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ABSTRACT

This paper investigates the statistical relationship
between acoustic and visual speech features for
vowels. We extract such features from our stereo
vision AV speech data corpus of Australian English.
A principal component analysis is performed to
determine which data points of the parameter curve
for each feature are the most important ones to
represent the shape of each curve. This is followed
by a canonical correlation analysis to determine
which principal components, and hence which data
points of which features, correlate most across the
two modalities. Several strong correlations are
reported between acoustic and visual features. In
particular, F1 and F2 and mouth height were
strongly correlated. Knowledge about the correlation
of acoustic and visual features can be used to predict
the presence of acoustic features from visual
features in order to improve the recognition rate of
automatic speech recognition systems in
environments with acoustic noise.

1. INTRODUCTION

Although automatic speech recognition (ASR)
systems have become common tools in human-
computer interaction (HCI), they still have some
limitations with respect to the environment in which
they can be used. Current commercially available
ASR systems employ statistical models of spoken
language and enable continuous speech recognition
in reasonably good acoustic conditions. However,
they can fail unpredictably in noisy conditions. One
way of overcoming some of the limitations of audio-
only ASR systems is to use the additional visual
information of the act of speaking [1-5].

The aim in audio-video (AV) ASR in adverse
conditions is to be able to replace less reliable
acoustic measurements with more reliable visual
measurements. This requires a-priori knowledge of
the correlation between acoustic and visual speech
features for all phonemes. We explore in this paper
how this knowledge can be established.

Yehia et al [6] found a strong correlation (80-91%)
between the shape of the vocal-tract and the position

of facial feature points around the mouth and lower
face. They also found that a large part (72-85%) of
the variance observed in acoustic parameters can be
determined from vocal-tract and facial data together.
And even the facial data alone performed well in
accounting for the acoustic parameter variance. The
drawbacks of their study were the small number of
speakers looked at (only 2) and the use of  intrusive
measurement techniques. They used small
transducers placed on tongue, lips and teeth for
electromagnetic tracking of the vocal-tract motion
and infrared LEDs on the lower face half for optical
tracking of the facial motion. While Yehia et al
focussed on the relation between acoustic and facial
parameters for speech production and animation, we
look at the issue from an ASR perspective.

We have recently presented a novel algorithm for
the explicit extraction of lip feature points based on
a stereo vision head-tracking system [7]. Both head-
tracking and lip-tracking are completely non-
intrusive and do not use any facial markers. We
have also recorded an AV speech data corpus (with
10 speakers) containing all phonemes and visemes
in Australian English for the analysis of the
correlation between acoustic and visual features [8].
Section 2 briefly describes the experimental design
for the recordings and the techniques used for
extracting the features used in the correlation
analysis. Section 3 details the methods used in the
statistical analysis of the relation between acoustic
and visual features. The results are presented in
Section 4 and discussed in Section 5. Section 6
concludes with a discussion of the future direction
of this work.

2. EXPERIMENTAL DESIGN

2.1. Stereo Vision System

The lip-tracking system is integrated with the stereo
vision head tracking system (Figure 1). A stereo
vision system has the advantage that depth
information can be recovered and that measurements
are therefore in 3D, giving real-world distances
rather than simply the 2D image coordinates of a
mono-vision system.



Figure 1: Overview of the stereo vision system

The head tracking system is based on template
matching using normalised cross-correlation and is
able to track the person's movements at a frame rate
of 15-30Hz. The system consists of two calibrated
standard, colour analog NTSC video cameras. The
camera outputs are multiplexed at half the vertical
resolution into a single 512x480 image (Figure 2)
before being acquired by a Hitachi IP5005 video
card on a Pentium II (300MHz CPU) every 33ms.
Details on the system can be found in [9].

The lip-tracking algorithm is applied to the mouth
windows which are automatically determined during
the head tracking based on the head pose (Figure 2).
We combine colour information from the images
with knowledge about the structure of the mouth
area for different degrees of mouth openness in the
algorithm. For example, when the mouth is open, we
often expect to see teeth, so we can specifically look
for them which improves the robustness of the lip-
tracking.

Figure 2: Stereo image with head-tracking templates and mouth
windows for lip-tracking.

The algorithm extracts the 3D positions of the two
lip corners and the mid-point of upper and lower
lips. Since every person has differently shaped lips,
we use the inner lip contour so that the personal
characteristic shape of the lips has minimal effect on
the measurements. From these four lip points, we

derive a feature set which gives a first-order
description of the shape of the mouth: mouth width,
mouth height, and protrusion of upper and lower
lip. Furthermore, the algorithm labels each frame on
the appearance of upper and lower teeth. Figure 3
shows two examples of lip-tracking results. Video
clips of the lip-tracking process can be found at our
homepage (http://cslab.anu.edu.au/~rgoecke). A
detailed description of the lip-tracking algorithm can
be found in [7].

 
Figure 3: Lip-tracking results.

2.2. AV Speech Data Corpus

We have recorded an AV speech data corpus for
Australian English (AuE) using the stereo vision
system just described. The speakers sat in front of a
stereo camera pair with an omnidirectional
microphone attached 20-25cm below their mouth
(Fig. 4). The face was well illuminated by a light
source just below the cameras so that no shadows
appear on a speaker's face. Recordings were made to
digital video (DV) tape because of its ability to
playback the recordings many times without a loss
of quality. The DV standard also comprises a digital
audio component. In our case, the recordings were
made at 30Hz video frame rate and 16bit 48kHz
mono audio rate in a controlled acoustic
environment (almost no external noise, some air
conditioning and computer noise in the
background).

The data corpus comprises 10 native speakers (5
female and 5 male speakers). It was designed to
cover all phonemes and visemes in AuE except for
the neutral vowel /@/ because of its great audio
variability and the neutral consonant /h/ which adds
little to the correlation analysis. In addition, the
voiced fricative /Z/ and the diphthong /u@/ were
also omitted because they have a low occurence in
AuE. The core part of the corpus consists of 40
sequences per speaker containing consonant-vowel-
consonant- (CVC-) or vowel-consonant-vowel-
(VCV-) words with the phoneme of interest in the



central position. These words were put in a carrier
phrase (“You grab word beer.”) to overcome
articulation patterns associated with reading words
from a list. The carrier phrase also facilitates the
visual segmentation through the use of bi-labial
closings before and after the CVC- or VCV-word.
Full details on the design of the AV speech data
corpus can be found in [8].

Figure 4: Setup for AV Recordings.

2.3. Acoustic Feature Extraction

First, the audio component was grabbed from the
DV tape and stored as a .wav file without changing
the bit rate and sampling rate settings. Then the
ESPS signal processing toolkit was used for the
extraction of the acoustic features. The acoustic
features extracted were the voice source excitation
frequency f0, the formant frequencies F1-F3 and
RMS energy. The ESPS function get_f0 was used to
extract the f0 and RMS energy values. It uses a
30ms Hanning window with 5ms overlap. The ESPS
function formant was used to extract F1, F2, and F3
from the audio data by linear prediction analysis.
The ESPS standard parameters of 49ms window
length and cos4 window type were applied in the
analysis.

3. METHODS FOR ANALYSIS

In this paper, we focus on the analysis of the AV
correlation in vowels in AuE. While our AV speech
data corpus also contains sequences of the
consonants in Australian English, their AV
correlation analysis will be reported on in a different
paper. This categorisation into vowels and
consonants is based on the phonemes since we
collected data from the phonemes of AuE rather
than the visemes. Of course, visemes and phonemes
are related but the sets have a different structure.

There is no 1-1 map between phonemes and
visemes. Leaving diphthongs aside, there are
sequences for 6 short and 5 long vowels of AuE in
the data corpus.

First, a linear correlation was performed on the
visual feature set to see if any of the features were
correlated. Not surprisingly, it turned out that the
protrusion of upper and lower lip were highly
correlated (r > 0.97) because in normal speech both
lips are moved backward and forward
simultaneously. Therefore, we will look only at one
protrusion parameter in the analysis, the upper lip
protrusion, for example. Table 1 shows the feature
set used in the statistical analysis.

 
 Acoustic  Visual

 Voice source excitation f0  Mouth height

 Formant frequency F1  Mouth width

 Formant frequency F2  Lip protrusion
 Formant frequency F3  

 RMS energy  
Table 1: Overview of the acoustic and visual features

For the vowels, the CVC-word was in the form of
/bXb/ where X is substituted for the particular
vowel. The parameters of all features were extracted
for the period of time from the beginning of the lip
opening after the initial bi-labial /b/ until the end of
the lip opening just before the second bi-labial /b/.
These time periods were about 200ms (or 6 video
frames) for short vowels and about 300ms (or 9
video frames) for long vowels. However, durations
also vary across speakers for each vowel. In order to
have the same number of points on the time scale for
all utterances of a vowel from all speakers, a
piecewise linear interpolation was performed to give
each parameter curve a base of 50 points for
acoustic features and 10 points for visual features.
We used the R statistical system [10] for the
interpolation and all subsequent statistical analyses.
Note that our use of the PCA to represent the shape
of a curve is immune to the fact that acoustic and
visual features have a different number of data
points. Obviously, the analysis frame rate is
different for acoustic features (every 10ms) and
visual features (every 33ms).

Having a bi-labial context simplifies the visual
analysis. Using /b/ instead of /p/ lengthens each
word and thus results in more data to analyse, which
particularly important in the case of short vowels.
On the other side, a bi-labial context causes strong
coarticulation effects in the formants. However,
these are quite predictable for /b/ and we believe the
advantages of a bi-labial context for visual
segmentation offset the disadvantages. We limited
coarticulation deliberately to constrain the size and
complexity of our data set.



For each parameter data point and for each
phoneme, a principal component analysis (PCA)
was performed across the 10 speakers. It is
important to understand that this use of the PCA
technique is a way to represent the shape of a
parameter curve. For example, the first principal
component (PC) will then tell us the linear
combination of which data points accounts for the
largest amount of the variance in the parameter
curves of all speakers for that one particular
phoneme. This use of the PCA technique is different
from applying it to all, let's say, acoustic features in
order to reduce the number of features by selecting
the ones that account for most of the variance.

Then the top two PCs of each feature representing
about 70% of the variance were taken and two
features (= 2x2 PCs) at a time combined as acoustic
and visual PC vectors. Finally, a canonical
correlation on these PC vectors was done to quantify
which PCs, and subsequently which data points of
which features, were correlated across the two
modalities. This also reveals temporal information
about the relationship between acoustic and visual
features. We tested several combinations of PC
vectors but we have not yet tested all possible
combinations. Figure 5 shows a schematic example
of the mouth height parameter curve. Black dots on
the parameter curve represent data points with
correlation values above a certain threshold, for
example 0.9.

Figure 5: Schematic example of relationship between data
points and two principal components.

Canonical correlation is a form of correlation
relating two sets of variables. Similar to factor
analysis, there is more than one canonical
correlation, each representing orthogonally separate
patterns of relationships between the two sets. The
first canonical correlation is always the one which

explains most of the relationship. We only look at
the first correlation in our analyses.

4. RESULTS

4.1. Results of PCA

The first PC of f0 and the formant features typically
accounted for most of the variance in the first and in
the central data points. To a lesser extent, the first
PC was also related to the data points at the end of
the vowel. The second PC of these acoustic features
accounted for the variance in the data points
surrounding the central ones.

The picture is different for the RMS energy feature.
Here, the first PC was much more dominant than for
the formant features (about 80% compared to about
40-50% of the variance). It used a linear
combination of practically all data points to achieve
this.

The first two PCs of the mouth height and lip
protrusion features exhibit a behaviour similar to the
one of the formant features. However, for the mouth
width feature, the first PC was rather related to the
central data points and the second PC to the first and
the last data points.

4.2. Results of Canonical Correlation

Table 2 shows, as an example, the r-values of the
first canonical correlation with the first two PCs of
F1 and F2 as audio variables and the first two PCs
of mouth height and mouth width as video variables.
Generally, we found that combinations of the first
two PCs of F1, F2, and F3 correlated strongly with
the PCs of mouth height. We also found a strong
correlation between the first PC of f0 and the PCs of
the mouth height, but not for the second PC of f0.
The PCs of F2 and F3 also correlated well with the
first PC of the mouth width. Finally, there was a
strong correlation between RMS energy and F2 on
one side and mouth height on the other side. No
indication of a linear relationship between the data
points of the protrusion parameter and the data
points of any of the acoustic features was found.
Short and long vowels showed similar results.

 Short Vowels  Long Vowels

 /A/  0.99  /a:/  0.96
 /E/  0.96  /@:/  0.98
 /I/  0.95  /i:/  0.96
 /O/  0.98  /o:/  0.94
 /U/  0.96  /u:/  0.97
 /V/  0.94   

Table 2: r-values of first canonical correlation with the first two
PCs of F1 and F2 as audio variables and the first two PCs of
mouth height and mouth width.



5. DISCUSSION

It must be said that this is an exploratory
investigation. We are aware of the fact that a data
corpus with 10 speakers is still of a fairly small size
for such an analysis. In particular, one would like to
incorporate more than the first two PCs to account
for a higher percentage of variance in the utterances
for each of the vowels. We have immediate plans to
extend our data corpus by adding more speakers so
that our analysis can include more PCs of each
feature to give a more accurate picture.

One can also argue that a piecewise linear
interpolation in the process of giving all parameter
curves the same number of data points is less
effective than a spline interpolation which would
smooth the curve and thus reduce the effects of
measurement errors. This needs to be investigated.
However, for the current analysis we chose a
piecewise linear interpolation for simplicity.

We looked at individual phoneme correlations
because of the possible many-to-one articulatory-to-
acoustic transforms. It has long been known that
different articulatory movements can produce
acoustically very similar results.

A strong correlation was found between some
acoustic and visual features. In particular, the data
points of F1 and F2 and the data points of the mouth
height were strongly related. Articulatory-to-
acoustic speech production theories model are
known to model the acoustical consequences of the
degree of mouth opening well. Opening or closing
the lips has almost immediate acoustical
consequences and hence it is no surprise to find a
high correlation between the formant frequencies
and the mouth height feature. However, since it may
be possible that a speaker changes the behaviour of
the vocal tract behind the lips to compensate for the
acoustical consequences of the lip movements, it is
useful to really find these strong correlations.

We would have expected the lip protrusion feature
to be of more significance. However, fairly diverse
parameter curves were found when looking at each
vowel separately across the speakers. This diversity
could either be due to speakers using different lip
positions to produce the same sound or it could
point to inaccuracies in the extraction of the lip
protrusion feature from the video signal. It is known
that different articulatory movements can still
produce the same acoustic result. It is possible that
this plays a role here as well. These results need
further investigation.

6. CONCLUSION AND FUTURE WORK

To summarise, we performed an exploratory
analysis of the statistical relationship between

acoustic and visual speech features. A PCA was
used to represent the shape of the parameter curves
and then a canonical correlation analysis was done
using the first two PCs of each feature with two
features combined at a time to form the set of
variables for this analysis. Strong correlations
between the data points of F1 and F2 and the data
points of mouth height were found. F3, RMS
energy, and mouth width also showed some high
correlation values. The lip protrusion feature
appeared to be of little significance. The reason for
the diversity of shapes experienced in the lip
protrusion parameter curves must be further
investigated. As mentioned before, not all possible
combinations of features have yet been looked at but
we will do so in the future.

Strong correlations between some acoustic and
visual features means that this knowledge could be
used in an AV ASR system to predict the presence
of these acoustic features from the visual features.
This is of particular importance for the use of ASR
systems in environments with acoustic noise.

The data corpus needs to be extended by adding
more speakers so that more PCs can be included in
the canonical correlation analysis, thus incorporating
more of the variance in the features. It can also be
argued that repetitions from the same speakers
would be of value to look into the intra-subject
variability. This is common in speech corpora for
speaker recognition but only to a lesser extent in
corpora designed for ASR. We will also explore the
use of a spline interpolation technique for producing
the same number of data points for each utterance
before the PCA. Smoother parameter curves may
lead to more accurate results.
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