
Journal of Robotics & Autonomous Systems (RA&S), special issue on Field & Service Robotics

AN ARCHITECTURE FOR DISTRIBUTED COOPERATIVE-PLANNING

IN A BEHAVIOUR-BASED MULTI-ROBOT SYSTEM

David Jung and Alexander Zelinsky
Robotic Systems Laboratory,

Department of Systems Engineering
Research School of Information Sciences and Engineering,

The Australian National University,
Canberra, ACT 0200, Australia

http://wwwsyseng.anu.edu.au/rsl/

Abstract

The Architecture for Behaviour-Based Agents
(ABBA) is an architecture designed to illustrate
that situated agents can exhibit sophisticated
planning while retaining reactivity, without
resorting to hybrid architectures. In particular,
unified planning for spatial and topological
navigation, cooperation and communication can
be achieved using an appropriate action-
selection scheme. Joint-planning of cooperative
behaviour in a multi-robot system arrises as a
natural consequence of considering cooperative
planning as an extension of the action-selection
problem facing individual agents. This paper
describes ABBA and illustrates the efficacy of
our approach by presenting a solution to a
cooperative cleaning task with two autonomous
mobile robots.

Keywords: ABBA, Cleaning, Action selection,
Distributed planning, Navigation,
Cooperation, Communication

1. INTRODUCTION

Research into multi-robot systems is driven by the
assumption that multiple agents have the possibility to solve
problems more efficiently than a single agent does. Agents
must therefore cooperate in some way. There are many
tasks for which a single complex robot could be engineered;
however, in many cases there are advantages to using
multiple robots. A multi-robot system can be more robust
because the failure of a single robot may only cause partial
degradation of task performance. In addition, the robots can
be less complex since each is only responsible for partial
fulfilment of the task. Our philosophy is to design
heterogeneous multi-robot systems where appropriate.

Most approaches to cooperation in multi-robot systems
consider the control of individual robot behaviour
separately from the cooperative group behaviour. The
cooperative robotics community often places an implicit
artificial divide between designing the behaviour of a single
agent and design of group behaviour. Some systems use
planners for individual behaviour, but design group
behaviour to be emergent, or vice versa
(eg. [Noreilis, 1992; Le Pape, 1990]). Other schemes use
different planning mechanisms for individual and group

action selection, such as employing plan merging or
negotiation to modify the plans of a single agent to
accommodate the global goals (eg. [Alami et al., 1995;
Dudek et al., 1995; Heikkilä and Matsushita, 1994]).
Designing both individual and group behaviour to be
emergent is common in the collective robotics community
(eg. [Parker, 1998; Matariþ, 1995; Kube and Zhang, 1994;
Arkin and Hobbs, 1992b]). We believe that, not only can
situated agents have goals, but they can also exhibit a
sophisticated planning ability, at both individual and
cooperative levels. This can be achieved in behaviour-
based systems while retaining reactivity, in a unified
manner and without the need for hybrid systems.

Little research considers cooperative planning as an
extension of the action-selection problem facing individual
agents. We have developed our Architecture for
Behaviour-Based Agents (ABBA) to provide an action
selection substrate that can naturally accommodate
cooperation. In particular, ABBA provides a distributed
planning capability, that in conjunction with task specific
mechanisms can achieve cooperative joint-planning and
communication in heterogeneous multi-robot systems. To
drive the design requirements and to illustrate the efficacy
of our approach, we have used ABBA to implement a
solution to a concrete task with real mobile robots.

This paper first describes the ABBA architecture and
the mechanisms we developed for spatial and topological
navigation, cooperative planning and communication. This
is followed by a description of the component behaviours
and a solution to the task that uses ABBA and afore
mentioned mechanisms.

Figure 1 – The two Yamabicos ‘Flo’ and ‘Joh’

2. COOPERATIVE CLEANING

The task chosen was for our two autonomous mobile robots
to clean the floor of our laboratory. The ‘Yamabico’ robots
[Yuta et al., 1991] shown in Figure 1 are heterogeneous in
the sense that each has different tools and sensors such that
neither can accomplish the task alone. In fact, the task was
contrived so that this was the case.

One of the robots, ‘Joh’, has a vacuum cleaner that can
be turned on and off via software. Joh’s task is to vacuum
piles of litter from the laboratory floor. It cannot vacuum
close to walls or furniture. It has the capability to ‘see’
piles of litter using a CCD camera and a video transmitter
that sends video to a Fujitsu MEP tracking vision system.
The vision system is capable of landmark-based navigation
and can operate safely in dynamic environments at speeds
up to 600mm/sec [Cheng and Zelinsky, 1996]. The vision
system uses template correlation, and can match about 100
templates at frame rate. The vision system can
communicate with the robot, via a UNIX host, over radio
modems.

The other robot, ‘Flo’ , has a brush tool that is dragged
over the floor to sweep distributed litter into larger piles for
Joh to pick-up. It navigates around the perimeter of the
laboratory where Joh cannot vacuum and deposits the litter
in open floor space.

The task is to be performed in a real laboratory
environment. Our laboratory is cluttered and the robots
have to contend with furniture, other robots, people,
opening doors, changing lighting conditions and other
hazards.

3. THE ABBA ARCHITECTURE

We have divided the implementation of our cooperative
robot system into two parts. ABBA itself is a task
independent substrate that supports learning, action
selection and iconic and indexical reference in an integrated
manner. It serves as a framework within which simple
behaviour and other more sophisticated mechanisms can be
embedded – such as navigation, planning, cooperation and
communication. The second part consists of the task
specific behaviour and afore mentioned mechanisms. This
section introduces ABBA in broad terms. An explanation
of how these higher-level mechanisms were implemented
using ABBA is given toward the end of the paper, after
describing some low-level behaviour.

3.1 Action selection

One of the first problems we need to address in an
architecture is how we will answer the “what do I do next?”
question – the action selection problem. We needed to
design an action selection mechanism that is distributed,
grounded in the environment (situated), and employs a
uniform action selection mechanism over all behaviour
components. Because the design was undertaken in the
context of cooperative cleaning, we also required the
mechanism to be capable of cooperative behaviour,
navigation and communication. Each of these requires
some ability to plan. This implies that the selection of
which action to perform next must be made in the context of
which actions may follow – that is, within the context of an

ongoing plan. In order to be reactive, flexible and
opportunistic, however, a plan cannot be a rigid sequence of
pre-defined actions to be carried out. Instead, a plan must
include alternatives, have flexible sub-plans and each action
must be contingent on a number of factors. Each action in a
planned sequence must be contingent on internal and
external circumstances including the anticipated effects of
the successful completion of previous actions. Other
important properties are that the agent should not stop
behaving while planning occurs and should learn from
experience.

There were no action selection mechanisms in the
literature capable of fulfilling all our requirements. As our
research is more concerned with cooperation than action
selection per se, we adopted the most appropriate
mechanism and modified it to suit.

Around 1990, Pattie Maes proposed a unique solution
to the action selection problem that satisfies many of our
criteria [Maes, 1990a]. Her theory “models action selection
as an emergent property of an activation/inhibition
dynamics among the actions the agent can select and
between the actions and the environment”. We have
adapted and improved her spreading activation algorithm
for the action selection mechanism in ABBA.

3.2 Components and Interconnections

The behaviour of a system is expressed as a network that
consists of two types of nodes in ABBA –
Competence Modules and Feature Detectors. Competence
modules (CMs) are the smallest units of behaviour
selectable, and feature detectors (FDs) deliver information
about the external or internal environment. A CM
implements a component behaviour that links sensors with
actuators in some arbitrarily complex way. Only one CM
can be executing at any given time – a winner-take-all
scheme. A CM is not limited to information supplied by
FDs – the FDs are only separate entities in the architecture
to make explicit the information involved in the action
selection calculation.

The graphical notation is shown below where
rectangles represent competence modules and rounded
rectangles represent feature detectors. Although there can
be much exchange of information between CMs and FDs
the interconnections shown in this notation only represent
the logical organisation of the network for the purpose of
action selection.

FD

FDCM

s:.98

p:.82

s:.82 c:.87

CMp:.98CM

FD

Key:

(sucessor, predecessor or conflictor)

+ve Correlation

-ve Correlation

Activation Link

Precondition

.82

.98

-.87

Figure 2 - ABBA Network components and interconnections

Each FD provides a single Condition with a
confidence that is continuously updated from the
environment (sensors or internal states). Each CM has an
associated Activation and the CM selected for execution has

the highest activation from all Ready CMs whose
activations are over the current global threshold. A CM is
Ready if all of its preconditions are satisfied. The
activations are continuously updated by a spreading
activation algorithm.

It is important to note that although ABBA seems to
make an arbitrary Cartesian style division between sensing
and acting (FDs and CMs), that this is not necessarily so.
Feature detectors can deliver conditions based in the
internal state of CMs as well as conditions based on
sensors. This is analogous to saying that CMs can operate
by effecting FDs as well as actuators.

Care should be taken to ensure feature detectors are
written to deliver information from sensors as directly as
possible, rather than from any internal representation of an
anthropomorphic category.

The network designer needs to be mindful that the
dynamics of a multi-robot/environment system has no a
priori boundaries. The boundaries can be redrawn as
appropriate for thinking about the system dynamics to
include arbitrary portions of robot and environment
behaviour. A single network may describe part of a robot-
environment interaction, or possibly a whole multi-robot-
environment system.

The system behaviour is designed by creating CMs
and FDs and connecting them with precondition links.
These are shown in the diagram above as solid lines from a
FD to a CM ending with a white square. It is possible to
have negative preconditions, which must be false before the
CM can be Ready. There also exist correlation links,
dotted lines in the figure, from a CM to a FD. The
correlations can take the values [-1…1] and are updated at
run-time according to a learning algorithm. A positive
correlation implies the execution of the CM causes,
somehow, a change in the environment that makes the FD
condition true. A negative correlation implies the condition
becomes false. The designer usually initialises some
correlation links to bootstrap learning.

Together these two types of links, the precondition
links and the correlation links, completely determine how
activation spreads thought the network. The other
activation links that are shown in Figure 2 are determined
by these two and exist to better describe and understand the
network and the activation spreading patterns. The
activation links will feature in the description of the
spreading activation algorithm in the following section, and
are determined as follows.

• There exists a successor link from CM p to CM s
for every FD condition in s's preconditions list
that is positively correlated with the activity of p.

• There exists a predecessor link in the opposite
direction of every successor link.

• There exists a conflictor link from CM x to CM y
for every FD condition in y's preconditions list
that is negatively correlated with the activity of x.

The successor, predecessor and conflictor links
resulting from the preconditions and correlations are shown
in Figure 2.

In summary, a CM s has a predecessor CM p, if p’s
execution is likely to make one of s’s preconditions true. A

CM x has a conflictor CM y, if y’s execution is likely to
make one of x’s preconditions false.

3.3 The Spreading of Activation

Before a rigorous description of the spreading activation
algorithm, we’ll present an overview with an example to get
a feel for how it works. The figure below shows a toy
example from Maes’ paper, re-expressed as an ABBA
network.

Pickup
Sander

Putdown
Sander

sander-
in-hand

hand-
empty

sander-
on-table

Sand
board

GOAL:
board-sanded

Figure 3 – Maes’ Sand Board example in ABBA

The goal is for a board to be sanded using a sander. The
possible actions (CMs) are picking up or putting down the
sander and sanding the board. The FDs sense three
conditions from the situation – whether the sander is on the
table or in hand and if the hand is empty.

The figure only shows the precondition (solid) and
correlation links (dashed). Only the precondition links must
be assigned during the network design. Although the
correlations are often initialised to sensible defaults, in
theory they could be learnt from experience by the
algorithm. While there are many links in the notation, they
are quite straightforward. Clearly, sand-board requires
sander-in-hand as a precondition, with which
pickup-sander is correlated. Putdown-sander requires
that both hand-empty and sander-on-table are false as
preconditions and is correlated with both.
Putdown-sander is also negatively correlated with
sander-in-hand, and so on. The goal is also explicitly
represented.

The scheme for spreading the activation follows the
algorithm proposed by Maes. The spreading activation
algorithm injects activation into the network via goals and
via FDs whose conditions are true. Therefore, as
sand-board can satisfy the goal – according to the
correlation link – its activation is increased by the goal.
CMs cannot execute if not Ready – if one or more
preconditions hasn’t been met. A CM that is not ready
increases the activation of those CMs that can satisfy any of
its preconditions (and decreases activation of those that can
undo any of its preconditions). The quantity depends on its
own activation level and total activation is not conserved.
In this case, sand-board will increase the activation of

pickup-sander and decrease the activation of
putdown-sander – as they are positively and negatively
correlated with sander-in-hand, respectively. A CM
with its preconditions satisfied feeds activation forward
instead – so pickup-sander increases the activation of
sand-board. However, pickup-sander will very
quickly be the first CM to reach the activation threashold
and, having the highest activation, will be selected for
execution. Upon execution, a CM’s activation is reset to
zero. Hence, sand-board will be next in line for execution.
The algorithm also increases the activation of CMs that
have true preconditions – so the network favours CMs with
preconditions matching the current situation.

Rather than following all these links around, the flow
of activation can be seen more clearly using the activation
links. Recall that the activation links are wholly determined
by the preconditions and correlation links. Figure 4 shows
the activation links – except for successor links. There is
one successor link for every predecessor link, but in the
opposite direction.

sander-
in-hand

hand-
empty

sander-
on-table

GOAL:
board-sanded

Sand
Board

P C

P

P
Putdown
Sander

Pickup
Sander

Figure 4 - Sand Board example - activation links

The activation rules can be more concisely described in
terms of these activation links. The main spreading
activation rules can be simply stated:

• Unready CMs increase the activation of
predecessors and decrease the activation of
conflictors, and

• Ready CMs increase the activation of successors.

In addition, these special rules change the activation of the
network from outside in response to goals and the current
situation:

• Goals increase the activation of CMs that can satisfy
them and decrease the activation of those that
conflict with them, and

• True FDs increase the activation of CMs that have
them as a precondition.

There can be only one executing CM at any given time –
the CM with the highest activation over a threshold, that is
ready, is selected. After a CM completes execution, its
activation is reset to zero.

From the rules we can imagine activation spreading
backward through a network, from the goals, through CMs

with unsatisfied preconditions via the precondition links
until a ready CM is encountered. Activation will tend to
accumulate at the ready CM, as it is feeding activation
forward while its successor is feeding it backward.
Eventually it may be selected for execution, after which its
activation is reset to zero. If its execution was successful,
the precondition of its successor will have been satisfied
and the successor may be executed (if it has no further
unsatisfied preconditions). We can imagine multiple routes
through the network, activation building up faster via
shorter paths. These paths of higher activation represent
‘plans’ within the network. The goals act like a ‘homing
signal’ filtering out through the network and arriving at the
current ‘situation’.

One important different between ABBA and Maes’
networks is that in ABBA the activation links depend on the
correlations – which are updated continuously at run-time
according to previous experience. Maes’ networks are
static. If, for example, repeated activation of
pick-up-sander failed to cause the condition
sander-in-hand, then the correlation between them
would be eroded eventually eliminating the predecessor
link. Hence, activation would flow via a different route to
satisfy the goal (although there are no other alternatives in
this example). The mechanism that ‘learns’ the correlations
is detailed below. Another difference is that the quantity of
activation spread between CMs depends not only on the
network parameters, as in Maes’ networks, but also on the
strength of correlations and the confidence of conditions. A
detailed specification of the rules and the algorithm follows.

The Rules

The system proceeds in discrete time-steps. At each step
some activation is injected into the system, removed from
the system, and re-distributed within the system according
to the rules below. There are a number of global
parameters used to tune the dynamics of the system:

π - The mean level of activation

θ - Threshold for becoming active (CM becomes
active, if ready and A > θ)

γ - Activation injected by a goal to be achieved
δ - Activation removed from conflictors to goals that

need to remain achieved
φ - Activation injected by a feature detector whose

condition is true (C > T)
T - The confidence threshold. A condition with

confidence c > T is considered true.
R - The correlation threshold. A correlation

coefficient c > R is considered positively
correlated.

(and c < -R is considered negatively correlated)

The first three rules determine how the network is
activated and inhibited from external sources, such as the
current situation as perceived by the set of FDs that output
conditions, and the global goals of the agent.

1. ACTIVATION BY THE SITUATION

 Feature detectors (FDs) that output a condition c
spread activation to any CM whose precondition set
contains c, if c is true. The activation sent to a CM is

(C.φ)/n where n is the number of CMs whose
precondition sets contain c, and C is the confidence of
the condition. When a CM receives activation from a
FD it is divided by the number of conditions in it’s
precondition set.

2. ACTIVATION BY GOALS

 An external goal is represented by a condition c (as
output by a FD) that must be achieved. There are two
types of goals, once only goals, which need only be
achieved once, and permanent goals, that once
achieved need to be maintained.

 A goal increases the activation of the CMs that are
correlated with it’s condition c by (W.γ)/n, where n is
the number of CMs activated by this goal, and W is
the correlation between any particular CM and the
condition c. When a CM receives activation from a
goal it is divided by the count of predecessor links and
activating goals for this CM, except that predecessor
links or activating goals that share their defining
condition are counted only once for each condition.

3. INHIBITION BY PERMANENT GOALS

 A permanent goal is an external goal that once
achieved, must remain achieved. A goal inhibits CMs
that are negatively correlated with it’s condition c by
(W.δ)/n, where n is the number of CMs inhibited by
this goal, and W is the negative of the correlation
between any particular CM and the condition c. When
a CM receives inhibition from a permanent goal it is
divided by the count of conflictor links and inhibiting
goals for this CM, except that conflictor links or
inhibiting goals that share their defining condition are
counted only once for each condition.

 The next three rules determine how activation is
spread within the action selection network. They are
analogous to the preceding three rules in the following
manner. If a CM p is a predecessor of a CM s, then s
treats p as a sub-goal by feeding activation backward to p
until the condition in s’s precondition set to which p is
correlated becomes true, as long as s is inactive.

 If a CM p is ready or active, then it feeds activation
forward to all successor CMs whose precondition sets
contain a condition c to which p is correlated, as long as c
is false. This predicts or primes the successor CMs to be
ready for when the CM p achieves it’s result and becomes
inactive again. It is analogous to activation by the current
situation.
 A CM x will inhibit all conflictors for which there
exists a negatively correlated condition c which is in the
precondition set of x, as long as c is true. This is
essentially treating conflictors as if they are permanent
goal conflictors of CM x’s preconditions.

4. ACTIVATION OF SUCCESSORS

 A ready or active CM p sends activation forward to all
successor CMs s for which the defining condition c to
which p is correlated (which is in the precondition set
of s), is false (the FD condition c’s confidence C < T).

If A is the activation of p, then the activation sent to a
successor CM s is (A.(φ/γ).W)/n, where W is the
successor link weight (correlation of p to c) and n is
the number of successor links from p for condition c.
When a CM s receives activation from a predecessor
CM, the activation is divided by a count of the number
of successor links to s, except that successor links that
share their defining condition are counted only once
for each condition.

5. ACTIVATION OF PREDECESSORS

 An inactive CM s sends activation backward to all
predecessor CMs p for which the defining condition c
to which p is correlated (which is in the precondition
set of s), is false (the FD condition c’s confidence
C < T). If A is the activation of s, then the activation
sent to a predecessor CM p is (A.W)/n, where W is the
predecessor link weight (correlation of p to c) and n is
the number of predecessor links from s for condition c.
When a CM p receives activation from a successor
CM, the activation is divided by the count of
predecessor links and activating goals for this CM,
except that predecessor links or activating goals that
share their defining condition are counted only once
for each condition.

6. INHIBITION OF CONFLICTORS

 A CM x inhibits all conflictor CMs n for which the
defining condition c to which n is negatively
correlated (which is in the precondition set of x), is
true (the FD condition c’s confidence C > T), and there
is no inverse conflictor link from n to x that would be
stronger. If A is the activation of x, then x inhibits
conflictor CM n by (A.(δ/γ).W)/n, where W is the
conflictor link weight (negative the correlation of n to
c) and n is the number of conflictor links from x for
condition c. When a CM n receives inhibition from a
CM with which it conflicts, it is divided by the count
of conflictor links and inhibiting permanent goals for
this CM n, except that conflictor links or inhibiting
goals that share their defining condition are counted
only once for each condition.

Learning

The network can learn from experience by modifying
the flow of activation by change the correlation links at run-
time. The mechanism for adjusting the correlation between
a given CM-FD pair is simple. Each time the CM becomes
active, the value of the FD’s condition is recorded. When
the CM is subsequently deactivated, the current value of the
condition is compared with the recorded value. It is
classified as one of: Became True, Became False,
Remained True or Remained False. A count of these cases
is maintained (Bt, Bf, Rt, Rf). The correlation is then:

corr
B R

N

B R

N
t t f f=

+
−

+() ()2

2

2

2

Where the total samples N B B R Rt f t f= + + +

At each update the counts are decayed by multiplying with
N/(N+1) so that recent samples have a greater effect than

historic ones. This keeps the network plastic.

The Algorithm
The action-selection mechanism proceeds by iterating

the above spreading rules and selecting the CM with the
highest activation above the threshold θ, from the set of
ready CMs. A CM is ready if all of its preconditions are
satisfied. If there are no ready CMs above the threshold
then the threshold is decreased by 10%. The correlations
between CMs and FDs are also updated according to the
equation above when the active CM changes.

Maes has shown that with these rules the network
exhibits a planning capability. The amount of goal-oriented
verses opportunistic behaviour can be tuned by varying the
ratio of γ to φ. This spreading activation results in CMs
being selected according to a current plan, which is
represented by the current activations of the CMs.
Activation builds up along the path of CMs that lead to the
goal because of the spreading forward from the FDs
representing the current situation, and spreading backward
from the goals. Conflicting goals or sub-goals inhibit each
other via the conflictor rules. There may be multiple paths
between a current situation and a goal, but the next
appropriate behaviour (CM) on the shortest path will obtain
greater activation first. This allows for contingency plans
because if a CM fails to perform as expected the correlation
between its execution and the expected outcome will fall
until the next best plan comes into effect. The next best
plan, or next shortest path from situation to goal, will
already have been primed with activation. The network will
never be caught in a loop performing ineffective behaviour
if there are alternative solutions.

3.4 Example

The network in Figure 5 is an early implementation of
Flo’s litter sweeping and dumping behaviour as it appears
on-screen. The solid lines represent the preconditions that
are programmed to give the desired behaviour. The dashed
lines represent correlations between the execution of a CM
and its effect on the environment in terms of FDs. These
are learnt during run-time, however it is useful to initialise
them to speed learning, or to manually activate certain
behaviours to force the robot into situations where the
correlations will be recognised.

The activation links that result from the precondition
and correlation links shown in Figure 5 are shown in Figure
6 below. For example, Follow is a successor of
ReverseTurn (and hence the later is a predecessor of the
former). Because when Flo is following along a wall its
behaviour alternates between Follow and DumpLitter,
these CMs feed activation forward to each other via
successor links. Since DumpLitter has the Timer
expiration as a precondition and Follow has this as a
negative precondition (see Figure 5), the state of the Timer
effectively alternates these behaviours. Remembering that a
CM cannot become active until all of its preconditions are
satisfied. Follow is also a conflictor of DumpLitter
because Follow requires an ObstacleOnLeft – a wall to
follow, and DumpLitter is negatively correlated with this
condition because it drives the robot away from the wall.

Figure 5 - Simple sweep and dump ABBA network

The network causes Flo to Follow walls hence
sweeping up litter, until a fixed period Timer expires
causing it to DumpLitter into a pile. It can also crudely
navigate around corners and obstacles by repeated reversing
and turning or stopping. The top-level goal is Cleaning.
The Stop behaviour is activated as a hard-wired reflex
upon FrontHit becoming true.

Figure 6 - Activation links of sweep and dump network

3.5 The Implementation

ABBA has been implemented as approximately 36000 lines
of C++ code, including robot behaviours. Because code
was developed to run on three different platforms, a
Platform Abstraction Layer (PAL) was developed over
which the rest of the system was layered. The PAL has
been implemented over the VxWorks1 operating system for
use on our vision system, UNIX and the robot’s custom
operating system – MOSRA. The next layer provides an
object-oriented framework for managing and
interconnecting architecture units. The top layer enforces
the particular paradigm – in this case the spreading
activation rules and constraints on interconnecting FDs and
CMs.

OSNetwork

Layer 1 - PAL
Layer 2 - Structural

Layer 3 - Paradigm

Figure 7 - ABBA Implementation architecture

1 From Wind River Systems, Inc.

A Graphical User Interface was also developed to aid
visualisation and the manual activation of behaviour
sequences to help direct exploration and hence learning. In
order to guarantee the real-time response of the network the
feature detector conditions are updated at a fixed frequency
(around 100Hz in our current implementation). The active
CM is also iterated at this frequency. The spreading
activation rules are applied asynchronously, so the effective
frequency varies depending on the number of nodes and
other processes running on the robot’s main CPU.

4. NAVIGATION

Once we have a general action-selection scheme to plan
behaviour, we need a method for using this to plan
navigation. This section briefly describes the method we
have developed.

There are two main approaches to navigational path
planning. One method utilises a geometric representation
of the robot environment, perhaps implemented using a tree
structure. Usually a classical path planner is used to find
shortest routes through the environment. The distance
transform method falls into this category [Zelinsky
et al., 1993]. These geometric modelling approaches do not
fit with the behaviour-based philosophy of only using
categorisations of the robot-environment system that are
natural for its description, rather than anthropomorphic
ones. Hence, numerous behaviour-based systems use a
topological representation of the environment in terms only
of the robot’s behaviour and sensing (eg. see
[Matariþ, 1992]). While these approaches are more robust
that the geometric modelling approach, they suffer from
non-optimal performance for shortest path planning. This is
because the robot has no concept of space directly, and
often has to discover the adjacency of locations.

Consider the example below, where the robot in (a)
has a geometric map and its planner can directly calculate
the path of least Cartesian distance, directly from A to D.
However, the robot in (b) has a topological map with nodes
representing the points A, B, C and D and connected by a
follow-wall behaviour. Since it has never previously
traversed directly from A to D, the least path through its
map is A-B-C-D.

A B

CD

A B

CD

Figure 8 – (a) Geometric vs (b) Topological Path Planning

Consequently, our aim was to combine the benefits of
geometric and topological map representations in a
behaviour-based system using the ABBA framework.

4.1 Spatial representation

The scheme developed involves having feature detectors
(FDs) to represent locations. The confidence of the FD
condition relates to the certainty of the robot being at the
represented location. How such FDs are implemented will
be described shortly, but first consider that we have a FD

for every location the robot will be. For example,
distributions of FDs over the laboratory floor space.
Because an accurate knowledge of the geometric location of
the robot is unnecessary, a course resolution is sufficient.
This will still require many FDs, hence we will also allow a
non-uniform distribution of FDs over the floor, so that we
can have a higher spatial resolution where required. Next,
we interconnect each pair of neighbouring FDs (locations)
with a behaviour that can drive the robot from one location
to the other, as shown in the figure below.

B

FF

F

F

A

C

FF

D

F

F

F

FF

F

Figure 9 - Location FDs connected via 'Forward' CM

The location FD A is a precondition of a Forward CM
that is correlated with D, through initialisation or
exploration. This F CM drives the robot from the location
that is its precondition to the location with which it is
correlated. Hence if the robot is currently at location A and
some other behaviour requires it to be at D, then activation
will flow to this F CM both backward from the other
behaviour and forward from A. This is due to rules 5 and 1
above. In this case F will become active and drive the robot
from A to D. If an obstacle has been placed to obstruct the
direct path from A to D, then the F behaviour would have
failed. After a small number of failures, the correlation of F
to D would be low enough that the F CM connecting A and
B would receive greater activation. Hence the robot would
drive from A to B and subsequently from B to D.

In practice, neighbours do not need to be fully
connected initially as F CMs can be added at runtime.
Exploratory behaviour can be engaged while recording the
location of the robot each time a CM is initiated. If the CM
successfully moves the robot to a new location, a new
instance of the CM is created with the old location as
precondition. The normal correlation calculations
described previously will ensure this CM becomes
correlated with the new location. Similarly, if a CM
becomes uncorrelated with any FDs it can be removed from
the network.

Now to how the FDs ‘detect’ the robot’s location.
Each location FD is associated with a node in a Kohonen
self-organising-map (SOM) [Kohonen, 1990]. Each node
in the SOM has an associated vector, where the elements
are contain values representing the robot’s sensory and
behavioural state.

Figure 10 - SOM nodes distributed over the floor

The locomotion software on our Yamabico robots
constantly delivers an estimated position and orientation of
the robot in a global coordinate system. This is calculated
from the wheel encoders and hence has a cumulative error.
These odometry coordinates are elements of the SOM node
vectors, along with other information such as ultrasonic
range readings, whisker deflection and the currently active
CM. So the SOM nodes are distributed over a high
dimensional state space. The self-organisation of the SOM
proceeds typically – by moving the nodes closer to
observed states with an ever decreasing field of sensitivity.
This works to distribute the SOM nodes over the space
according to the probability distribution of observed robot
states. As shown Figure 10, there are more nodes around
the edge of the room where as Flo spends most of its time
sweeping the perimeter (the figure only shows the CMs
interconnecting four neighbours). SOM nodes with vectors
differing significantly in the 2D-odometry coordinates are
assigned to different location FDs. SOM nodes differing
only in the other elements are assigned to the same location
FD.

Therefore, a location FD’s condition is set when its
associated SOM node becomes activated by the current
state. The vector elements are weighted in the distance
calculation according to the importance of the
corresponding sensor.

To overcome the indefinite accumulation of odometry
error, we can utilise the fact that we can repeatedly detect
landmarks in the environment whose position does not
change. We define a landmark as a recognisable feature at
a distinguishable location.

Note that the correlation calculations performed as part
of the spreading activation algorithm will also cause FDs
for significant landmark types to become correlated with the
F CMs from Figure 9. For example, if Joh has a visual ‘red
door’ feature detector, and there is a red door at location D,
the F CM that drives the robot to the door will become
correlated with the ‘red door’ FD. Since this CM is only
correlated with one location FD, we have a correlation
between a location and a landmark type FD. Hence, when
both a landmark type FD and a location FD both have true
conditions and are correlated with the same CM, we can
assume we have detected a landmark. In this case, we
adjust the robot’s odometry and the odometry coordinates
in the location FD’s associated SOM node to a position

between the current odometry reading and the SOM
coordinates. The actual position depends on the confidence
of the location FD’s condition and the current error bounds
on the odometry readings.

4.2 Topological representation

The above mechanism provides robust spatial path
planning. Extending this to include a topological
representation is simple. As mentioned previously, the
Forward behaviour CMs can be added at runtime. By
noting the location when a CM is activated and deactivated,
and creating a new instance of the CM with the start
location as a precondition and correlated with the final
location. This is also performed for other CM types. For
example, if the robot activates the Follow CM to
wall-follow from A to C, then a new instance of the Follow
CM is created with the location FD A as a precondition and
correlated with the location FD C. Hence, a topological
map connecting location FDs via behaviour CMs is built
up. Because the wall follow link from A to C is shorter than
the two links going via B, the spreading activation will
favour this route (which still passes physically through
location B in this case).

The mechanisms described above satisfy our aim of
combining both spatial and topological map representations
and path planning within the ABBA framework. What the
networks as described so far cannot do, however, is
represent an arbitrary location as a sub-goal within a larger
over all plan – the destination must be ‘hard-wired’ during
the design. To overcome this restriction ABBA networks
must be capable of representing deictic references – which
are generally useful.

4.3 Deictic Reference

From linguistics, deictic references (pronounced dik ti k′ ()
serve to point out or specify, as in the demonstrative
pronoun this [American Heritage Dictionary, 1992]. As
such, it is a type of flexible indexical reference. Indexical
reference is a correlative association between icons. An
icon is a set perceptual characteristics used to identify a
class of objects. For example, the word ‘red’ is an
association between how red objects look, how the written
word looks, the sound of the spoken word and the necessary
motor actions to utter it. In addition, there may be many
other secondary associations involved in our representation
– such as blood or fire trucks, for example. An architecture
incapable of representing deictic references would lack
flexibility. By adding this facility to ABBA we can
represent references like ‘the current location’, ‘ the door in
front of me’, ‘ the last location I dumped litter’, etc. This
need for deictic reference has been previously recognised in
the literature. Rhodes introduced the notion of pronomes in
behaviour networks that serve this function [Rhodes, 1995].
The marker concept was also conceived by Yuniyoshi
et. al. to address similar limitations for their Samba
architecture [Riekki and Kuniyoshi, 1996]. Markers ground
task-related data on sensor data flow.

Deictic indexical references in ABBA are represented
by using proxy feature detectors. This is essentially a FD
that ‘points to’ another FD. The condition of the proxy FD
reflects the condition of the FD to which it is currently

referring. Similarly, any CMs that are correlated with the
proxy or have it as a pre-condition, behave as if they were
correlated with or had the referred to FD as a pre-condition.

The ‘top-level’ goal in an ABBA network is a proxy
FD that usually refers to the Clean goal. Goals are FDs
whose conditions are always false. All the behaviour
appropriate to achieving cleaning is correlated with the
Clean goal. Hence, the action selection mechanism will
take care of determining the specific sequences of these
actions. This top-level goal is provided so the user can
control the goal of the robot during development. For
example, if the top-level goal were a proxy for a location
FD, then the robot would navigate to the represented
location and stop.

Proxy FDs are used extensively for indexical reference
in some cleaning experiment network implementations.
How they are used will become evident in the following
section, which describes how behaviours implement
cooperative cleaning and communication.

5. BASIC BEHAVIOUR

Thus far, we have described the ABBA substrate, how is
supports planning and introduced the ‘higher-level’
navigation mechanism. Before proceeding to a description
of how ABBA is used to support cooperative joint planning
and communication, we shall describe some selected
‘lower-level’ behaviour. These component behaviours are
used together in combination with the cooperation and
communication mechanisms to implement a sophisticated
solution to the cleaning problem.

One particular cleaning experiment involves visual
observation of Flo by Joh, and communication between
them. Specifically, Flo announces to Joh when it initiates
the litter dumping procedure, and then communicates the
relative position of the dumped pile of litter upon
completion. Joh can observe Flo, and if Joh can see Flo
when the announcement is made, then Joh can calculate the
approximate position of the litter relative to itself. Joh then
navigates to the location and visually looks for and servos
on the litter in order to vacuum it. This experiment requires
a number of simple behaviours and visual sensing
capabilities, which will now be described.

5.1 Whisker based wall following

In order to sweep litter close to the walls, Flo needs a close
wall following behaviour. We investigated a number of
sensor technologies for this purpose, but finally we had to
develop unique proportional whiskers [Jung and
Zelinsky, 1996a]. Flo has two whiskers mounted on its left
side for wall following and two whiskers in front for
collision detection. The whiskers are also used for
navigation (see Figure 1). The whiskers are contact sensors
that give direct information about the distance between the
robot and the wall being followed. The information from
two whiskers is fused with odometry information using a
Kalman filter to obtain an estimate of the robot’s position
and orientation relative to the wall. This is then fed into a
standard Proportional Integral Differential (PID) controller
to track along the wall. The navigation mechanism also
uses the whiskers to detect landmarks, such as doors,
corners, walls, poles etc.

5.2 Visual behaviour

Joh also needs to navigate reliably around the laboratory
without colliding with obstacles, people or Flo, and it has
the advantage of vision. A number of visual behaviours
were required.

Free-space segmentation

We have implemented a visual free floor space
detector using the real-time template matching capability of
the Fujitsu vision system to segment the image into ‘carpet’
and ‘non-carpet’ areas.

Figure 11 - Before and after normalisation and thresholding

The vision system delivers a correlation value for each
template matched - the lower the value the better the match.
A set of templates of the carpet in our laboratory is stored
for matching. In Figure 12a, the smaller white squares
indicate a better match. All values below a threshold
signify free-space.

The CCD camera lens distorts the images and this
effect can be seen in the correlation values, and must be
compensated for using a normalisation procedure.

The first graph in Figure 11 shows the raw correlation
values while looking at bare carpet. The normalisation
consists of applying weights to these values that have been
calculated by fitting a polynomial to the lens distortion
during calibration, and then thresholding. The procedure
also normalises for the average brightness of the image.
The result can be seen in the graph on the right of the
figure.

Figure 12 - (a) Obstacle avoidance (b) Interest operator

Although using template matching to match a texture
such as carpet works poorly on single matches, at
frame-rate and with robot motion, the stochastic behaviour
is robust.

Once Joh has navigated to the approximate location of
a pile of litter left by Flo, it has a vacuum behaviour that
must visually locate the pile and servo on it in order to
vacuum over it.

Interest Operator

Joh needs to identify piles of litter on the laboratory

floor in order to visually servo on them and vacuum over
them. The vacuum is mounted under the robot so it must
drive over the pile, which takes it out of view. Because a
pile of litter doesn’t have a definite shape, matching against
a template is unlikely to locate it in the image. Hence we
developed a simple ‘interest operator’ can locates isolated
objects in the scene, with approximately the correct
colouring. The interest operation primarily applies a zero-
crossing convolution to the correlation values. The effect
from the image in Figure 12b can be seen in the graph
below.

Figure 13 - Correlation values from ’interest operator’

In order to servo on the litter, a transformation from
image coordinates to floor coordinates is performed and the
PID controller directed to drive in the appropriate direction.
Joh is also fitted with a bump sensor, which will trigger in
the event that the behaviour erroneously servos on an
obstacle on the floor, for example a book.

Visual Servoing
Joh has a behaviour that can visually detect and track

Flo’s motion. This behaviour servos on Flo to keep it
visible and hence calculate the motion relative to Joh’s
coordinates. This information is used to deduce the
approximate location of the dumped litter for the vacuum
behaviour. There are two components to this behaviour:
tracking Flo’s image for visual servoing, and determining
the 3D position and pose.

Flo has been marked with a unique rectangular pattern
for tracking, as shown in Figure 14a below.

Figure 14 - (a) Flo from Joh’s camera (b) Cleaning

Ten templates from the corners and sides of the
rectangle are tracked. Due to changes in lighting,
orientation and size, the templates would easily be lost. So
a network of Kalman filters is used, one per template, to
estimate the position of each from the vision system
matching information and the position of the other nine
templates [Jung et al., 1998a]. This results in tracking that
is very robust to changes in scale and orientation.

Joh needs to know the relative location and pose of Flo
in order to arrange a ‘rendezvous’. The position and pose
of Flo are computed using a projective transformation
between the plane of the rectangular pattern marking on Joh
and a model rectangular pattern marking in a known
arbitrary plane. Four of the ten templates tracked on the
pattern are sufficient to compute the projective
transformation.

6. JOINT-PLANNING

Humans, as other primates, have the ability to co-construct
plans with more that one interacting person, and flexibly
adapt and repair them all in real time. We require this
capability in ABBA to support sophisticated cooperative
multi-robot solutions to the cleaning task. We have seen
how ABBA exhibits a planning capability for selecting
actions of an individual robot. This section explains how
this mechanism can also exhibit a distributed planning
capability for multi-robot cooperative systems.

Bond describes the construction and execution of joint
plans in monkeys [Bond, 1996]. He defines a joint plan as
a conditional sequence of actions and goals involving the
subject and others. In order to achieve interlocking
coordination each agent needs to adjust its action selection
based on the evolution of the ongoing interaction. The
cooperative interaction will consist of a series of actions -
including communication acts. Each agent attempts
different plans, assesses the other agents’ goals and plans,
and alters the selection of its own actions and goals to
achieve a more coordinated interaction where joint goals
are satisfied. Bond writes in reference to vervet monkeys,
“They are acutely and sensitively aware of the status and
identity of other monkeys, as well as their temperaments
and current dispositional states”.

Little research considers cooperative planning as an
extension of the action selection problem facing individual
agents. We believe that as ABBA provides a planning
capability for the action selection of the individual, it can
naturally accommodate distributed joint planning of
cooperative actions for a multi-robot group, without
modification.

Consider the following very simple hypothetical
situation to illustrate how ABBA achieves distributed
planning. Suppose we have a task requiring an ordered
sequence of actions to be performed – such as making a cup
of instant coffee. Each action has a specific effect on the
environment that can be sensed – hence must be detected
before the next action can be performed.

Followed
by

Get
Mug

Add
Coffee

& Sugar

Add Hot
Water

Add
Milk

Actions

Effects Mug on
Bench

Coffee &
Sugar in Mug

Coffee
Black

Cofee
Complete

Causes

Figure 15 - Sequence of actions and their effects

We can implement an ABBA network for a robot to
accomplish this task in the following way. As shown in the
figure below, we implement four CMs – one for each of the
actions. Additionally, we implement FDs capable of

sensing the conditions brought about by the actions. The
condition Mug-on-bench will be a pre-condition for action
Add-coffee-&-sugar and so on. The final condition,
Coffee-complete, is made a goal. Either by learning or
by initialisation, the effects of the actions become correlated
with the actions. For example, action Get-Mug becomes
correlated with the condition Mug-on-bench. This
arrangement will cause activation to spread backward from
the Goal and accumulate in the first action that does not
have its precondition satisfied. Initially this will be action
Get-Mug, and then actions Add-coffee-&-sugar,
Add-hot-water and Add-Milk in turn as the conditions
Mug-on-bench, Coffee-&-sugar-in-mug and
Coffee-black are satisfied. We can consider the
spreading activation as having planned the sequence for
making coffee – although this is a particularly simple case,
as there is only one alternative plan that will satisfy the goal.

Get
Mug

Mug on
Bench

Coffee &
Sugar in Mug

Coffee
Black

Coffee
Complete

Add
Cofee &
Sugar

Goal

Add Hot
Water

Add
Milk

Figure 16 - ABBA Network for instant coffee

As action Get-Mug is being executed we can consider the
state of activation in the network to represent a plan – to
carry out the subsequent actions in the appropriate sequence
for making coffee. It is important to notice that unlike a
classical path planner, the plan is not fixed. If, for example,
a person had intervened and added coffee and sugar to the
mug, the robot would find condition
Coffee-&-sugar-in-mug fulfilled and proceed directly
to action Add-hot-water.

Get
Mug

Add
Coffee
& Sugar

Robot 1

Robot 2

Get
Mug

Mug on
Bench

Coffee &
Sugar in Mug

Coffee
Black

Coffee
Complete

Add
Cofee &
Sugar

Goal

Add Hot
Water

Add
Milk

Mug on
Bench

Coffee &
Sugar in Mug

Coffee
Black

Coffee
Complete

Goal

Add Hot
Water

Add
Milk

Figure 17 - Two robot instant coffee networks

Now suppose we introduce another identical robot
executing the same ABBA network, as show in Figure 17.
If we repeatedly ran these two robots to achieve the goal,
we may find that due to the dynamics of the situation that
the actions carried out by each robot may differ from run to
run. For example, one run might see robot 1 get the mug
and add hot water with robot 2 adding the coffee, sugar and
milk. In another run robot 1 may get the mug and add hot
water and milk while robot 2 only add the coffee and sugar.
Although the individual behaviour of the two robots may

differ from one run to the next, the global sequence of
actions will always result in instant coffee. Rather than
having two redundant robots, we could also achieve the
same behaviour if each of the robots had specialised
actuators and sensors.

Add
Coffee
& Sugar

Robot 1

Robot 2

Get
Mug

Coffee &
Sugar in Mug

Coffee
Complete

Goal

Mug on
Bench

Coffee
Black

Coffee
Complete

Goal

Add Hot
Water

Add
Milk

Figure 18 - Heterogeneous action sequence networks

Suppose robot 1 was only capable of getting a mug,
adding hot water and sensing if the coffee & sugar are in the
mug or if the coffee is made. Likewise, robot 2 can add
coffee, sugar or milk and sense when the mug is on the
bench, if it contains black coffee or the coffee is made. In
this case, we can still achieve a system that executes the
actions in the correct sequence (see Figure 18). Robot 1
will start with action Get-mug, hence satisfying condition
Mug-on-bench, which will trigger robot 2 to execute
action Add-coffee-&-sugar, and so on.

It is in this sense that ABBA networks support joint-
planning. We have taken the simple network from Figure
16 and physically distributed it over two robots and it can
still generate the only plan capable of fulfilling the goal –
now a cooperative plan. This capability relies on two
important characteristics. Firstly, the activation spreads
through the networks in a way dependent on conditions that
are delivered directly from the environment – via Feature
Detectors. Secondly, the spreading activation also depends
on the correlations that are learned from experience. It also
requires feature detectors capable of perceiving the relevant
conditions.

As this is such a simple example, we can easily
imagine a more complex situation in which each robot has
multiple alternative plans that would all accomplish the
goal. In such a case, the plan chosen by one robot may
depend on that chosen by another. Provided our first
characteristic above is maintained – that the conditions are
available directly from the environment, we need only equip
each robot with FDs relevant to perceive the conditions on
which others are basing their decisions.

Networks for complex tasks may not display this
characteristic. For example, when a robot doesn’t have
appropriate sensors to perceive the relevant conditions
directly, or when another robot has FDs whose conditions
are based on internal states. In these cases, there are two
possible ways around the problem. The simplest is for the
other robots to communicate any hidden state information
required by others – to announce their intentions. Another

solution is for a robot to represent some elements of the
internal states of other robots. The spreading activation
mechanism supports this well through its ability to maintain
multiple hypotheses.

For example, suppose there is only one plan from two
possible alternatives that will achieve a goal, but which one
depends on a condition internal to a collaborator. This
internal state of the other robot can be represented locally
by the condition a FD (x in Figure 19 – circle denotes
negation). Should the robot initially execute actions A and
B or A’ and B’ when condition x is only uncertainly known?

A Ca

Cb Cc Cd

Goal

C D

A’ Ca’

X

B

B’

Figure 19 - Alternative plans dependant on condition x

The FD x will attempt to ascertain the crucial internal state
of the collaborator using whatever indirect information is
available from observation. ABBA FDs deliver a
confidence with their conditions. If x’s confidence is low,
activation will spread down two paths – one in accordance
with a false condition (A, B, C, D) and the other with true
(A’, B’, C, D). One path will have slightly more activation
and the first action will be chosen from that alternative.
The other path will continue to have high levels of
activation, effectively being ‘primed’ in case the hypothesis
is incorrect. Suppose that the hypothesis was actually
incorrect – that the path chosen represented the wrong plan.
If information became available to the FD x after execution
of the first action, causing it to report the opposite
condition, now with high confidence, then activation will
begin to spread down the alternate path. In this case, the
path already has high activation levels – having been
‘primed’, and will be activated rapidly. The cost of making
an initially incorrect ‘guess’ is minimised. We can imagine
classical planners that would stop and completely re-plan in
cases such as this where previous information has been
contradicted – causing significant delays. These examples
have illustrated how an ABBA network can accomplish
joint planning and flexibly adapt the plans in real-time –
just as primates can.

7. COMMUNICATION

If the robots are to communicate to cooperate, the obvious
question is “what do robots talk about?”. All
communication is egocentric. A robot can only
communicate information from its sensory-behaviour space
– sensory data, behaviour states, and indexical and iconic
references. That is, any data communicated does not
intrinsically carry ‘meaning’. It is only meaningful in terms
of its grounded context within the robot. Once it has been
communicated to another robot, the context has changed, as
hence so has its meaning. How can communication that
doesn’t necessarily preserve meaning possibly be useful?
Inter-robot communication can be useful in the following
three ways.

Firstly, for communication to be useful it does not
have to mean the same thing to both robots. A
communicated token can be re-grounded by the listener in a
completely different way and still be useful information.
For example, Flo communicates a specific pre-defined
token when it is about to dump a pile of litter. This token is
meaningless to Flo – it is involuntarily communicated since
the action is pre-programmed into the DumpLitter
behaviour, and if received by Flo it would not mean
anything. To Joh, it does mean something – specifically,
that if it can see Flo it will likely see a pile of litter appear in
the vicinity within a short time. This meaning is grounded
for Joh – only it can see piles of litter using vision.

Secondly, although Flo and Joh have no sensors in
common, some robots could have identical sensors and
actuators, enabling re-grounding at the iconic level to
preserve meaning. For example, laughter has almost the
same meaning to all humans, but not to other animals. We
can make the necessary connection with the emotional state
since we can hear and observe others and ourself laughing.

Finally, we can specifically design mechanisms into
both the speaker and the listener such that the meaning of
some communicated data, when independently grounded, is
sufficiently similar to be useful for a particular task. For
example, a robot may be able to create an analogous
indexical association between two icons in another robot by
empirical demonstration. When a human teacher shows a
small child a picture of a sheep and repeats the word
‘sheep’ several times, this is an attempt to create an
association in the child in this way. The association is built
between two icons – the arbitrary utterance and the visual
icon for the image (and possibly the real animal). It is this
mechanism that we have utilised to enable the
communication of locations between the robots.

Location Labelling

The most sophisticated layer of the cleaning task
implementation enhances the efficiency of cooperation by
having Flo communicate the location of litter piles it makes
to Joh. As the robots each have different representations for
space, their concept of location cannot be directly
communicated. Although both robots use odometry, the
location FDs also employ landmarks to deal with the
accumulation of odometry error. Hence, a location for Flo
may involve whisker based landmark information, while
Joh may use ultrasonic information. For this reason, a
location is communicated as a relative distance from one of
a common set of shared known locations. These common
locations are indexical associations between a label and a
location that are established by a specifically designed
interaction. Essentially the interaction involves Flo
‘teaching’ Joh the association between a label and a
location. The interaction, which we’ll call labelling,
proceeds as follows.

If Joh is tracking Flo in its visual field and there are no
previously labelled locations near by, then Joh
communicates to Flo indicating that Flo’s current location
should be labelled. No label is communicated as the label
for a location is simply a numerical sequence number of the
labelled locations. Since both robots start counting at one,
they both know which number to use as the next label. If
Joh receives a confirmation signal from Flo, it associates a

proxy FD for the label with a location FD of Flo’s location.
Joh calculates Flo’s location based on its own location and
a calculation of Flo’s range from visual tracking
information. Flo also labels its location by associating the
analogous label proxy FD with its current location. Figure
20 shows a partial network from Joh after two locations
have been labelled.

Current
Loc

3rd Loc
Labelled

2nd Loc
Labelled

1st Loc
Labelled

Can See
Flo

Labelled
Loc Near

Send
"Label

Loc"

Rec
"Labelled"

Label

Clean

Figure 20 - Joh’s Location Labelling Network

The Rec ‘pile loc’ FD becomes true when it receives the
communicated location from Flo. It calculates the location
FD from the map corresponding to the litter pile and assigns
the proxy FD pile location to refer to it. Before this time the
pile location FD doesn’t refer to anything, hence activation
doesn’t flow past the CM locate pile. Once Joh has
successfully navigated to the litter pile location due to the
activation flowing through locate pile into the map, the pile
location FD will become true and locate pile will be
executed. The CM locate pile assumes that there is now a
litter pile in the vicinity and rotates the robot around to
bring it into view. If it comes into view, it will be detected
causing the FD can see litter to become true and the
vacuum CM will be executed due to activation from clean.
The vacuum CM vacuums up the litter and resets the pile
location proxy to refer to nothing.

The arrows show the referred to FD of each of the
proxy FDs Current Loc, 1st Loc Labelled, 2nd Loc Labelled
and so on. The CM Label is responsible for calculating
which location FD from the SOM-based map corresponds
to Flo’s position and assigning the next label proxy FD to
refer to it. Flo’s network for labelling is similar.

To make use of these labelled locations, Flo can
communicate the location of a pile of litter relative to them.
For example, a pile could be specified as being
approximately 3m away from the 2nd labelled location at an
angle of 30o relative to the direction of the 1st labelled
location from the 2nd. Figure 21 shows Joh’s partial
network for locating a litter pile whose location was
communicated by Flo.

Current
Loc

3rd Loc
Labelled

2nd Loc
Labelled

1st Loc
Labelled

Can See
Litter

Pile
Location

Locate
Pile

Rec
"Pile Loc"

Vacuum

Clean

Figure 21 – Joh’s Litter pile locating network

8. CONCLUSION

We have described our distributed action selection
mechanism used for planning in ABBA. We have shown
mechanisms utilising ABBA that implement robust and
homogeneous planning of navigation, cooperation,
communication and reactive behaviour. The path planning
mechanism also unifies spatial and topological style map
representations. A plan, as represented by a path of high
activation through the network, can include any type of
behaviour as elements in the action sequence.

ABBA was used to implement a real multi-robot
cleaning system. Some of the component behaviours and
sensing techniques were also described.

ACKNOWLEDGMENTS

This work was supported by Fujitsu who produced our
vision system, and Wind River Systems, suppliers of
VxWorks.

REFERENCES

[Alami et al., 1995] Alami, R., Aguilar, L., Bullata, H., Fleury, S.,
Herrb, M., Ingrand, F., Khatib, M. and Robert, F., “A General
Framework for Multi-Robot Cooperation and its
Implementation on a Set of Three Hilare Robots”, Proc.
International Symposium on Experimental Robotics (ISER), 1995.

[Arkin and Hobbs, 1992b] Arkin, R. C. and Hobbs, J. D.,
“Dimensions of Communication and Social Organization in
Multi-Agent Robotic Systems”, Proc. Simulation of Adaptive
Behavior 92, Honolulu, HI, Dec., 1992.

[Bond, 1996] Bond, Alan H., “An Architectural Model of the
Primate Brain”, Dept. of Computer Science, University of
California, Los Angeles, CA 90024-1596, Jan 14, 1996.

[Cheng and Zelinsky, 1996] Cheng, Gordon and Zelinsky,
Alexander, “Real-Time Visual Behaviours for Navigating a
mobile Robot”, Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), vol 2.
pp973. November 1996.

[Dudek et al., 1995] Dudek, G., Jenkin, M., Milios, E. and Wilkes D.,
“Experiments in sensing and communication for robot convoy
navigation”, IEEE 0-8186-7108-4/95, 1995.

[Heikkilä and Matsushita, 1994] Heikkilä, Tapio and Matsushita,
Toshio, “Coordination of multiple robot systems based on
negotiation”, Tech. Report 11.12.1994, Electrotechnical
Laboratory (ETL), MITI, Japan, 1994.

[American Heritage Dictionary, 1992] Houghton Mifflin
Company, Ltd., “The American Heritage® Dictionary of the
English Language”, Third Edition copyright © 1992 by Houghton
Mifflin Company. Electronic version licensed to Microsoft
Corporation from INSO Corporation.

[Jung and Zelinsky, 1996a] Jung, David and Zelinsky, Alexander,
“Whisker-Based Mobile Robot Navigation”, Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), vol 2. pp497. November 1996.

[Jung et al., 1998a] Jung, David, Heinzmann, Jochen and Zelinsky,
Alexander, “Range and Pose Estimation for Visual Servoing on
a Mobile Robotic Target”, Proc. IEEE International Conference
on Robotics and Automation (ICRA), 1998.

[Kohonen, 1990] Kohonen, Teuvo, “The self-organising map”,
Proceedings of IEEE, 78(9):1464-1479, Sep. 1990.

[Kube and Zhang, 1994] Kube, C. Ronald, Zhang, Hong,
“Collective Robotics: From Social Insects to Robots”, Adaptive
Behaviour, Vol. 2, No. 2, 189-218. 1994.

[Le Pape, 1990] Le Pape, Claude, “A Combination of
Centralized and Distributed Methods for Multi-Agent Planning
and Scheduling”, Robotics Laboratory, Stanford University,
Stanford CA 94305, 1990.

[Maes, 1990a] Maes, P., “Situated Agents Can Have Goals.”,
Designing Autonomous Agents. Ed: P. Maes. MIT-Bradford Press,
1991. ISBN 0-262-63135-0. Also published as a special issue of the
Journal for Robotics and Autonomous Systems,Vol. 6, No 1, North-
Holland, June 1990.

[Matariþ, 1992] Matariþ, Maja J., “Integration of
Representation Into Goal-Driven Behavior-Based Robots”, in
IEEE Transactions on Robotics and Automation, Vol. 8, No. 3,
June 1992, 304-312.

[Matariþ, 1995] Matariþ, Maja J., “Issues and Approaches in the
Design of Collective Autonomous Agents”, to appear in “Moving
the Frontiers Between Robotics and Biology”, special issue of
Robotics and Autonomous Systems, Vol. 16, Nos. 2-4, December
1995.

[Noreilis, 1992] Noreilis, Fabrice R., “An Architecture for
Cooperative and Autonomous mobile Robots”, Proceedings of
the 1992 IEEE International Conference on Robotics and
Automation, Nice, France - May 1992.

[Parker, 1998] Parker, Lynne E., “ALLIANCE: An
Architecture for Fault Tolerant Multirobot Cooperation”, IEEE
Transactions on Robotics and Automation, Vol. 14, No. 2, April
1998.

[Rhodes, 1995] Rhodes, Bradley, “Pronomes in Behaviour
Nets”, Tech. Report #95-01, MIT Media Lab, Learning and
Common Sense Section. Jan 1995.

[Riekki and Kuniyoshi, 1996] Riekki, J. and Kuniyoshi, Y.,
“Behavior Cooperation Based on Markers and Weighted
Signals”, Proceedings of the World Automation Congress (WAC) -
International Symposium on Robotics and Manufacturing
(ISRAM), Montipellier, France, March, 1996.

[Yuta et al., 1991] Yuta, S., Suzuki, S. and Iida, S.,
“Implementation of a small size experimental self-contained
autonomous robot - sensors, vehicle control, and description of
sensor based behavior”, Proc. Experimental Robotics, Tolouse,
France, LAAS/CNRS (1991).

[Zelinsky et al., 1993]Zelinsky, A., Kuniyoshi, Y. and Tsukue, H., “A
Qualitative Approach to Achieving Robust Performance by a
Mobile Agent”, Robotics Society of Japan Conference, Japan,
November 1993.

