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Abstract. One of the biggest obstacles facing humans and robots is the lack of means for nat-
ural and meaningful interaction. Robots find it difficult to understand human intentions since
our way of communication is different from the way machines exchange their information.
Our aim is to remove this barrier by creating systems that react and respond to natural human
actions. In this research, we present a robotic system that identifies and picks up an arbitrary
object in 3D space that a person is looking at. It is done through an active vision system that
is able to understand the focus of attention of a user. Whenever the person is close enough,
the gaze direction is determined and used to find the object of interest which is of unknown
size, shape and color. A robot arm responds by picking up this object and handing it over to
the person.

1 Introduction

Many present day robots are capable of performing ordinary and mundane human
tasks. The problem in many situations is that robots do not understand human
intentions. For example, a cleaning robot might struggle to comprehend its human
master giving the command: “Clean that spilled milk on the floor.” while pointing
and looking at the spilled milk. Although the robot is capable of accomplishing the
cleaning task required, it is dumb from the point of view of understanding the context
of the instruction. Speech understanding on its own is insufficient.

Our goal is to give robots the ability to see and understand humans by observing
natural actions. We use an active vision equipped with zooming cameras (see Figure
1). Using zoom stereo cameras mounted on a movable head gives the user the freedom
from wearing a tracking gadget and to move without restrictions. The active vision at
first developed the ability to transfer and maintain its focus of attention on any object
that is moving with color similar to human skin. This ability allows the tracking of
the hand or the face creating the impression to the user that the robot is highly
interactive and ready to receive commands. We then integrated a gaze tracking skill
based on a detection algorithm our group previously developed [9]. This allows a
robot to see where the user is looking at in 3D space (see Figure 1). By utilizing
the gaze information provided, the active vision detects when a person is staring
at an object and searches the gaze line to find this object of unknown shape, size
and color. With these skills, we developed a robotic system where an active vision
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Fig. 1. Active vision, its kinematic model and gaze direction vector
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Fig. 2. The active vision traces the gaze line from gaze point A to C to find the object (the
cup at gaze point B) using a zero-disparity filter for the robot arm to pick up. ������� and ���
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are the standard deviations of gaze yaw and pitch respectively. They are used to detect steady
gaze.

continuously tracks the face and gaze of a user. When the user focuses the gaze at
an object, its 3D location is determined and a robot arm (a Whole Arm Manipulator
or WAM) picks it up and hands it over. The scenario is illustrated in Figure 2. Such
a capability allows tasks as the cleaning robot example posed earlier possible.

When robotic systems can already hear and see people [4,6,11], we will find a
variety of robotic applications in our everyday tasks. For the remainder of this paper,
we discuss the background material on how our system was developed. The topics
include zoom camera calibration, active sensing, gaze tracking and interactive skills.
Experimental results are also presented.



2 Zoom Camera Calibration

Before any meaningful Euclidean measurements on world objects can be made by
the active vision, the zoom cameras must be calibrated first. A calibrated camera
describes how a 3D world point is related to the camera coordinate system (extrinsic
parameters) and how the camera coordinate system is related to image plane co-
ordinate system (intrinsic parameters). Numerous calibration procedures have been
proposed in the past two decades to measure the parameters of fixed-lens cameras
(see [13] for a survey of camera calibration techniques). For zoom cameras the
case is different. Due to the huge number of possible zoom-focus-aperture settings,
zoom camera calibration is much more tedious and time consuming. To make zoom
camera calibration more practical, we use Willson’s method [12] and assign one
focus setting for each zoom since for many practical purposes we only need one lens
setting that gives a sharp image. Each intrinsic parameter can be modeled as:

���������	��
���	�������	����� � ������� � �	������� (1)

where ��� = constant, � = focus and � = zoom using least squares techniques.
The camera parameters ��� and ��� are the focal lengths in pixel dimensions along
the � and � axes respectively,  � and  � are principal point coordinates also in pixel
dimensions, and ! 
 to ! � are the radial distortion coefficients. To model the changes
in the extrinsic parameters, the displacement of the camera center along the principal
axis is represented by a second-degree polynomial of � . For a detailed discussion,
please refer to our earlier work [1].

3 Active Sensing

In order to sense the human user, our active vision tracks any object that is moving
and has a color resembling human skin color. The detection of skin color is done by
comparing the chrominance of each representative pixel with a previously prepared
chrominance chart of skin images that are contributed from different persons [5].
The result of skin detection is the probability that a pixel is representing skin, �#" .
Motion detection uses optical flow techniques modified to include low-pass filtering
[8] and a measure of confidence value [10]. The effect of camera ego-motion is

also taken into consideration. The output is a flow vector $ �&%(' � ' �*),+ on each
image patch and its corresponding confidence value, �.- . These two visual cues are
combined using a Particle Filter [7] to generate an estimate of the most probable

location of the hand or the face in each image, /10(2 � % �3042��50(2 ) + . The scenario is
illustrated on the left of Figure 3. A measure of confidence value that /�042 is from a

hand or a face is proposed: � 0 �7698:�;=<�>�? :�@AB , where CED is the unnormalized weight
of a pixel having both motion and skin color and F is the number of particles used.
Using the centroid of the hand or face on each image, we can use triangulation in
space to estimate the position of the tracking target. The estimate is further improved



with Kalman Filtering. The final output is a smoothed measure of the hand or face

3D location: D����� � % � 0 � �50 � � 0 � ) + which is used in tracking. Since the depth of
the object being tracked is known, the zoom level can be adjusted to obtain high
resolution images at all times.
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Fig. 3. Left: Particles during face tracking ( circle = face centroid ) from the experiment in
Figure 6. Right: a) Stereo cameras directed at the gaze point, b) Coordinate systems assignment
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During tracking, we always maintain symmetrical configuration on our active
stereo cameras (i.e. �� � � 2 ��� ��� where ������� ). This results to a simple expression
for the inverse kinematics of the active vision as shown in Figure 3:�� ���� D��2
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�
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where ��� , � D and ��2 are the pan, tilt and camera axis rotation angles and % ��� � ),+
is the 3D gaze point. For a detailed discussion, please refer to our paper [3].

4 Active Gaze Tracking

We are using a gaze tracking algorithm called faceLab that our group has commer-
cialized [9]. The system works by tracking stable facial features such as eye and lip
corners. Based on the location of the iris, eye-gaze is determined. In the event that
the iris can not be tracked reliably, the head pose is used to estimate gaze. Since the
original algorithm was designed for a fixed stereo vision configuration, the camera
parameters must be adjusted in real-time to track the gaze using active vision. This
is possible since for certain zoom settings where the stereo pair is initially fully cal-
ibrated, moving to a new configuration requires changes in the extrinsic parameters
only. The new set of extrinsic parameters can be derived using Figure 4. For camera
A (camera B follows easily), the changes are made on the � and � components of<>=@?

, and on
<BA�?

only since the rotation from the default vergence angle is parallel
to camera A C axis. The new values are :

� �D�FEE < =@? EEHGJI % �LK � �MEE < =@? EE !$N G �LK�OQPHR < A�? � < ATS? A�U - � S � � 7 (3)
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where EE < = ? EE is assumed to be approximately equal to the known
EEE < = S? EEE at the

default vergence angle for practical purposes and
< A S?

is the known rotation matrix
at the default vergence angle position. When the extrinsic parameters are readjusted
in real-time, the active gaze tracking system generates the following measurements:
3D eye gaze direction (

���
), 3D head rotation (

� A��
) and translation (

���
) or 3D head

pose only while the gaze is estimated from
� � � % � � �	�3) + . Both measurements

when available are sampled in real-time (>30Hz) with a corresponding confidence
value, ��
 , and are expressed with respect to the fixed world coordinate system, � �
in Figure 1b.

Given
��� � % � � � � ��� ) + , the head origin with respect to � � , and

�� � �� �
% � � � � � � ) + , the gaze vector with respect to � � translated at the head origin, the
symmetric equations describing the 3D gaze line as shown in Figure 2 is:

� 
 � � �
�*� � � � � � 
 � � �� � � � � � � 
 � � �

� � � ��� (4)

where we define
���

as the origin ,
��� � ��

as the reference point and
% � 
 � 
 � 
 ) + as any point on the line. In view of searching the object where a person
is looking at, we can trace the gaze line by moving at an increasing distance, R ��� ,
away from the origin. The new gaze point in terms of world coordinates can be
determined to be:

�� � 
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(5)



where � � � ���
������ �
	 � �� �
	 � ���� ����� ��	 � �� ��	 � ���� . The choice of sign ensures that the search

moves toward the direction of
��� � ��� .

5 Interactive Skills

When the system detects steady gaze, it is concluded that the person is staring at
a certain object. This object can be found by searching along the gaze line and
triangulating in 3D space, thereby allowing the robot to pick it up. A steady gaze��� ���

is assumed whenever the running standard deviations of gaze yaw and pitch
are below a threshold:

� � ��� ���E��� ��� � � � OQPHR � � � D 2 � � � � ��  ! �"$#&%!')(+*
# , (6)

Both � ��� � and � � � D 2 � are computed from the gaze direction generated from �  � to  with a normalized gaze confidence value � 
 �  � (i.e. - DD � D � ��
 �  � � � ).
Using Equation 5 and a zero-disparity filter (ZDF), the object can be found along
the gaze line. In our paper [3], we proposed that the 3D position is at the gaze point
where the disparity between the left and right fovea is minimum (gaze point with
maximum cross-correlation between left and right images). This technique fails in
the scenario where the left and right cameras are both pointing at a blank wall. To
avoid this problem, we instead use a fast edge detector ( like a Laplacian ) and shift
both binarized edge images in the � -direction (horizontal) to find the maximum

correlation: . ��/1032 �54+6 D � � � PBK � �87 2 � � 
 � D � � ��9 K(� ��: ;=< -?> �&@BADC5E A;=< -?> �3�!@�ADCFE A!G , where 2 �H4�6 D
and 2 � � 
 � D are the left and right binarized edge images of the fovea respectively.
For speed of computation, the fovea is a rectangular sub-image centered at the
image center when P ��9 � � . The maximum amount of horizontal shift, I � " � � 6 D ,
approximates the threshold for the gaze yaw/pitch standard deviation. This is done
on gaze points along the gaze line. Using this method, the object is located at the
gaze point with maximum correlation. The centroids of the object on the left, / � , and
right, / � , images are computed from the shifted edge pixels that coincide. Since we
have fully calibrated stereo cameras, the object’s 3D position with respect to the left
camera can be estimated by triangulation: � J 0 � O=KT� � 
��L & KT�NM � A ��K�� ) , where the
constants O and L are computed from ��O � � O=K � � L & K � M � A � K � ) �QP � A � K � , �RO �
and � A � are the translation vector and rotation matrix respectively of the right camera

with respect to the left camera coordinate system, K � � % / � � ) + ( K�� � % / � � ) + )

and � is � � or � � . The object position, S ? <8T J 0� U � ? <8T = � � = � S �VJ 0�WU , is then

given to the WAM so it can pick up and hand over the object to the user.
=

is the
transformation matrix.
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6 Results and Discussion

The summary of operations of the active vision system is shown in Figure 5. The
summary describes how the active vision bootstraps itself when a user is located,
finds the object a user is staring at, and tells the robot arm to pick it up and to hand
it over. A demonstration on how the active vision gains attention through a waving
hand and then continuously tracks the user’s face is shown in Figure 6 (Processes A
and B in Figure 5). The active vision decides whether a hand or a face is present or
not is shown in Figure 7a (if � 0T� � , � , a user is present). Figure 7b shows the error
during tracking. The mean error during tracking is -15.48 pixels for the left image
(22.48 for the right image) while the standard deviation is 52.39 pixels (56.18 for the
right image) in the � coordinate. An interesting demonstration on how we instructed
a robot arm to pick up an object with a user steadily looking is shown in Figure 8
(Process C). At t = 2 secs, the user placed an object of unknown size, shape and color
on the robot workplace. At t = 10 secs, the user was staring at the object. A steady
gaze was detected and the object was searched along the gaze line as shown at t =
16 secs. Notice the upper left inset where the images from the cameras are shown.
Sometime around t = 28 secs, the object was identified and its 3D location is found.
The robot arm reacts, picks up the object and hands it over to the user ( t > 28 secs ).



Fig. 6. Active vision gaining attention and then tracking the user’s face.
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The experiment videos for a different user and a different object are available in our
website: http://www.syseng.anu.edu.au/rsl/rsl demos.html .

7 Conclusion

We have created a robotic system that reacts and responds to our natural gaze. It is a
step forward in our effort to make robots pervasive in dealing with our daily tasks.
When combined with other human natural means of communications, we hope to
see robots as an unrecognizable part of our daily lives.
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Fig. 8. Human-robot interaction experiment: A user instructs the WAM to pick up and hand
over the object he is looking at. The object of arbitrary size, shape and color is placed on an
unknown position in robot workplace. Upper left inset shows images from the cameras.


