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Abstract 
Knowing where a person is looking at and 
understanding the user�s head gestures provide an 
effective and safe means to communicate with a 
robot. This type of human-robot interaction 
becomes even more effective when the vision 
system implemented simulates a human vision 
system enhanced by a pair of zoom cameras. But 
before zoom cameras can be effectively used, 
they are beset by a tedious and time-consuming 
calibration procedure. In this paper, we present a 
practical zoom camera calibration technique that 
is simple and can be effectively used not only for 
enhancing active vision systems but also for 
many other applications. 

1 Introduction 
The ability to detect a person, look at a face, know where 
the user is looking at, understand any head gesture and 
observe the task that is being executed provide a simple 
and effective way for a robot to interact with and learn 
from a person on its environment. We have an 
experimental platform used to accomplish this goal. The 
platform spans the integration of a robot arm (a whole arm 
manipulator or WAM) and an active vision system 
enhanced by a pair of zoom cameras. The WAM motion 
controller has been designed such that the amount of force 
on impact during collision with any object in its 
workplace is limited to a safe value [Heinzmann and 
Zelinsky, 1999]. Thus, a person interacting with the WAM 
is never harmed in case of accidental collisions. The active 
vision system uses an active head developed in our lab 
[Sutherland et al., 2001] retrofitted with a pair of zoom 
cameras. We plan to implement an eye gaze detection 
algorithm developed by Seeing Machines [2001] and an 
algorithm for detecting simple head gestures such as 
nodding (agree) or a head-shake (disagree) [Heinzmann, 
2001] to enable the WAM to interact with a person in front 
of it. The zoom cameras, though more difficult to use, are 
chosen to provide a higher performance over standard 
static cameras. For example, if we want to track the face 
of moving person while maintaining its image resolution 

high for accurate eye gaze tracking, it is not enough to 
have a real-time controller dynamically positioning the 
active head. The zoom setting must also be adjusted at the 
same time. This is something static cameras cannot 
obviously do. Real time adjustment of zoom setting will 
require that the camera calibration can be determined in 
real-time. Otherwise, many important physical 
measurements like eye gaze tracking are not possible. 
Camera parameters over the entire zoom settings must be 
known. Calibrating zoom camera on all its possible setting 
is impractical because of the enormous amount of data 
required. In this paper, we present an easier zoom camera 
calibration technique. The main motivation in our method 
is not all operating ranges of a zoom camera are useful in 
common applications. Therefore, if the zoom camera is 
calibrated only on carefully selected zoom-focus-aperture 
points then a function can be fitted for each camera 
parameter. The function can be used to approximate 
intermediate values and neighboring zoom-focus-aperture 
points. Details of the proposed zoom camera calibration 
procedure and its experimental results are discussed after 
some additional information of our platform for human-
robot interaction is described. 

2 An Overview of the Experimental 
Platform for Human-Robot Interaction 

Figure 1a explains our experimental platform used for 
human-robot interaction. It is made of three subsystems. 
The first is a 7-dof Barrett WAM with a three-finger hand 
used to execute simple pick and place of objects around its 
workplace. It is fitted with a safe impact controller 
[Heinzmann and Zelinsky 1999] to limit the amount of 
force during collision of any of its part with any object. 
The safe control architecture makes it suitable for a safe 
direct human interaction thus we call the robot human-
friendly. The second subsystem is a 4-dof active head 
called HyDrA retrofitted with two zoom cameras. HyDrA 
can control the two cameras in vergence and version as 
well as tilt. The vision system will have the ability to 
detect eye gaze and simple head gestures in real-time. It 
will use the eye gaze detection software developed by 
Seeing Machines [2001]. An example of eye gaze 



detection is illustrated in Figure 1b. It is crucial in 
determining which object a person is looking at without 
reconstructing the 3D view of the workspace. One major 
improvement of the active vision is its ability to precisely 
estimate eye gaze and detect head gestures because of its 
zoom cameras. A person�s face can also be easily tracked 
since the active vision can fixate anywhere in a 3D 
volume that is almost equivalent to a 5m in diameter 
hemisphere. Therefore, from the user�s point of view, the 
interface is more natural because the person is not 
restricted to a fixed location in space. The last subsystem 
is a person acting as a skill demonstrator who will interact 
with and teach the robot. The future objective is to let the 
robot learn from the skills the person is demonstrating. 
Since the robot knows which object a person is looking at 
and how the user manipulates this object with respect to 
other objects in the scene, it should be able to deduce 
some hypotheses on how a task is accomplished. 
Hypotheses are generated after several demonstration of 
the same skill. Afterwards, these hypotheses can be used 
to accomplish any future task that is similar to what the 
robot was trained for. Feedback from the human 
demonstrator while teaching the robot a certain skill may 
be in the form of simple head gestures such as nodding 
(agree) or a head-shake (disagree) [Heinzmann, 2001]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1a. The experimental platform for human-robot 
interaction using active vision 
 
 

 
 

Figure 1b. Example of eye gaze detection [from 
Matsumoto and Zelinsky, 2000] 

3 Camera Parameters � An Introduction 
Using a pinhole model, camera parameters are grouped 
into two: 1) intrinsic parameters and 2) extrinsic 
parameters. Intrinsic parameters describe the physical 
properties of the image plane with respect to the camera 
coordinate system and can be written as: 
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where:  fx and fy are the focal lengths along the x and y 
axes of the image plane in pixel dimensions, 
ox and oy are the x and y coordinates of the image 
plane origin (also known as the principal point) 
in pixel dimensions, 
and c is the skewness of the x and y axes of the 
image plane. For many practical purposes, it can 
be assumed to be equal to zero. 

On the other hand, extrinsic parameters describe the 
transformation between the camera and world coordinate 
systems and can be represented by: 

T = [R t],                                                         (2) 
where: R and t are the rotation and translation matrices 

that relate the world coordinate system to the 
camera coordinate system. 

Therefore, a point M=[X, Y, Z, 1]T in 3D space is 
represented as m=[x, y, 1]T in the image plane. The two 
points are related as: 

sm = ATM,                                                    (3) 
where  s  is an arbitrary scale factor. 
 The effects of lens distortion are also included as part 
of the intrinsic parameters. Radial distortion tends to have 
the biggest effect on the overall distortion and is normally 
measured by distortion coefficients k1, k2, k3 and k4. 
Once the A and T matrices have been estimated, the radial 
distortion coefficients are measured by iteratively 
undistorting the images generated by the camera. 

3.1 Complexity of Zoom Camera Calibration 
The complexity of calibrating zoom cameras comes from 
the fact that both intrinsic and extrinsic parameters are 
dependent on zoom, focus and aperture settings In 
contrast, static cameras have only one zoom, focus and 
aperture setting. To get an idea of the magnitude of the 
complexity, if a static camera requires 10 sets of data to 
calibrate, a zoom camera requires 1,250,000 (10 x 50 x 50 
x 50) assuming each zoom, focus and aperture settings has 
50 points from its minimum value to its maximum value - 
an underestimation of the features of commercially 
available zoom cameras. Even if we assume that the effect 
of aperture is minimal, the number of points is still a 
staggering 25,000.  
 Various techniques have been proposed to reduce the 
number of data points and at the same time generate a 
useful zoom camera model. The most notable is the work 
of [Wilson 1994; Wilson and Shafer 1993] wherein the 
intrinsic and extrinsic parameters are estimated for a 
constant aperture setting by getting a sample at fixed 
interval from the number of data points required. 
Afterwards, up to a five degree polynomial is used to 
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approximate the camera parameters in continuous mode 
for other zoom-focus combinations. The work of [Li and 
Lavest 1996] on zoom camera calibration for an active 
head essentially needs the same amount of data. A similar 
effort to Wilson�s work using an artificial neural network 
(ANN) to closely approximate the camera model is the 
work of  [Ahmed and Farag 2000]. It uses more data since 
the ANN requires a significant amount of information to 
converge. 
 In this paper, we propose a procedure to make zoom 
calibration less tedious and time-consuming. The basic 
idea is that not all zoom-focus-aperture combinations are 
useful in common applications. In most cases such as 
object recognition or 3D reconstruction, the zoom camera 
operates at points where images of the desired object are 
sharply focused. At the same time, we use the results of 
Wilson, Li and Lavest to note that: 1) thin lens and 
pinhole approximation can be used for each camera 
setting, 2) variations of camera parameters with respect to 
aperture is minimal and can be neglected for practical 
purposes and, 3) the only parameters that are dependent 
on zoom and focus setting are the internal parameters and 
the external parameter TZ or the translation on the Z axis 
of the camera with respect to a world coordinate system. 
TZ can in fact be approximated as function of zoom only 
because the change in TZ is primarily due to the 
repositioning of lens components when the camera zoom 
is adjusted [Wilson and Shafer 1993]. Having these 
constraints, we further note that for each zoom setting, we 
only need one focus setting to obtain a clear image if we 
know the distance of the object we are looking at. For 
each zoom value, the focus setting is the one obtained 
when we manually set the camera to defocus mode or zero 
focus level and let its electronic auto-focus controller find 
the best focus. Given all these simplifying assumptions we 
will need approximately less than 10% of the original 
number of data required in Wilson�s method.  
 In the next section, we provide details of the proposed 
method. 

3.2 A Practical Zoom Camera Calibration 
Technique 

Using thin lens and pinhole assumptions, we can use 
traditional calibration techniques for each zoom-focus 
setting. We use Zhang�s [2000] algorithm to calibrate the 
zoom camera on each zoom-focus setting since it is easy 
to use and the source code is freely available from the 
internet [Intel OCVL, 2001]. A chessboard grid made of 
10 x 7 squares of 1.0 x 1.0 inch in dimension is used to 
calibrate the camera that is a Sony CCB-EX37. The 
camera has been set to auto-exposure mode. It has 1440 
zoom levels or steps and 1793 focus levels or steps. The 
camera is fully controllable via RS232. In the calibration 
we did, only the first 1000 zoom levels are used to see if 
the function fitted will extrapolate well.  The electronic 
auto-focus can select any value from the 1793 levels.  
 Before the actual calibration is done, a lookup table for 
focus as a function of zoom and distance is created. The 
idea is to generate a function that will estimate the 
required amount of focus level given the zoom and the 
distance of the desired object. In other words, if we are 
looking at some object like the chessboard pattern, since 

we normally know the zoom level we are using and the 
approximate distance of the object, all we have to do is to 
use the lookup table/function to set the correct focus to get 
a clear image. Thus, focusing can happen within a few 
tens of milliseconds compared to an average of five 
seconds if we use the auto-focus feature of the camera. We 
propose to use this scheme to focus on the face of a 
moving person or an object of interest in front of the 
robot. In this case, distance can be measured using the two 
views from the left and right cameras. 
 To prepare the lookup table, the chessboard is placed in 
front of the camera while zoom is adjusted from level 0 to 
level 1000 at interval of 25. This is done from 30 cm to 
130cm at 10cm interval. At each zoom level interval, the 
focus is first set to level 0 (defocus) and the camera is then 
set to search for the best possible focus using its electronic 
auto-focus.  Experience has shown that this technique is 
more effective rather starting at an arbitrary focus level. 
The value at the end of the auto-focus search is then saved 
in a lookup table. After the lookup table has been created, 
a second-degree polynomial:   

f = K0 + K1z + K2d + K3z2 + K4d2 + K5zd,              (4) 
where  Ki = constant, f = focus, z = zoom and d = distance, 
is fitted using least squares techniques for fast focusing. 
The curve for the focus vs. zoom and distance called focus 
function is shown in Figure 2. 
 

 
 

Figure 2. Focus as a function of zoom and distance 
 
After the focus function has been determined, calibration 
is done from zoom level 0 to 1000 at step intervals of 25. 
The focus level used is derived from the focus function 
using the approximate distance of the chessboard pattern 
from the camera. The calibration data gathered is used to 
fit a second-degree polynomial using least squares 
techniques to get each intrinsic parameter as a function of 
zoom and focus. A second-degree polynomial was chosen 
since the improvement in sum of squared errors (SSE) or 
differences if a third-degree polynomial is used is not 
significant. Therefore, each intrinsic parameter is of the 
form:  

p = K0 + K1z + K2f + K3z2 + K4f2 + K5zf,                  (5) 
where p = intrinsic parameter, Ki = constant, z = zoom and 
f = focus. The graphs for the intrinsic parameters are 
shown in Figures 3a to 3f.  Due to limitation of space, the 
graphs of k3 and k4 are not shown. 



 

 
 

Figure 3a. fx as a function of zoom and focus 
 

 
 

Figure 3b. fy as a function of zoom and focus 
 

 
 

Figure 3c. ox as a function of zoom and focus 
 

Since the chessboard pattern moves during calibration, it 
is not possible to estimate the variation in TZ. To 
determine the variation in TZ, we fixed a square plane in 
front of the camera and parallel to the image plane. The 
square plane was of known size and was large enough to 
see from zoom level 0 to 1000. Since the square plane 
dimensions are known, we can estimate TZ and its 
variation when the zoom is adjusted. It should be noted  

 

 
 

Figure 3d. oy as a function of zoom and focus 
 

 
 

Figure 3e. k1 as a function of zoom and focus 
 

 
 

Figure 3f. k2 as a function of zoom and focus 
 

that the focus level is adjusted at the same time since the 
approximate distance of the plane can be measured 
manually. Furthermore, before any pixel level 
measurement is obtained, the image is undistorted using 
the intrinsic parameters obtained. TZ can be approximated 
by using the average of four TZ �s obtained for each side of 
the square. Each TZ is estimated by:  

TZ = (side• fl)/∆pixel,                                           (6) 



where side = length of each side of the square, fl = focal 
length fx (fy) by the x axis (y axis) and ∆pixel = distance 
between two corners along x axis (y axis) in sub-pixel 
accuracy. The plot of TZ and its third-degree polynomial 
approximation:  

TZ = K0 + K1z + K2z2 + K3z3,                                 (7) 
where Ki is a constant and z is zoom level, are shown in 
Figure 4. It should be noted that the most important 
parameter here is ∆TZ or the change in TZ as zoom is 
adjusted. It can be obtained by subtracting TZ at zoom 
level 0. 
 

 
 

Figure 4. Plot of TZ as a function of zoom 
 

3.3 Experimental Verifications 
To verify the accuracy of the proposed zoom calibration 
method, we used each intrinsic parameter function, the 
∆TZ offset function and equation 6 to: 1) estimate the 
dimension of a 25.22 x 25.46 mm square plane and 2) the 
distance between the inner corners of the left and right 
eyes of a head model. Both are placed in front of the 
camera of known distance (with respect to zoom level 0) 
and as much as possible parallel to the image plane as 
zoom level is adjusted.  
 Figures 5a and 5b show that the SSE improves and in 
many cases approaches a zero value as the resolution of 
the image is improved by increasing the zoom level. In 
both figures, before any pixel level measurement is done, 
the image is first undistorted using the intrinsic 
parameters. There are two cases for each graph. Case 1 is 
using the focus level that was generated in the calibration 
procedure (i.e. we know the zoom therefore we can 
determine the focus level used by fitting another 
polynomial on the calibration data). This focus level does 
not necessarily give a very clear image on all zoom levels 
because it does not take distance into consideration. Case 
2 is using the focus function obtained previously which 
gives a clear image on each zoom level. However, when 
we tried using the camera parameters from the second 
case, we obtained large SSE on estimating the dimension. 
Case 2 corresponds to points outside the line in Figures 3a 
to 3f. That means the graphs of the intrinsic parameters 
are only useful if the zoom and focus levels stay along the 
line. Therefore, even though we are using the focus 
function to get a clear image of the plane, we plug in the 

focus level from the calibration data to compute the 
camera parameters. Although we used the focus level from 
calibration data where it should have been from the focus 
function, the accuracy of measurement is not jeopardized 
as indicated by the increase in SSE of 2.4% in Figure 5a 
and 10.8% in Figure 5b.  A further note on the results, it 
will be noticed that in Figure 5a, the error jumps as the 
zoom level goes beyond 1000 in Case 1. It is because the 
calibration was done from zoom levels 0 to 1000 only. 
However, when the focus function is used, it can be seen 
that the our estimation of dimension extrapolate well up to 
zoom level 1100 which is the maximum level in the focus 
lookup table created earlier. It can also be noted in Figure 
5b that while case 1 can longer produce useful data 
beyond zoom 1025 because the image becomes blurred, 
case 2 is still generating measurements up to zoom level 
1100. The two focus levels are compared in Figure 6. 
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Figure 5a. SSE vs. zoom level.  Case 1: broken line, Case 
2: solid line.  Sum of all SSE for Case 1  = 10.94 mm2, 
sum of all SSE for Case 2 = 11.20 mm2, distance of square 
plane = 50.0 cm 
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Figure 5b. SSE vs. zoom level.  Case 1: broken line, Case 
2: solid line.  Sum of all SSE for Case 1  = 13.88 mm2, 
sum of all SSE for Case 2 = 12.52 mm2, distance of square 
plane = 70.0 cm. 
 
 The second part of experimental validation takes a 
more realistic object � a mannequin head model as shown 
in Figure 7. Since we know the distance d between the 
inner corners of the left and right eyes is 32.2 mm, we use 
equation 6 and each intrinsic parameter function again to 
verify if zooming in at the face increases the accuracy of 
measurements and consequently verifying our proposed 
calibration method.  We placed the head model on two 
places: 1) 70 cm and 2) 120 cm and the distance between  



the two eye corners is tabulated as each zoom level is 
increased by 50. All throughout the verification, we use 
Case 2 technique discussed earlier. The experimental data 
recorded in Figure 8 shows that the error is almost 
approaching zero as the zoom level goes beyond 450. 
 

 
 

Figure 7. The head model showing the distance, d, 
between the inner corners of left and right eyes. 
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Figure 8. SSE vs. zoom level.  Solid line � 70 cm. Broken 
line � 120 cm. 

Conclusion  
We presented here an experimental platform for human-
robot interaction using active vision. Since we want to 
improve the performance of the vision system, we used 
zoom cameras instead of ordinary cameras to get more 
meaningful information on a wider area around the robot 
workspace. Using zoom cameras comes with a price of 
more complex camera modeling and thus we present a 
more practical calibration technique. Experimental results 
show that at higher zoom levels, SSE approaches near zero 
in many cases. Thus, verifying the validity of our and 
develop a head gesture detection algorithm to aid the robot 

proposed calibration method. In the future, we plan to 
integrate the eye gaze tracking made by Seeing Machines 
in learning from demonstration. 
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