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Abstract

This paper describes the implementation of
behaviour for real-time visual servoing on a
mobile robot.  The behaviour is a component of
a multi-robot cleaning system developed in the
context of our investigation into architectures for
cooperative systems.  An important feature for
support of cooperation is the awareness of one
robot by another, which this behaviour realises.
Robust feature tracking aided by a hardware
vision system is described.  This forms the basis
for range and pose estimation using a 3D
projective model.

1. INTRODUCTION

As part of our research into behaviour architectures for
cooperative multi-robot systems, we are constructing a
cleaning system using two autonomous mobile robots
[Jung 97].  There are numerous component behaviours
implemented to support the basic cleaning task.  Among
them is the requirement for one robot to be aware of the
other.  This is realised by visual tracking, and estimating
the range and pose, of the robot in its field of view in real-
time.  This paper briefly describes the cleaning task, but is
primarily a description of the implementation of the visual
servoing behaviour.

 
Figure 1 - Yamabicos Flo and Joh

2. COOPERATION

Research into multi-robot systems is driven by the
assumption that multiple agents have the possibility to

solve problems more efficiently than a single agent does.
Agents must therefore cooperate in some way.  There are
many tasks for which a single complex robot could be
engineered; however, in many cases there are advantages to
using multiple robots.  A multi-robot system can be more
robust because the failure of a single robot may only cause
partial degradation of task performance.  In addition, the
robots can be less complex since each is only responsible
for partial fulfilment of the task.  Our philosophy is to
design heterogeneous multi-robot systems where
appropriate.

Cooperation has been intensively studied in the
robotics community recently, particularly the cooperation
observed in eusocial insect societies, such as ants (see
[Kube 94][Mataric 95][Steels 90]).  This type of
cooperation has been termed collective robotics and is
characterised by homogeneity of the agents and emergent
behaviour.

The robotics literature usually reserves the term
cooperation for cases where explicit communication is
involved – which implies autobiographical agents. This
greatly increases the possibilities for types of cooperative
behaviour.  Much research has been reported where robots
communicate.  Some systems utilise central control, others
use complex negotiation schemes between agents, and yet
others some combination of both [Kuniyoshi 94]
[Noreilis 92][Parker 95].

The behaviour architecture we have developed for
distributed planning, ABBA, supports all the above
mentioned paradigms [Jung 97b].  However, we are
particularly interested in heterogeneous agents that have
identity, the capability to communicate, and can jointly
plan cooperative behaviour without central control.  Since
the robots have identity, awareness of one robot by another
can play a major role in these cooperative systems, and has
been investigated in the literature [Parker 95].  This
provides the motivation for implementing the capability for
one robot to visually detect, recognise, track, and servo on
another robot.  The task we have implemented utilises this
behaviour by design.

The remainder of this paper discusses the
implementation of this visual behaviour in a task context.



2.1 Multi-robot Cleaning
We have chosen to implement cooperative cleaning of our
laboratory floor.  The ‘Yamabico’ robots [Yuta 91] shown
in Figure 1 are heterogeneous in the sense that each has
different tools and sensors such that neither can accomplish
the task alone.

One of the robots, ‘Joh’, has a software-controlled
vacuum cleaner.  Joh’s task is to vacuum piles of litter from
the laboratory floor.  It cannot vacuum close to walls or
furniture.  It has the capability to ‘see’ piles of litter using a
CCD camera and a video transmitter that sends video to the
Fujitsu MEP tracking vision system.  The vision system is
capable of landmark-based navigation and collision
avoidance [Cheng 96].  The vision system communicates
with the robot over a pair of radio modems.

The other robot ‘Flo’ , has a brush tool that is dragged
over the floor to sweep distributed litter into larger piles for
Joh to pick up.  It navigates around the perimeter of the
laboratory where Joh cannot vacuum and deposits the litter
on open floor space.  Its primary sensors are four
proportional whiskers developed specifically for wall
following and perimeter navigation [Jung 96a].  The task is
to be performed in the laboratory environment – robots
have to contend with furniture, other robots, people,
opening doors, changing lighting conditions and other
hazards.

3. VISUAL TRACKING

One implementation of the cleaning task involves Joh
waiting until Flo is in its field of view, and then visually
servoing on Flo until Flo dumps a pile of litter in the
vicinity.  This requires not only robust tracking for servoing
while Flo is in view, but also the ability to continuously
determine if Flo in the image.  This section details how this
is achieved.  First, a look at our vision system.

3.1 The Fujitsu vision system
The Fujitsu MEP template tracking vision system consists
of a VME video card, tracking card and a 68040 CPU card
for processing.  The tracking module uses a correlation
chip for correlating stored templates to an NTSC video
stream (30Hz).  The correlations occur after the video
module has digitised a frame, and hence the results are
always a frame behind the video stream.

The tracking card is provided with up to 100 8×8 or
16×16 templates to be correlated in specified search areas
for each in the coming frame.  The search areas are divided
into a 16×16 grid since the tracking module performs 256
correlations per template in each search area.  The tracking
module performs a correlation calculation between a
template and all possible offsets that move it within its
search area.  The system also supports horizontal and
vertical magnification in templates, so that the template

pixels are compared with every nth image pixel – where n is
the x or y magnification (mx or my).  If ox and oy are the
offsets of the template in the image, and gt and gf are the
template and images respectively, then the correlation
calculation is simply the sum of pixel differences as given
by (1).
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The result is a vector for each template that corresponds to
the offset from the search area centre where the best
correlation between the template and image was found.

By moving the centre of the search area based on
these result vectors a template can be crudely tracked.  Any
change in brightness, occlusion, or change in size – caused
by changes in range, will result in loss of tracking.

3.2 What do we track?
Since the target of our tracking is artificial – Flo, we have
control over its appearance.  Hence, we chose to put the
geometric pattern shown below on both sides of the robot
(the thick black rectangle is the pattern, the other lines are
graphics).

Figure 2 - Flo's side as seen from Joh's CCD camera

The pattern is a hollow rectangle with very thick sides,
designed such that templates of the inner and outer corners
will be scale invariant.   A problem arose due to the motion
involved – since the video signal is interlaced, motion
causes one field to be displaced with respect to the other.
This gives very bad correlation with the template and
tracking is lost.  The solution was to use templates with a
magnification of two, so that only every other vertical line
is used for matching.

The task dictates that Flo will almost always been
seen from the side.  Specifically Flo spends most of its time



sweeping against walls, which Joh’s behaviour keeps it
away from.  It is sufficient for Joh to detect this pattern to
‘see’ Flo.  Using this method we want something that
detects the robot irrespective of the range or pose of the
pattern.

3.3 Utilising geometric constra ints
Tracking the ten templates independently – eight of the
inner and outer corners, as well as two side templates, is
not sufficient for tracking.  The templates are quickly lost
by the tracking system due to variations in brightness and
changes in shape due to viewing the pattern at an oblique
angle.  The tracking can be made robust by utilising
geometric constraints between template positions.

Our first implementation modelled the pattern as a 2D
rectangle in which the size was allowed to vary.  Hence, if
we know the position of any two corners, the positions of
the other templates are also known.  Unfortunately, because
the tracking is noisy we can never know for certain if we
have the coordinates of any particular corner.  However, we
do have a measure of the uncertainty of any particular
match – the correlation value of the best match returned by
the tracking module.  The method developed to use the
noisy tracking positions with their correlation values, and
the predictions from the 2D model, was a network of
independent Kalman filters.  The scheme was first
developed in our laboratory to track features on a human
face for gesture recognition [Heinzmann 97].

The Kalman filter is a recursive linear estimator,
which merges two independent measurements of a quantity
with known measurement error to give the optimal estimate
of the value and associated error [Boznic 86]. The use of
Kalman filtering in feature tracking has previously been
reported by McLaughlan et al. [McLauchlan 94].  Our
approach also uses a Kalman filter for each feature, but it
also uses the information from all other features.

The Kalman filter takes two measurements of a
feature position and their associated errors as input, and
gives a new optimal estimate of the position.  The first
measurement comes from the tracking module.  If we let
fp ti ( )−1  denote the estimated feature position of feature i
from the previous frame, and mi  the displacement from the
search area centre to the new best template match for the
feature, then the measurement becomes (2).

mp t fp t m ti i i( ) = − + ( )( )1 (2)
Now, the second ‘measurement’ comes from the 2D model
of the rectangle.  The predicted position of feature i, ppi  in
this case, uses the displacements between features
according to the model.  This displacement vector between
i and j is dij .  The prediction of the position of the feature

proceeds as follows.  All features are iterated over, and in
each case its position in the previous frame fp tj ( )−1 has

the displacement between it and feature i subtracted from it.
This gives an estimate of the position of feature i according
to the model and the last position of feature j.  This term is
weighted by the certainty in the position of feature j, and
the terms are summed for all j (including i=j).  After re-
normalising the effects of the weights, we have an estimate
of the position of feature i according to the model and a
weighted contribution of all the other features.  Equation
(3) shows the formulation, where P is the variance.
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Here m is the gross motion of the whole set of features,
again weighed by the variances, from the vision module.  It
is added to the predicted position of the feature as a
prediction of future motion.  This assumes that the motion
of the whole feature set – ie. the object being tracked –
exhibits roughly linear motion.  The acceleration effects are
very small from one video frame to the next except for
unrealistic accelerations.  The calculation for m follows.
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The predicted position variance is calculated analogously.
Now we have the ‘measurements’ from the tracking
module mpi  and from the model ppi  for each feature.

Next we use the Kalman filter to obtain the new
estimate of the feature position.

fp t pp t K t mp t pp ti i i i i( ) = + −( ) ( ) ( ) ( )0 5 (5)
All that remains is to calculate new search areas for the
matching in the next frame.  Then the process is iterated
again.  All of this calculation is performed at frame-rate on
the 68040 CPU.  There is also a low priority process, which
sweeps search areas over the entire image looking for a
better match for each feature than the current best match.
This is to allow the re-acquisition of tracking if it is
completely lost due to occlusion.

Using this technique with a 2D sizeable rectangular
model the tracking is very robust to changes in range.  It is
also moderately robust to changes in the angle between
rectangle and the plane of the camera.  Variations in
brightness caused by the automatic shutter speed
adjustment on our camera can also be compensated for.
We match a number of templates of various brightness at
the same position for a given feature.



4. RANGE AND POSE ESTIMATION

To satisfy the requirements of the cleaning task Joh must
be able to determine Flo’s range and pose.  In one
experiment Joh notifies Flo when Flo has been visually
acquired.  Flo notes its position and may later communicate
the location of a litter pile for Joh to vacuum using
coordinates relative to this location.  Hence Joh needs Flo’s
position and heading to know the coordinate reference
frame.  Since Joh can identify piles of litter visually once in
the vicinity, high accuracy was not required.

4.1 A First Cut
Our first implementation was very simple.  We observed
that since the camera is inclined toward the floor, the range
to Flo is proportional to the height of its pattern in the
image.  So a rough calibration provided a simple measure
of range.  We also noted that due to perspective
foreshortening, one side of the rectangle becomes smaller
with respect to the other, in proportion to the angle of
inclination to the camera plane.

Figure 3 - Perspective foreshortening

The ratio of these two sides gives a measure of the
inclination angle.  Although this mechanism works,
unfortunately is was not accurate enough for our needs.
There are a number of problems.  First, because the model
used for tracking is a 2D rectangle, it is working against
predicting the correct feature positions for the corners if the
angle is great, as can be seen from Figure 3.  Also in this
situation, the image of the corners themselves is no longer a
right angle.  The templates used for tracking all the corners
are right angled.  Hence tracking is easily lost when Flo is
inclined over 40o out of the camera plane.  This error has a
large effect when use to project Flo’s relative coordinate
specifications of litter piles.

Clearly we needed a 3D model to track robustly in the
situation when perspective foreshortening becomes
significant.  Much research has been conducted on
recovering 3D-pose information given 2D projections, but
in most cases, for full recovery of points, weak-perspective
projection is assumed [Alter 92][Grimson 92].  A weak
perspective, or affine, projection is orthographic projection
plus scaling.  This essentially ignores perspective

foreshortening by assuming all 3D points are roughly the
same distance from the camera.  Hence we require full
perspective projection.

4.2 Inverse Projective Geometry
The 3D model includes the 3D coordinates of the outside
corner points on the rectangular pattern.  We need to be
able to determine these 3D locations from the 2D positions
in image space.  We also need to be able to re-project the
3D locations onto the feature positions in image space
during tracking.  Hence, we need the projective
transformation matrix of the camera.

A projective transformation has eight parameters.
There are a number of constraints we can take advantage
of.  We know the absolute size of the pattern.  We also
know that the pattern moves only in a plane inclined to the
camera.  This is because as the robot moves along the floor
plane, which is inclined to the camera at a fixed angle, the
height of the pattern from the floor doesn’t change.  In
addition the pattern only rotates about one axis
(perpendicular to the floor) – the robot does not tilt to one
side.  These two constraints imply that the 3D orientation
of the lines on the left and right side of the pattern doesn’t
change.

Calibration
We need to know the height of the robot’s camera from the
floor plane in which the other robot moves, and the angular
tilt forward.  Because this is only a translation and a
rotation about one axis, the value can be recovered from the
camera projection matrix.  This can be obtained by a
calibration procedure.  Flo is placed at a known distance in
front of the camera and the pattern aligned with the camera
image plane.  Now we know the absolute positions in 3D of
the corner points, and using the tracking with a simple 2D
rectangular model, we can also obtain the image projection
of each corner.  These four 3D points and their
corresponding projections can uniquely define the matrix.
If tij are the elements of the 3×3 projection matrix T, and
the four corner points are λ λ λi i i i i

t
i i

tx y T X Y, , , ,0 5 0 5= 1 , then
the system below is solved [Kapur 85].
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Where t33=1.  This process is performed only once.  This
projection matrix T is used to perform the forward
projection from the 3D model points to the image space
during tracking – to predict the feature locations.



From 2D to 3D
Consider the line joining the top and bottom corners of one
side of the rectangular pattern.  This is a line of known
length, and known direction – it always runs perpendicular
to the floor.  Let the projected image end points of this line,
which are available from the tracked feature positions, be
u v t

1 1,0 5  and u v t
2 2,0 5 , and the 3D line

a b c m m mt t, , , ,( ) + ρ 1 2 30 5 .  Then, since we know the

direction cosines m m m t
1 2 3, ,0 5  and the length ρ , the

solution for both end-points can be calculated from (7)
[Haralick 93].
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Where f is the known focal length of the camera.
So performing this calculation on the lines from both

the left and right of the pattern gives us all the corner
locations in 3D.  These points are in the camera coordinate
system, which has its origin at image centre and z-axis
perpendicular to the image plane.  So to calculate the range,
bearing and heading to Flo we need to transform this to
‘floor’ coordinates.  A translation and rotation, by amounts
calculated from the camera projection matrix, easily
achieve this since we know the pattern plane is
perpendicular to the floor plane.

All together now
In summary, the tracked feature positions of the four
corners are used in pairs in equation (7) to determine their
3D positions.  These positions are passed through the
camera projection matrix T and used to update the positions
of the features during the next tracking frame.  These same
points are also transformed into ‘floor’ coordinates where
some simple trigonometry can determine the range from
Joh, the bearing angle in relation Joh, and the heading angle
relative to the camera plane.  This is possible because the
forward tilt and height of the camera in relation to the floor
can be calculated from the calibrated matrix T.  These three
values are then used to calculate Flo’s trajectory.  The
trajectory is used both to visually servo on Flo by sending
motion commands to Joh from the vision system via a radio
modem, and also as a reference frame for litter pile location
specifications communicated by Flo to Joh.

5. EXPERIMENTAL RESULTS

The sequence of frames in Figure 4 was taken from video
footage of Joh visually servoing on Flo while Flo comes
past ‘sweeping’ litter from against a wall.

Figure 4 - Visual servoing (with range and bearing)

Figure 5 - Loss and re-acquisition of tracking

The view is from the vision system video stream with
overlay graphics.  The graphics is sometimes difficult to
see because of interlacing effects. The small black boxes
near the corners of the pattern represent where the features



are matched.  The larger the box the poorer the match, so a
very good match gives small spots.  The frames from
Figure 5 show how tracking is re-acquired after being lost
due to occlusion.  The 3D model was required because it
gives better predictions of feature positions by taking into
account perspective foreshortening.  This is important
because slight variations in the vertical spacing of the left
and right corners of the pattern are crucial for estimating
the heading when the angle relative to the camera plane is
small.  The algorithm can easily distinguish between 0o and
10o out of the camera plane – which translates to less than a
20cm error in the litter pile position at 1m – well within
Joh’s visual field of view.  This video footage is available
in mpeg format from our web page.

6. CONCLUSION

The method presented for tracking and calculating range,
heading and bearing estimates on a known moving target
provides the accuracy we require to support our
cooperative behaviour.  The method also requires little
calculation – mostly addition and multiplication, but some
trigonometric functions.  This allows the calculation to be
performed in real-time.  This economy of calculation is
largely due to the exploitation of many geometric
constraints available for this particular problem.
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