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Abstract.  This paper describes a method that is able to analyze
in real-time the robustness of a pattern-driven guidance strategy for
mobile robots. The robot computes its next step towards the goal by
considering visual patterns which have been previously selected through
a biologically-inspired phase. Starting from the analysis of the naviga-
tion vector field the system generates in the environment, formal aspects
related to the concept of convergence can be considered. In this paper
we show how the convergence analysis can be effectively addressed in
real time, though not in the whole environment but along the path the
robot has traveled. A Nomad200 is the agent used for the experiments.

1 Introduction

A key problem in robotics is the development of robust visual navigation strategies [3].
Interestingly, animals, including insects, are robustly able to achieve visual navigation
that offer valuable ideas for robot navigation [13]. In biological navigation systems,
the selection of relevant visual features, their use in visual navigation models and the
applicability to practical solutions has been widely addressed in literature (e.g. [4, 1]).

Starting from biological bases, recently we have presented a theory that studies
two of the main aspects related to the concept of robustness [2]: i.e. repeatability and
convergence. The latter is concerned with the visual potential function that represents
the driving principle to perform visual guidance. This is proven to be a Lyapunov
function and therefore it can state about the convergence of the navigation system to
the goal. The former is the conservativeness of the navigation vector field. This deals
with the concept of repeatability of the trials and provides key information to perform
pattern learning [7].

In the previous work, despite the fact that movements are computed in real-time,
assessing the robustness of the strategy on the environment all the computations had to
be exploited off-line, after the whole set of navigation vectors has been collected from
the environment.

The main contribution of the present paper is concerned with the real-time compu-
tation of issues related to the concept of converge. By considering the visual patterns
surrounding the robot, a real-time computation of the navigation vector leading to
the goal is exploited. This data can be suitably considered to assess the robustness
of the trajectory that has been followed by the robot. Critical situations can thus be
adequately recognized and solved.



The method operates with a color camera and a Nomad200 robot, which includes a
Fujitsu real-time tracking card.

2 Theory

Let vector V = [Vz V,] represent the next movement the robot has to perform with a
module and a direction relative to the actual robot position. The system dynamical
model to perform guidance with a two D.O.F. agent is:

{ w(k+1) = z(k) + Va(z(k), y(k)) (1)
y(k+1) = y(k) + V,(z(k), y(k))

where z(k) and y(k) represent the coordinates of robot at step k; z(k+ 1) and y(k+1)
represent the new positions the robot will move to. An equilibrium point (z*,y*) for
the system is given by the coordinates of the goal position.

The computation over the whole environment of vector V defines a vector field V.
Equivalent statements about a generic vector field V are [10].

— any oriented simple closed curve c: §,V - ds = 0

— V is the gradient of some function U: V=V U

The former is related to the concept of conservativeness of the field. The latter is
concerned with the existence of a potential function that uniquely generates the field.

From another point of view, the former is concerned with the repeatability of the
experiments, the latter is concerned with their convergence to the goal. The following
Section addresses the first aspect.

2.1 Convergence

Supposing that all the necessary hypotheses hold, the dynamic system presented in
Equation 1 can be considered continuous-time with the following (omitting the vector
notations):

(t) = V(z(t)) (2)
where x represents the generic coordinates of a point and z* is an equilibrium located
at the goal position.

When a dynamic system can be represented by & = f(z) with a fixed point z*, and
it is possible to find a Lyapunov function, i.e. a continously differentiable, real-valued
function U(z) with the following properties [10]:

1. U(z) >0 for all z # z* and U(z*) =0
2. U(zx) <0 for all z # 2* and U(z*) = 0 (all trajectories flow downhill toward z*)

then z* is globally stable: for all initial conditions x(t) — z* as t — 0.

In our case, by considering the vector field the guidance system produces, a Lya-
punov function can be constructed by integrating the right-hand side of the system
Equation 2 as reported in [9].

Our approach consists of calculating the shape of U a posterior, starting from the
vector field V whilst, classically, U is given a priori [6].



By integrating the conservative field V in question (by following a particular curve
c) the result of the integration process is [10, 1, 7]:

Ulz,y) = —/CV- ds— —/p Vx(X,py)-dX—/y V,(2,Y)- dY (3)

Py

where U(z,y) is the potential function and the path of integration is along the semi-
perimeter of the rectangle connecting (p,, p,) to (z,y). This method assumes the goal
position being considered to as the reference point (p,,p,). Every other point is thus
referred to in terms of potential in reference to the goal position.

If the visual potential function has a basin of attraction where the minimum is at
the goal position then for the considerations expressed above the guidance strategy is
intrinsically stable, when starting navigating from part of the environment. See figure 6
where examples of visual potential function and path followed by the robot are reported.

3 The model for guidance

A pattern must be reliable for accomplishing a task and patterns which appear to be
appropriate for human beings are not necessarily appropriate for robots because of
the completely different sensor apparatus and matching systems [12]. Following the
biological argument, one key point is that once the meaning of reliability has been
established then the problem of selecting patterns is automatically solved. Therefore,
stating what is meant by reliability of patterns, once given the specific sensor and
matching apparatus, is a mandatory step.

Good patterns can be adequately selected following a learning phase where the
agent follows a set of stereotyped movements. Navigation movements are subsequently
produced by taking into account that the agent needs to restore the original position
and size of every pre-learnt pattern. The data can then be fused together by weighed
addition. Further details can be found in [1].

3.1  Choosing reliable visual patterns

The Fujitsu Tracking Card (TRV) which performs real-time tracking of full color tem-
plates at a NTSC frame rate (30Hz). Basically, a template is a rectangular region of
a frame which can be identified by two parameters m, and m, representing the sizes
along X and Y axes respectively.

The card can simultaneously track many templates which have been previously
stored in a video RAM. For each stored template the card performs a match in a sub-
area of the actual video frame adopting the block matching method [5]. This introduces
the concept of correlation between the template and a sub-area of the actual video frame.
The correlation measure is given by the sum of the absolute differences between the
values of the pixels.

The sub-area is composed of 16 x 16 positions in the frame. The whole set of
computed correlation measures is known by the term correlation matriz. To perform
the tracking, the matching system supplies as an output the coordinates of the position
which represents the global minimum in the correlation matrix. This approach strongly
resembles the region-based optical flow techniques [8].

Mori et al. have taken advantage of the correlation matrix to generate attention
tokens from scenes [11]. Therefore, by reliable patterns we mean templates which are
uniquely identifiable.



Figure 1: A frame taken by a real navigation

The patterns which have been statically chosen are used for navigation tasks. We
found that it was necessary to test them in order to verify whether they represent good
guides for navigation tasks [7]. In particular, through a phase called turn back and look,
composed by a set of movements that lead the robot away from the goal, we tested
whether the patterns we chose are visible and well tracked during the backward path.
Interestingly, the selection phase influences the conservativeness of the navigation field
thus influencing the robustness of the navigation system as well [2, 7].

3.2 Real-time computation of 1%

Starting from information computed from landmarks, the overall navigation vector can
be thus calculated as (see Equation 1):

V=V =5— (4)

where L is the number of patterns chosen after the selection phase, s(r;) is a confidence
value continuously associated to pattern [ and v is the attraction force felt by pattern
[. Details of the computation can be found in [1, 7].

Figure 1 summarizes the situation where the picture represents a typical frame taken
during a navigation test. In particular, the circle at the bottom-center represents the
overall attraction exerted by the goal. Above the circle the variance of that attraction
is reported and under the circle the attraction vector is broken down into a magnitude
and an angle.

In the circle on the right the single attraction exerted by each landmark (box-shaped)
is drawn. Each landmark has a number associated with it given by the value of the



Figure 2: A successful navigation

sigmoid function applied on its reliability measure. The arrows at the top-center of the
Figure represent the motion commands given to the robot. In the rectangle on the left
the visual potential field profile which has been followed so far is drawn.

3.8  Real-time computation of U

By taking into account the considerations expressed in section 2 and by discretizing
equation 3 we can roughly calculate in real-time the potential function along the path
traveled by the robot with the following:

Uly)~— > (Vu(X)Y)+V,(X,Y)) (5)
(X,)Y)ec
where ¢ is the path that has been followed by the robot and (z,y) is the end point of
¢ (i.e. the actual position of the robot) and (X,Y") is the generic point that belongs to
c. Considering a parameter ¢ for the trajectory followed by the robot, the profile of the
potential function along the whole path followed by the robot can be roughly calculated
as:

U(t) = = S (Val0) + V(1) ()
tee
This computation leads to the graph in figure 2 where the profile which was followed
by the robot is shown. Taking into account the considerations expressed in section 2,
the profile of the potential function can be analyzed in terms of a Lyapunov function
as detailed in the following section.



Figure 3: A failed navigation and the potential profile which was followed

4 Experiments

In the following figures, the goal is located at the right of the profile and the starting
point is located at one third of the rectangle width. The following frames show a plain
view of the room, with start position and final position, along with the trajectory that
has been followed.

The first experiment is concerned with a succesfull navigation (see figure 2). The
profile of U shows the descendant path towards the minimum, which is the goal.

In figure 3 the path being followed does not lead to the goal. The robot is attracted
by a false goal (the minimum on the left of the profile). In Lyapunov terms, the starting

point of the robot is placed between two wvalleys. The robot is attracted from the left
valley, which represents a false goals. There the robot gets stuck.
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Figure 4: The robot circumnavigates a local maximum along the path to the goal as shown
in the frame of figure 5

A different situation is reported in the next example.



Figure 5: A navigation where the robot gets initially back and then reaches the goal site by
circumnavigating a local maximum (see figure 4)

Along the path reported in figure 5 the robot gets initially back instead of approach-
ing the goal site. The profile drawn in figure 4 shows the path followed by the robot.
At the beginning, the path circumnavigates a local maximum to reach the goal.
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Figure 6: Two-dimension potential function and an example of path (which is the potential
profile shown in the frames of the figures)

Basically, the Lyapunov functions that have been computed in the previous exper-
iments, are slices taken from the two-dimension potential function U made up off-line
(see figure 6). The actual path followed by the robot determines the uni-dimension
Lyapunov function shown in the frames as reported in the previous figures.

5 Conclusions

The development of visual navigation strategies have been widely addressed in the
robotics literature. An important issue to consider is the robustness of a strategy.



In this paper it has been shown how to take advantage of real-time navigation
information to study the converge of a guidance mechanism. The visual potential
function can be regarded to as the engine of the visual guidance method, and the visual
potential function itself can be regarded to as a summarizing function (specifically, a
Lyapunov function) to assess the stability of the strategy.
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