of images used by the algorithm are
shown in Figures 2 and 3. The images were acquired
at the goal position and in a generic starting point of
the environment. A decimation process was applied
in order to speed up the affine matching.

Figure 2: Vertically sub-sampled goal position image

Figure 3: An example of a vertically sub-sampled
starting point image

Some constraints, namely fixed heading and con-
stant height of the camera, allow for the use of a sim-
plified affine model to perform matching:

7
Sx(X,Y) =aox +a1x - X + axx - X

Sy (X,Y)=aoy +a1y ‘Y +ax Y (M

where Sx and Sy are the displacement components for
the matching along x and y axes respectively; (X,Y)
are the pixels co-ordinates, agx, agy represent trans-
lations in pixels and ai1x, azx, a1y azy represent ex-
pansions (a-dimensional). Furthermore, other working
hypotheses allow for additional simplifications of the
affine model [16]. The computation of the estimated
displacement components from the actual position of
the agent to the goal is given by:

V= [Vx Vy] = [K - aApX H- alx] (8)
where K and H are constants which derive from the
central projection theorem as reported in [16].

All the tests have been performed in the same en-
vironment where the goal position is located in co-
ordinate (20, 30).

In Figure 4 the conservativeness of the navigation
field is shown. The goal has been acquired while facing
towards the maximum value for y. Figure 3 has been
acquired approximately at co-ordinate (20,5) facing
towards the goal. A large part of the field can be
considered conservative. However, there are some re-
gions of the environment where this condition does
not hold. This affects the repeatability of the naviga-
tion paths starting from those areas: from the same
starting point different paths can be selected, possibly
missing the goal position and getting trapped some-
where else.

The visual potential function is shown in Figure 5.
It is calculated by integrating the field, whose conserv-
ativeness is shown in Figure 4, as specified by Equation
3.
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Figure 4: Conservativeness of the navigation field for
the snapshot model
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Figure 5: The visual potential function with the snap-
shot model

There are large areas of the environment from
which the navigation phase can be successfully per-
formed. Nevertheless, starting from some areas the
robot can get trapped by false goals.

Stability is not guaranteed for the whole environ-
ment, as can be seen in Figure 5. The method can-
not deal with the intrinsic limitations of the guidance
strategy when the agent is placed in some regions
of the environment (in Figure 5 when 2 < 10 and
y > 35). The use of a camera with a limited field of
view can lead to bad navigation results: the agent is
attracted to false goals because the actual view might
not contain enough information for a good comparison
with the stored snapshot taken at the goal position.
This can be overcome by acting either on the match-
ing method or, more likely, by widening the camera
field of view.

3.2 Tests with the landmark model

For the landmark model, after reliable landmarks
have been chosen [2] then navigation information can
be extracted from them. The underlying biological
principle is that a real movement is represented by an
attraction force. It is produced by taking into account
the fact that the agent tries to restore the original
position and size of every landmarks [7]. The data
can be fused together by weighed addition.

Figure 6 summarizes the situation where the pic-
ture represents a typical frame taken during a navi-
gation test. In particular, the circle at the bottom-
center represents the overall attraction exerted by the
goal. Above the circle the variance of that attraction
is reported and under the circle the attraction vector
is broken down into a magnitude and an angle. In
the circle on the right the single attraction exerted
by each landmark (box-shaped) is drawn. Each land-
mark has a number associated with it given by the
value of the sigmoid function applied on its reliability
measure. The arrows at the top-center of the Figure
represent the motion commands given to the robot.
In the rectangle on the left the visual potential field
profile which has been followed so far is drawn.

The overall navigation vector can be thus calculated
as (see Equation 1):

X

0 - (1)

V=WV = —':;( 9)

s(rr)

1=1

where L is the number of landmarks chosen after the



Figure 6: A frame taken by a real navigation

selection phase, s(rj) is a confidence value continu-
ously associated to landmark [ and v} is the attraction
force felt by landmark [. Details of the computation
can be found in [5, 2].

All the tests are performed in the same environment
where the goal position is located at (25, 30).

With this model, the measure of conservativeness is
representative of the quality of the selected landmarks
other than the repeatability of the trials as reported
by Figures 7 and 8.
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Figure 7: Conservativeness of the field before the dy-
namic learning selection phase

Figure 7 shows the conservativeness of the field

when landmarks have been chosen from the goal im-
age which still had to be further refined by a dynamic
learning phase. Good landmarks, in fact, can be ade-
quately selected following a learning phase where the
agent follows a set of stereotyped movements [5, 2].
Figure 8 shows the conservativeness of the field after
the learning phase.
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Figure 8: Conservativeness of a vector field after the
learning phase

The computation of the visual potential functions
is performed only on those areas of the environment
where conservativeness holds. The tests previously
performed reveal that the snapshot model allows us
to immediately consider the vector field it produces.
On the other hand, the landmark model does not be-
have that way. A learning phase is necessary for the
field to be conservative at least for a large part of the
environment. The visual potential function for the
landmark model is shown in Figure 9.

The shape of the potential function tends to pro-
duce a minimum around the goal. In addition, the
basin of attraction of the goal is the whole environ-
ment, i.e. apart from some isolated cases, all the start-
ing points lead to the goal.

3.3 Issues on the visual potential as a
Liapunov function

From the potential function previously plotted it
can be easily understood why the system can some-
times be trapped by false goals or what are the regions
of convergence for the main goal position.

This implicitly states that the system does not have
overall stability in the whole environment. Therefore,
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Figure 9: Potential function computed for the land-
mark model after a dynamic selection phase

the visual potential function itself cannot be consid-
ered Liapunov compliant unless reducing its domain
of application to a region around the goal position,
starting from which the system converges.

This restricted visual potential function can be for-
mally adopted as a Liapunov function, though in a
restricted area of the environment.

4 Conclusions and perspectives

The development of visual navigation strategies
have been widely addressed in the robotics literature
despite the lack of formal yet practical guidelines to
cover various and different aspects.

In this paper it has been shown that a common
driving principle, namely the visual potential func-
tion, can be regarded to as the engine of the visual
guidance methods. Furthermore, the visual potential
function itself can be regarded to as a summarizing
function (specifically, a Liapunov function) to assess
the stability of the different strategies.

Important considerations based on the conserva-
tiveness of the vector fields can also be stated. It
has been shown how different aspects, e.g. landmark
learning, can affect its characteristics. To this extent,
the snapshot model is intrinsically more conservative
(i.e. experiments are more repeatable) than the land-
mark model. But the performance of the latter can be
strongly improved with a dynamic landmark learning
phase.
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