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ABSTRACT

We have incorporated interactive skills into an active gaze track-
ing system. Our active gaze tracking system can identify an object
in a cluttered scene that a person is looking at. By following the
user’s 3-D gaze direction together with a zero-disparity filter, we
can determine the object’s position. Our active vision system also
directs attention to a user by tracking anything with both motion
and skin color. A Particle Filter fuses skin color and motion from
optical flow techniques together to locate a hand or a face in an im-
age. The active vision then uses stereo camera geometry, Kalman
Filtering and position and velocity controllers to track the feature
in real-time. These skills are integrated together such that they co-
operate with each other in order to track the user’s face and gaze
at all times. Results and video demos provide interesting insights
on how active gaze tracking can be utilized and improved to make
human-friendly user interfaces.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User Interfaces—

Interaction Syles; 1.4.8 [Computing Methodologies]: Image Pro-
cessing and Computer Vision, Scene Analysis—Tracking

General Terms
Algorithm, Human Factors, Measurement

Keywords

active gaze tracking, active face tracking, selecting an object in 3-D
space using gaze

1. INTRODUCTION

Gaze indicates where a person is looking and what is the focus
of attention (Figure 1). It is an effective means of conveying infor-
mation about objects a user is interested in. In this paper, we show
how we utilize gaze information to direct an active vision system
to search and identify the object a user is looking at. A typical sce-
nario is shown in Figure 2 where a person is looking steadily at an
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Figure 1: Gaze direction can be modeled by a 3-D vector origi-
nating from the user’s head

object. When a steady gaze is detected, the active vision traces the
gaze line to find the point of minimum stereo disparity where the
object is most likely positioned (Figure 3). The system is easy to
use and versatile since: 1) the user does not need to wear any spe-
cial device in order to measure eye gaze, head position and head
translation, 2) the user and the object with focus of attention can
be anywhere in free space since all computations are done through
a pair of calibrated zooming cameras mounted on the active head
and 3) no priori knowledge about the properties of the object is re-
quired other than it is small enough to fit in the field of view of the
predefined region of the fovea.

The level of interaction with the active vision increases when the
ability to direct attention to a potential user is added. By combining
motion and skin color, a person can bootstrap the active vision to
begin tracking using normal human activities such as by waving a
hand (as shown in Figure 4), walking about or sitting in front of the
system.

Although gaze tracking applications can already be found in ar-
eas like attentive user-interfaces [9], machine assisted driving [5],
game consoles, etc. [14], our objective here is to develop vision-
based interfaces that can make human-machine interaction more
effective and human-friendly. One experiment we envision to ac-
complish is directing a robot to pick an object in space by simply
looking steadily at it. Furthermore, since children at early ages
are known to develop their social skills by observing faces and by
tracking gaze directions [13], the basic skills presented here will
also find useful in building humanoid robots or machines that learn
how people do their tasks.

The rest of the paper describes the theory and results on the first
reported implementation of these new skills.

2. POINTING TOANOBJECT USING GAZE

In order to understand how to control the active vision to do
search in 3-D space, we first present a kinematic model of its mech-



Figure 2: A user looks steadily at an object (white cup) while
the active vision searches for it along the gaze line using a zero-
disparity filter (upper left inset)

anism on the special case where the camera rotation angles are
equal. A model of steady gaze is also formulated using statisti-
cal techniques. Steady gaze detects when a user is looking steadily
at a certain object in his/her environment. Once a steady gaze is
noticed, the active vision can use its kinematics and zero-disparity
filtering to follow the 3-D gaze line originating from the user’s head
and identify the object. Gaze following mimics our natural ten-
dency to look for a certain object another person is looking at by
searching it through the gaze direction. The dimensions of the ob-
ject being viewed are usually small compared to its depth from the
camera origin that an affine projection is assumed.

An important assumption in the rest of this paper is that in order
to do the above tasks, we already have a working active gaze track-
ing system that generates the following measurements: 1) 3-D eye
gaze direction (¥ @), 3-D head pose (“ Ry) and translation (“ H)
or 2) 3-D head pose and translation only while gaze is estimated
from*G = [0 0 —1]". Both measurements when avail-
able come in real-time (>30Hz) with a corresponding confidence
value, py, and expressed with respect to a fixed world coordinate
system, O,,. All measurements are made possible through real-
time readjustment of stereo camera parameters in the gaze tracking
algorithm of faceLab [14]. Since the head translation is known, the
zoom level is also adjusted automatically to maintain high image
resolution of the face at all times. For a more detailed discussion
on active gaze tracking, please refer to our earlier paper [1].

2.1 Kinematic Model of the Active Vision

The chief advantage of active vision systems over static stereo
configurations in tracking is their ability to position the left and
right cameras such that the object being viewed is always at the
center of the left and right images. Active vision systems can track
moving objects like a person’s face in 3-D space in real-time by
changing its configuration giving the user the freedom to move
without restriction. Here we investigate how we position the stereo
cameras such that both are directed to the same object as the gaze
point. In order to simplify the configuration and computation, we
assume that the left and right camera rotation angles are equal and
opposite in direction. The kinematic model computation described
is inspired by the work of Murray, et. al. [11].

Figure 3: The active vision traces the gaze line from gaze point
A to C to find the object (the cup at gaze point B) using a zero-
disparity filter. oyq. and opiscr are the standard deviations of
gaze yaw and pitch respectively that are used to detect steady
gaze.

Figure 4: A user waving his hand to gain the attention of the ac-
tive vision system (upper left inset shows images from the cam-
eras)

Figure 5: Active vision and its kinematic model
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Figure 6: a) Stereo cameras directed at a gaze point, b) Co-
ordinate systems assignment for a) when 6, = 6; = 0, and
¢) Relationship between pan and tilt coordinate systems when
6: #0.

Figure 5 is an illustration of our active vision system and its

equivalent kinematic model with all the coordinate systems attached.

All joints are rotational and has one degree of freedom each. Here,
we define the separation between left and right camera rotation axes
as the baseline &.

Most computations are made with respect to the rigid world co-
ordinate system, O,,. In most cases we are interested in the kine-
matics where the principal axes always intersect in a certain gaze
point as shown in Figures 6 aand b. For symmetry, we let; = —6,
where 6, > 0. To simplify our notation, we designate 6. = 6, as
the camera rotation angle. The forward kinematics for the general
configuration shown in Figure 6a can be computed if we first assign
intermediate transformation matrices that link coordinate systems
from world to one of the two cameras:

gT:[Ry(ep) 0 Rx (6) ©
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where 0" = [ 0 0 0 ]. We are interested in finding an ex-
pression for a general point “P = [ w Yuw 2w ]T in terms of
0p, 0:, and 6. which are measurable from the motor encoder read-
ings. From Figure 6b, “Pis'P=[ 0 0 b ]T . Note that
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this relation holds for any configuration where 6. > 0. Therefore:

bsinfyp cos by
2tan 6

wp ¢ lP —bsin §t
[ 1 ] :1; T ?T lT [ 1 ] = b cgstGapnc‘?()cs Ot . (2)
2tanf.

Equation 2 is the Forward Kinematics of the active vision mech-
anism with symmetrical camera rotation angles.

From Equation 2, we can derive the Inverse Kinematics giving
the necessary joint angles to position the gaze point in a certain
known world Cartesian coordinates:

arctan (2)
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where we drop subscript w for convenience.

The main purpose of the inverse kinematics equation is in gaze
following. Given a 3-D gaze line expressed in the world coordinate
system, we can search for the object by moving the gaze point along

the line using Equation 3. The situation is illustrated in Figure 3,
where the gaze point follows a straight line from gaze point Ato C.

2.2 Description of the 3-D Gaze Line

Before we can utilize the inverse kinematics in searching for the
object, we must have a formal representation of the 3-D gaze line.
Like the gaze point, the gaze line must also be represented in terms
of world coordinate system. Given “H = [ zo o 20 ]T, the
head origin with respect to world coordinate system, and “G +
YH=[z yr 2 ]T, the gaze vector described with respect
to world coordinate system translated at the head origin, we can
define the symmetric equations describing the gaze line:
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where we define “ H as the origin , “G + * H as the reference

point and [ 1 2 ]T as any point on the line. If we wished
to move a distance, d > 0, away from the origin, the new gaze
point in terms of world coordinates would be at:
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ensure that the point moves toward the direction of “G + “ H.

When the 3-D gaze line is traced, the gaze point is first moved a
certain distance (~15cm which is known as gaze point A in Figure
3) from *“ H hefore ZDF is applied. This ensures that the face is
not mistaken as the object being searched for. Furthermore, human
vision systems do not normally look at objects closer than this dis-
tance. ZDF then searches for the object until the end of the gaze
line segment is reached (~65cm from * H which is known as Point
C in Figure 3). Since we are using inverse kinematics to traverse
the gaze line, we chose a small increment d = 7.5mm to follow
the gaze line in order to generate a smooth motion and to avoid
missing the object.

2.3 Modeling Steady Gaze

Before we can initiate object search along the gaze line, we must
first know when a user’s gaze has stabilized. A steady gaze is as-
sumed whenever the running standard deviation of gaze yaw and
pitch go below a certain threshold. In equation form:

where zy = =. The choice of sign should

_ 1 Tyaw < Oyo and Opitch < 0po
5G = { 0 otherwise ©)

Both oyqw and o444 are computed from the gaze direction gen-
erated from ¢ — o to ¢t with a normalized gaze confidence value
pg(t) (ie. ELM pg(t) = 1). In our current setup, steady gaze
(SG) becomes true whenever the standard deviations of gaze yaw
and pitch fall below oo = 0,0 = 5° for the past to = 3secs.
It can be seen that SG becomes true quickly at higher thresholds.
However, the accuracy in determining the true gaze line suffers as
the threshold increases. o4 and opiscr are illustrated in Figure 3.

2.4 Zero-Disparity Filter

Once a steady gaze is detected, the object can now be searched
by looking along the gaze line. One technique that determines



whether an object is present at the gaze point is by using a zero-
disparity filter (ZDF) as proposed in [3]. It is known that objects
at or near gaze point appear with zero disparity between the left
and right fovea since they are of the same depth. Objects that ex-
hibit zero disparity lying on the horopter can be easily eliminated if
we apply a higher weight on disparity measurements at the fovea.
But instead of finding the minimum disparity of vertical edges be-
tween left and right images, we maximized the normalized cross-
correlation between the right and left fovea. The region of fovea
is defined as a circle with a certain radius » and with origin at the
image center. In human vision systems, fovea is the region in the
retina containing cones where vision has the highest resolution and
where the object with focus of attention is viewed. We define the
object 3-D position as the gaze point where:

_(E-5)- (I -1,
% =T - 5

is at maximum. I; and I, represent the left and right fovea’s
regions respectively. In our current setting, the radius of the fovea
is 100 pixels for 320-pixel x 240-pixel gray scale images.

We now have an active gaze tracking system that can track a
person’s head, generate gaze and head measurements and search
for the object a user is looking at when steady gaze is initiated.
But before presenting the results, we will discuss another important
skill. It is the ability of the system to bootstrap itself by setting its
focus of attention on things that are moving and with skin color.
This skill is also important in making sure that the face is always
tracked in times when the gaze tracking system fails to generate
head measurements.

0]

3. GAINING ATTENTION

A system that can respond to basic human behaviors such as mo-
tion creates an impression that it is highly interactive and easy to
use. Here, we describe how the active vision system is able to de-
tect motion in its surrounding and track the target in real-time time.
Since the system should only be interested in motion coming from
a person, we use skin color to filter out activity from other moving
objects. The effects on motion estimate due to camera ego-motion
is also taken into consideration. The measurement of motion and
skin color is done at the pixel level. For each pixel that we consider,
we assign: 1) a vector of motion flow estimate and its correspond-
ing confidence value and 2) a skin color probability. A modified
condensation or particle filter fuses these two visual cues together
to locate the object 2-D centroid. A method of determining the
probability that the object is a person is also formulated. To track
the object in real-time, its 3-D position is estimated from the 2-D
position of the object from each image. To generate a smooth out-
put, we use a Kalman Filter. Each axis controller then uses the 3-D
position to generate a command output.

3.1 Estimating Motion Using Optic Flow

We used the algorithm described in [12] to measure the flow
vector mean, v, and covariance, A. It is basically a weighted
version of the gradient-based method by Lucas and Kanade [8]
with a Bayesian probabilistic model used to include uncertainty
in the computation [15]. In order to generate a scalar confidence
value from the 2 x 2 Ay, we use the minimum Eigenvalue, Apin,
of A,~1. This is equivalent to decoupling the flow components.
Amin is then mapped into the probability range [ 0 1 ] by a con-
stant factor to generate a normalized confidence value, p,,. The fi-
nal output is a measure of the optical flow, iy = v =[ vz vy ]T

of the pixel (x,y) at the center of the image patch being considered,
and its corresponding probability value, p.,. In our experiment,
each 320 x 240 image is divided into 80 x60 image patches to
compute the optical flow in real-time.

3.1.1 Compensating for Camera Ego-Motion

Optical flow computation is much simpler if a static stereo cam-
era configuration is used. In our case, when the active vision starts
tracking an object, the motion of the camera itself (called ego-
motion) induces optical flow making the background scene indis-
tinguishable from an independent moving object. To determine the
object flow vector, we estimate the theoretical background scene
motion field and subtract it from the measured flow vector [10].
The object flow vector is therefore: v, = v — k,vs, Where vy =
vl 4+ v¥ is the background scene motion field and k&, is a constant
to account for computational time delays. If ||vo|| < vmin, the mo-
tion probability is set to 0 eliminating the background scene flow
components. However, computing the translational component vZ'
is difficult since the depth of the scene is unknown. Fortunately,
this can be neglected if the depth of the scene is larger than the
stereo camera baseline as shown in [12]. The problem then be-
comes straightforward since the rotational component, v, is only
dependent on the camera focal length determined from calibration
and on camera rotational speed. The camera rotational speed can
be computed by propagating link velocities from the pan to the left
camera coordinate system:

Wiz cos 0,6, + si_n 0 s_in gtép
wy | = cosifp +6; (8)
Wiz sin 6;0; — cos §; sin 6:6,,

. By replacing 6; with 8,., the right camera rotation vector can be
computed as well.

3.2 Measure of Similarity with Skin Color

In our earlier paper [1], we described a method to measure the
probability of a pixel with a certain RGB components is a skin
pixel. The method as proposed by Cai and Goshtasby [2] computes
the chrominance of every candidate pixel in a uniform color space
(CIE Lab). To calculate the probability of a pixel being a skin color,
it is compared to a previously prepared chrominance chart of skin
images from different persons. The comparison generates a skin
probability estimate of the pixel, ps. In our experiment, we use the
center pixel of every image patch in the motion flow computation
described previously to generate a dense skin probability measure.

3.3 Particle Filtering with Motion and Skin
Color

Once a measure of motion probability, p,,, and skin probabil-
ity, ps, for every pixel under consideration is available, it is now
possible to generate a hypotheses to track a moving skin colored
object. The first method we tried uses simple voting and biggest
region segmentation to determine the object to track. Since the
skin color detection algorithm is highly sensitive to camera color
settings, the centroid of the biggest skin region is unstable. Fur-
thermore, if a person is far from the camera, the size of the biggest
region with both motion and skin color becomes comparable to the
one generated by noise. The voting method does not provide an
adequate measure of probability that the object it is tracking is a
person. Although the second method is more complex and takes
more CPU resources, it does not suffer from the limitations of the
voting method. The second method uses the Particle Filter as pro-
posed by Isaard and Blake [6] to fuse motion and skin color cues
together.
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Figure 7: Old and new gaze point positions
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Figure 8: Top: Estimate of the stereo camera 3-D field of view
as shown by the intersection of the left and right camera field
of views. Bottom: Field of view on 2-D. The dimensions of field
of view are used in Kalman Filtering.

We consider NV particles to form the initial sample set. In the
prediction stage, we model our system as having a constant velocity
on each cycle. We assume that the measurement is corrupted by a
certain uniform zero-mean noise. The x component of the state of
the nth particle can be written as:

=[5 3w e ©

where z:—1 is the x pixel coordinate from the selection stage,
v¢—1 is the z-component of the velocity of the object being tracked
obtained from the optical flow computation and 7, is the uniform
zero-mean noise w pixels wide. The same model can be easily ob-
tained for the y component of the state. Similar to [7], we resample
only 90% of the particles to avoid the scenario where particles are
trapped in a surrounding fixture with color similar to skin. Further-
more, the new weight of the pixel with coordinate (z, y) obtained
from the prediction stage is determined by:

T = (Pm (1= am) + am) (ps (1 —as) + @) (10)

where 0 < a.,, s < 1 to prevent a pixel with zero motion or
skin probability from zeroing out the weight. In our experiment, we
used o, = as = 0.1 for N = 500 particles. As mentioned earlier,
we can generate a measure of confidence value to tell whether the
object being tracked is from a user or not. This is equal to p, =

N (n)
Zn=1Ti _|nour experiment, ap, > 0.1 indicates that a person is
being tracked. The object centroid is computed as the expectation
of the state after normalizing all weights such that Eff:l wt(") =1

N (n)__(n)
Poc = [ vor ] = | S a
Yoc Sy

3.4 Robust 3-D Tracking

The preceding section describes finding the 2-D coordinates of
the user in each image. To estimate the position in 3-D, we utilize
the camera intrinsic parameters and stereo camera configuration.
In our earlier paper [1], we reported a control algorithm to track a
skin colored object in real-time where camera rotation angles are
not necessarily equal. As mentioned earlier, we now restrict our
camera rotation angles to be symmetrical.

From this point, we assume all computations are done with re-
spect to O; where the object 3-D position can be easily visualized
from its top view (x — z plane). Figure 7 is the case when the object
moved to a new point located on the right half on both images. The
other three cases are not shown here but they easily follow. Since
the depth of the object being tracked is much larger than the camera
origin displacement from the rotation axis, we can assume that the
camera is rotating in its origin. From Figure 7 and our earlier paper
[1], the object 3-D position can be estimated as:

To —csinvy
tPP=| yo | = | 2otand (12)
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, i = arctan (m“}—;%) 6, and 8; can be measured from the mo-
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Figure 9: General behavior of the active gaze tracking system
when the attention and object searching skills are integrated

tor encoder readings, 8 = arctan (%)
y

Pocr = [ Tocr Yoer ]T is the object 2-D centroid as com-
puted earlier on the right image (po.; is for left image), w x h is
the image dimension and f; (fy) is the focal length in z(y) pixel
coordinate determined from camera calibration. The expression
Yeert¥oat =P i the equation for 6 ensures that two rays from the
each camera center going through the object 2-D centroid on left
and right images intersect in 3-D space. It is equivalent to setting
the y-coordinate of left and right images 2-D centroid to their mean
value.

To generate a smooth output for velocity and position control,
¢P’ is passed through a Kalman Filter. We treat ‘P’ as having
three independent components moving at a constant velocity. The
general form of the dynamic system for the z component using the
notation in [4] is:

welz]( [ [ 0)

At 1AL
2
v %Ats At
shown in [12]. The measurement model for the  component is
given by:

where the process covariance Q = ] as

m~N([1 0]x, 02, ) (14)

where the measurement standard deviation is half of the approx-
imate width of the field of view as shown in Figure 8. Therefore,
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Figure 10: Top: Active vision gaining attention and tracking
the face. Bottom: Particle filters as shown in the inset ( circle =
face centroid)
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Figure 11: Confidence value (face is present) vs time
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Figure 13: Depth of the person being tracked before and after
Kalman Filtering vs time

The y and z components follow similarly and are given the same

process covariance. From Figure 8, the measurement standard de-
o . ] e

viations are given by: oy = ﬁ and

Omz = & (tan (y + 6) — tan (y — 6)) where § = arctan (%)
and y = arctan (QZT")

The output of the Kalman Filter is a smoothed measure of the
object 3-D location, ‘Py, = [ Tok Yok Zok ]T. The command
output of the pan axis velocity controller is directly proportional

to arctan (”‘”“) (arctan (y"’“) for tilt axis). The rotation angles

Zok Zok
are now determined by 6, = arctan (L) and directly used as

2Zok
the position command output.
Results from the experiments performed to validate the perfor-
mance of the new interactive skills are discussed next.

4. RESULTS AND DISCUSSION

The summary of the activity of the active vision system is shown
Figure 9. It generally describes how the two skills come together to
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Figure 14: Gaze and yaw pitch standard deviations vs time
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Figure 15: Normalized cross-correlation along 3-D gaze line vs
time

bootstrap the active vision and search the object a user is looking
at. The activity starts with the active vision in the default position.
Once an object with both motion and skin color is present, tracking
starts ( Process A ). Eye gaze, head rotation and head translation
are calculated whenever possible. If the gaze and head information
is available, it supersedes the motion and skin color information
and used instead to track the user more accurately ( Process B ).
Once a steady gaze is detected, the object with focus of attention is
searched. After showing the user the object the system has found,
the gaze point is transferred back to the position where the face was
last seen ( Process C ). One of the videos of the experiments done
is submitted with this paper. All active gaze tracking videos can be
found in: http://www.syseng.anu.edu.au/rsl/rs|_demos.html . The
details of the results are discussed next.

4.1 Robust 3-D Tracking

The first experiment verifies our robust tracking algorithm (Pro-
cess A in Figure 9). Figure 10 shows snapshots from the time the
active vision is: 1) idle at the default position (0 sec), 2) gaining
focus of attention (15 secs), and 3) tracking (>22 secs). Figure 11
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Figure 17: ZDF images along the gaze line (circle = fovea)

shows the confidence value to indicate when a person is present or
not. For time less than 10 secs, the active vision is not tracking
since the probability that a person is present is below a threshold.
The time between 10 and 71 secs is when the active vision starts
gaining attention and then continuously tracking the user’s face.
After 71 secs, the person disappeared and the active vision returns
to its default position. The effectiveness in zeroing out positional
error in the horizontal direction is shown in Figure 12. During
tracking, the mean error of the face centroid is -15.48 pixels for
the left image (22.48 for the right image) while the standard devia-
tion is 52.39 pixels (56.18 for the right image) in the z coordinate.
We believe that the mean and standard deviation will improve by
tuning our controllers. The smoothing effect of Kalman Filter on
depth measurement is shown in Figure 13. Experiment shows that
if Kalman Filter is not applied, tracking is not possible since all axis
controllers become unstable due to oscillations in the 3-D position
estimate.

4.2 Pointing to an Object Using 3-D Gaze

In this experiment, a user is sitting in front of the active vi-
sion system while looking steadily on an object (a white cup) he

is holding as shown in Figure 2 (Processes B and C in Figure 9).
As shown in Figure 14, time less than 8.5 secs was spent tracking
the user’s head and gaze while waiting for the standard deviations
of gaze yaw and pitch to go below their threshold (5°) to initiate
steady gaze. Time between 8.5 to 10 secs was spent transferring
the gaze point from the user’s face to Point A in Figure 3 (~15cm
along the gaze line). The search for the object started at 10 secs
and lasted until 21 secs as shown in Figure 15 where the maxi-
mum cross-correlation equal to 0.72 (minimum disparity) is found
at 15.9 secs. This gaze point of minimum disparity is recorded as
shown in Figure 16. Some camera images along the gaze line are
shown in Figure 17. The scene with minimum disparity is shown
at 22 secs after the search is completed. In our future experiment,
we intend to segment this object at the scene of minimum disparity
to validate the accuracy of the search. After finding the object, the
attention is again transferred to the user.

5. CONCLUSION

We demonstrated a unique experiment where a user can direct
the active vision to search for the object with focus of attention. It
is a step forward in making human-machine interaction more simi-
lar to human-human interaction. We envision to perform an exper-
iment where a robot can be directed to pick up objects using the
user’s gaze.
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