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Abstract

This paperpresentsananalysisof frictionlesscontactbe-
tweena rigid bodybelongingto a robotmechanismandone
belongingto its environment.Accordingto thisanalysis,it is
possibleto designahybridmotion/forcecontrollersuchthat
the motion andforce subsystemsare instantaneouslyinde-
pendentof eachother, andbothareinstantaneouslyindepen-
dentof theenvironmentaldynamics.Sucha controlsystem
shouldbe ableto operatein an environmentwith unknown
dynamics.

1. Introduction

Thispaperpresentsa mathematicalanalysisof thedy-
namicsof arobotmechanismin whichasinglebodyis
makingfrictionlesscontactwith a bodyin its environ-
ment. The latter is assumedto bepart of anarbitrary
rigid-bodysystemwith unknown dynamics.Thecon-
tact is modelledasa generalholonomicconstraintbe-
tweenthetwo bodies;andit is assumedthatthedegree
of constraintis constantat thecurrentinstant.

It is also assumedthat the contactconstraintsare
known,andthatthepositionsandvelocitiesof thetwo
participatingbodiesareknown andareconsistentwith
thecontactconstraints.

In addition to the above assumptions,the method
usedin this paperrequiresthat theparticipatingrobot
body have six degreesof motion freedom (DMF).
Apart from this, themethodis completelygeneraland
is applicableto any kind of robot,includingserialand
parallel robots arms, mobile robots and robotswith
non-rigidmechanisms.

Theanalysisemploysarticulated-bodyequationsto
model the dynamicsof the two participatingbodies,
and the change-of-basistechnique[1] to resolve the
equationsinto two independentsubsystems.Theanal-
ysis is conductedin a dual systemof vector spaces,
which assuresthe invarianceanddimensionalconsis-
tency of theresultingequations.

The outcomeis a pair of equations,onedescribing
thebehaviour of thecontactingrobotbodyin thesub-

spaceof motionfreedoms,andonein thesubspaceof
contactforces. At thecurrentinstant,theseequations
aredecoupledfrom eachother, andthe motion equa-
tion is independentof environmentaldynamics. Fur-
thermore,althoughthe actualcontactforce doesde-
pendon the environment,the sum of this force with
that requiredto maintaincontactwith themoving en-
vironmentdoesnot.

It is therefore possible to design a hybrid mo-
tion/force controller in which the motion and force
subsystemsareinstantaneouslydecoupled,andtheen-
vironmenthasnoinstantaneouseffectonthecontrolled
behaviour of either subsystem. There will be non-
instantaneouseffects,of course,but theseareall felt
at thepositionandvelocity levels,not theacceleration
level, so it may be possibleto treat them as slowly-
varyingdisturbancesfor thecontrolsystemto reject.

Suchacontrollershouldbeabletooperatein contact
with anenvironmenthaving unknown dynamics.

Theremainderof thispaperis organizedasfollows.
First,a little backgroundmaterialis presentedin order
to putthispaperinto context. Thisis followedbyanin-
troductionto themathematicsof systemsof dualvector
spaces,whichformsthemathematicalbasisfor all that
follows. The remainingsectionsdescribethe contact
model,theanalysisanda possiblecontrolstrategy.

2. Background

The main contribution of this paperconcernsthe de-
greeto whichthemotionandforcecontrolsubsystems
of a hybrid motion/forcecontrollercanbe decoupled
whentherobotis in contactwith anunknowndynamic
environment. The problemsof dynamicscompensa-
tion anddecouplinghave alreadyreceivedmuchatten-
tion; for example,see[2, 3, 4, 5, 6, 7, 8, 9, 10, 11].
In particular, it is alreadyknown that a hybrid mo-
tion/force controller with full compensationfor the
robot mechanism’s dynamicswill exhibit decoupled
behaviour whentherobotis in contactwith a rigid en-
vironment[12]; and it is known that decouplingcan



alsobe achieved when the robot is in contactwith a
generaldynamicenvironment,providedthecontroller
hasat leastpartialknowledgeof theenvironmentaldy-
namics[13, 14]. This papershows that the decou-
pling propertyextendsto the caseof contactwith an
unknowndynamicenvironment.

The subjectmatterof this paperis probablyclos-
estto thatof [13], sincebothpaperstackleessentially
the sameproblem. The differenceslie in the analyti-
calmethod,theresultsobtained,andtheproposedcon-
trol scheme.This paperusesarticulated-bodymodels
for both the robot and the environment. The former
is closely related to the operational-spaceapproach
[6, 15]; andthe latter is functionallyequivalentto the
second-ordermodelin [13] for instantaneousdynam-
ics.

The analysis is carried out using the change-of-
basistechniquedescribedin [1]. The nearestsimilar
idea is the modal decouplingof [3], which involves
an eigenvalue-baseddecompositionof the productof
an inversemassmatrix and a stiffnessmatrix. The
change-of-basistechniqueusesa differentkind of de-
compositionthat reducesmassmatricesand their in-
versesto block-diagonalform. Mathematically, the
distinctionis thatmodaldecouplingworksona matrix
that transformsvectorswithin a single vector space,
whereasthechange-of-basisdecompositionappliesto
matricesthatmapvectorsfrom onespaceto another.

Finally, this paperusesthe conceptof duality (or
reciprocity)betweenmotion andforce vectors,in or-
der to obtainan invariantformulation. It follows the
formalapproachadvocatedin [16], in whichthesevec-
tors are assignedto two distinct vector spaces,each
beingthe dual of the other. Many papersalreadyuse
notionsof duality and reciprocity, but often in a less
explicit or lessformal mannerthanhere. (For exam-
ple, generalizedvelocitiesandforcesform a dualsys-
tem.) More informationon this topic canbefound in
[17, 18, 19, 20,9].

3. Dual Vector Spaces

A systemof dual vectorspaces,or ‘dual system’for
short,is a mathematicalstructurecomprisingtwo vec-
tor spacesof equaldimensionanda scalarproduct(a
nondegeneratebilinear form) that takesoneargument
from eachspace.Eachvectorspaceis consideredto be
thedualof theother.

A dual systemcan be definedby listing its con-
stituentparts,soweshallusetheexpression

�������	��
 �
to

denotethedualsystemconsistingof thevectorspaces�
and

�
and the scalarproduct ‘



’. If 
�� �

and

� � �
thenthe scalarproductmay be written either
 
 � or � 
 
 , bothmeaningthesame,but theexpres-

sions
 
 
 and � 
 � arenotdefined.

Dual systemsarise naturally in the mathematical
modellingof physicalsystemsin whichascalarphysi-
cal quantityequateswith thescalarproductof two dif-
ferent typesof vector. In the caseof rigid-body sys-
tems,thescalaris work (or power, virtual work, etc.)
andthetwo typesof vectoraremotionsandforces.We
thereforedefineadualsystem

��������� � ��
��
in which

� �
is a spaceof � -dimensionalmotion vectors,

� �
is a

spaceof � -dimensionalforce vectors,and the scalar
product is the work done by a force vector acting
on a motion vector. Examplesof motion vectorsin-
clude(generalized)velocities,accelerations,infinites-
imal displacementsanddirectionsof motionfreedom;
and examplesof force vectorsinclude (generalized)
forces,momentaandcontactnormals.

The samebasicstructureappearsin bond graphs,
whereeffort andflow vectorscombineto form energy
scalars,and also in tensorcalculus,wherecovariant
and contravariant vectorscombineto form invariant
scalars.In hybrid motion/forcecontrol,dual systems
supportinvariantformulations[16, 9].

3.1. Reciprocal Coordinates

A basison a dual system
�������	��
��

is a setof vectors,
half of which form a basison

�
, while the otherhalf

form a basison
�

.

Let � be a basis on
��� � ��� � ��
 �

, and let � �� � � � � !�" where � �#� �%$ &���'�'�'���$ � "�( � �
is a basis

on
� �

and � !)� ��*+&,��'�'�'���* � "-( � �
is a basison

� �
.

In � coordinates,motion vectorsareexpressedusing� � andforcevectorsusing � ! .
If theelementsof � � and � ! satisfy$�./
�*,0 � 1�2

if 3��546
otherwise

then � � is saidto be reciprocalto � ! , and � defines
a reciprocalcoordinatesystemon

��� � ��� � ��
��
. (The

term‘dual coordinates’is alsoused.)Thespecialprop-
ertyof reciprocalcoordinatesis thatthescalarproduct
takesthe form 7 
98 �:7<; 8 and is invariantwith
respectto any changeof basisfrom onereciprocalco-
ordinatesystemto another.

Reciprocalcoordinatesarethe dual-systemequiva-
lent of orthonormal(or Cartesian)coordinatesin aEu-
clideanvectorspace,but thereis oneimportantdiffer-
ence:thereare �>= freedomsto choosea reciprocalba-
sison a dualsystem,comparedwith only �@?A�CB 2�D�EGF
freedomsto choosean orthonormalbasison a Eu-
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Figure1: Thedifferencebetweenanorthonormalbasison a
2DEuclideanspace(a)andareciprocalbasisona2Dsystem
of dualvectorspaces(b).

clidean � -space. Theseextra freedomsencompass
generalizedcoordinates,andthey provide thechange-
of-basistechniquewith enoughfreedomsto work.

The differenceis illustrated in Figure 1. The or-
thonormalbasisin Figure1(a)consistsof two unit vec-
tors at right angles. Sinceneitherthe lengthsof the
vectorsnor theanglebetweenthemcanbealtered,the
only parameterthatcanbevariedfreely is theoverall
orientationof thebasis.In contrast,thereciprocalbasis
shown in Figure1(b) consistsof four vectorsin total,
two in eachspace.In general,onemaychooseany two
of thesevectorsfreely, leaving theothertwo to bede-
terminedby the reciprocityconditions;so therearea
total of four freedomsto choosea reciprocalbasison
thisdualsystem.

AlthoughFigure1(b) usesthe visual cuesof angle
and magnitudeto suggestthe reciprocity conditions
(for example,

$ &
is shown at right anglesto

* = to sug-
gest

$P&Q
R* = � 6
), it shouldberealizedthattheconcepts

of angleandmagnitudeareusuallyundefinedin adual
system.

3.2. Coordinate Transforms

In general,motionandforcevectorsobey differentco-
ordinatetransformationrules. If � and S aretwo re-
ciprocalbaseson

��� � ��� � ��
��
, and 7UT , 7WV ,

8 T and8 V arecoordinatevectorsrepresenting7X� � �
and8 � � � in � and S coordinates,respectively, then7 V �ZY\[]7 T �^8 V �ZY\_ 8 T �7 T �ZY]` &[ 7 V �^8 T �ZY ` &_ 8 V �

where Y [ and Y _ arethe coordinatetransformation
matricesthatperformthe transformationsfrom � � toS-� coordinates,and � ! to Sa! coordinates,respec-

mapping transformation transform
rule type� �cbd � � e VU�ZY [ e TcY ` &[ similarity� �cbd � � f VU�5Y _ f TcY ` &[ congruence� �-bd � � g V �ZY\[ g T Y ` &_ congruence� �-bd � � h V �ZY\_ h T Y ` &_ similarity

Table1: Transformationrulesfor linearmappingsdefinedon
adualsystem.

tively. ThereciprocitypropertyensuresthatY _ �i?jY ` &[ D ; �
which is sufficient to guaranteethe invarianceof the
scalarproduct.

The two vectorspacesof a dualsystemgive rise to
four typesof linearmapping:

� �]bd � �
,
� �]bd � �

,� �kbd � �
and

� �\bd � �
. They canall berepresented

using �\l\� matrices,but eachhasits own transforma-
tion rule, asshown in Table1. (They areessentially
thesameastherulesfor transformingthefour typesof
dyadictensor.) Observe that two mappingsobey sim-
ilarity transforms,which preserve eigenvalues,while
theothertwo obey congruencetransforms,whichpre-
serve symmetryanddefiniteness.

3.3. Subspaces

Any subspaceof avectorspacecanbeexpressedasthe
rangeof a suitablematrix. If m is an n -dimensional
subspaceof an � -dimensionalvectorspacethenit can
be expressedas the range of an �olin matrix p
whosecolumnsarethecoordinatesof any n linearly-
independentvectorsthatspanm . Thesevectorsform a
basison m , so p servesto defineboth a subspaceand
a basis.Thematrix transformslike its columnvectors;
andany elementof m canbeexpressedin theform p�q ,
where q is an nrl 2 vectorof coordinates.

Subspacescan be usedto define linear decompo-
sitions of the parentspace. If a vector space

�
is

the direct sum of two subspacesm & and m = (written� �sm &ut m = ) thenany vector � � � canbedecom-
poseduniquelyinto � � � &Pv � = where � & �Wm & and� = �]m = . Any two subspaceswill direct-sumto

�
pro-

vided they have no nonzeroelementin commonand
their dimensionssumto thedimensionsof

�
.

Thedecompositioncanalsobewritten in theform� �ip & q & v p = q = �iw�p & p =yx�z q &q =|{ '
In thisequation,w}p & p = x is a squarematrix thatcanbe
interpretedasacoordinatetransform,and w�qO; & qO; = x ; is



a representationof � in thecoordinatesystemdefined
by thecolumnsof w�p & p = x .

If two subspacesm~( � �
and ��( � �

have the
propertythat � 
9� � 6

for every �U�om and
� �i�

then we say that they are reciprocal,and write m��� . If, in addition, they satisfy �Q�R��?Am D v �Q�R�]?j� D �� (i.e., their dimensionssum to � ) then we say that� is the reciprocal complement of m , andwrite ���mP� . Reciprocalcomplementsareunique,andsatisfy?�m � D �|��m .

Notice that the word ‘reciprocal’ has a different
meaningin ‘reciprocalcomplement’to thatin ‘recipro-
calbasis’.In theformer, it refersto thescrew-theoretic
definitionof reciprocitybetweentwistsandwrenches;
while in the latter, it refersto the fact that theproduct
of thetwo setsof basisvectorsis theidentitymatrix. In
multilinearalgebra,m � wouldbecalledtheannihilator
of m .

3.4.
���

and
���

Thedualsystem
�����9��������
��

is ideallysuitedtodescrib-
ing rigid-bodydynamics;andmostexisting 6D vector
notationscan easily be translatedinto a dual-system
format,sothatexisting formulasandequationscanbe
re-used.In general,thetranslationprocessinvolvesthe
followingsteps:

1. Formallyassigneachvectorquantityto theappro-
priatevectorspace(

���
or
���

), andclassifymap-
pingsanddyadicsasperTable1.

2. Adoptareciprocalcoordinatesystem(seebelow).

3. Convert conventionalaccelerationsto spatialac-
celerations[21], sothatthey behave like vectors.

4. Abandoncertainconceptsthat are incompatible
with duality (e.g.innerproducts,orthogonalcom-
plementsandthecommon-screw relationbetween
twistsandwrenches).

Most 6-D vector notationsusePlücker ray and/or
axiscoordinates(see[20]). If raycoordinatesareused
for

�-�
andaxiscoordinatesfor

���
, or vice versa,then

thecoordinatesarereciprocal.

4. Dynamic Model of Contact

This sectionpresentsa dynamicmodel of a general
stateof contactbetweena robotbody ��� andanenvi-
ronmentbody ��� . Themodelconsistsof anequation
of motion for eachparticipatingbody (in the absence

�/� � �
�<� ���

� �
� �

Figure2: Contactbetweenrobotbody ��� andenvironment
body ��� .
of contact)anda descriptionof thecontactconstraint.
Theequationsare:� � � � � ? 8 � B 8G¡ D vU¢ � � (1)� � �£� � 8G¡/vW¢ � � (2)� � B � � �ip ¡k¤q v ¤p ¡ q (3)

and ?¥p ¡ D ; 8 ¡ ��¦ ' (4)

(SeeFigure2.)

Eqs.1 and2 expressthe dynamicbehaviour of �§�
and ��� in the form of articulated-bodyequationsof
motion [21]. This type of equationallows eachbody
to be a memberof an arbitrary rigid-body systemof
unlimited size andcomplexity. Neitherequationde-
scribesthe dynamicsof an entire rigid-body system,
but eachdescribesthe totality of dynamiceffectsthat
are felt at the relevant body. They arethereforefully
generalfor thetaskathand.� � and � � are the spatialaccelerationsof ��� and��� , respectively; ��� and ��� aretheirarticulated-body
inverseinertias;and

¢ � and
¢ � aretheir biasaccelera-

tions.
¢ � is definedastheaccelerationthat �§� would

have if
8 �+B 8 ¡ �¨¦ , andthereforeaccountsfor thesum

of all forcesactingon � � other than
8 � B 8 ¡ . ¢ � is

definedsimilarly. ��� and ��� areSPSDmatriceswith
ranksequalto theDMF of their respective bodies.At
oneextreme,if ��� hadno freedomto move thenthe
rankof �§� wouldbezero(whichimpliesthat �§�©��¦ ).
At theotherextreme,if ��� hada full 6 DMF then ���
wouldhave full rankandhencebeanSPDmatrix.8 � isaforcetransmittedto ��� fromotherpartsof the
robotmechanism,and

8 ¡
is theforcetransmittedfrom��� to ��� throughthecontact.

8 � is assumedto contain
all controllableforcesactingon ��� , but its exactdef-
inition canbechosento suit individualcircumstances.
Any forcethatis not includedin

8 � will have its effects
incorporatedinto

¢ � instead.
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Figure3: A rigid robot mechanism(a) and a robot with a
compliancebetweentheendeffectorandthearm(b).m ¡ ( ���

is the subspaceof instantaneousmotion
freedomspermittedby the contactconstraintsat the
currentconfiguration,and p ¡ is a matrix representingm ¡ . If thecontactimposesª constraintson therelative
motionof ��� and �«� then m ¡ hasdimension¬ B�ª andp ¡ is a ¬-l#?A¬�B#ª D matrix.

Eq.3 expressestheaccelerationconstraintimposed
by the contact,which is simply the time-derivative of
thevelocity constraintequation: � ��B � ����p�q . At
theaccelerationlevel, all velocitiesareassumedto be
known; so

¤q is treatedasavectorof unknownacceler-
ationvariables,while q is treatedasknown.

¤p ¡ is also
assumedto beknown.

Finally, Eq. 4 expressesthe fact that the constraint
forcedoesno work in any directionof motion that is
compatiblewith themotionconstraints.

Eq. 1 is capableof modellingthe dynamicsof any
body in a generalrigid-body system. It is therefore
applicableto practicallyany robot, including mobile
robots,parallelrobotsandsoon. A coupleof examples
areshown in Figure3. Both areserialrobotarms,and
in bothcases��� is theendeffector.

Figure3(a)showsarobotwith arigid mechanism—
onecomposedentirelyof rigid bodiesandideal joints.
In this example,Eq. 1 canbe equatedwith the oper-
ational-spaceformulation of end-effector dynamics,
suchasEqs.14 or 50 in [6] or Eqs.3, 9 or 23 in [15].
If wetake ­¯®° v5±]v³² ��´
to be a representative operational-spaceformulation,
where

­
is the operational-spaceinertia of the end-

effector and
±

and
²

contain velocity-productand

gravitational terms,respectively, then � � � ­ ` & and¢ �)�£B ­ ` & ? ±<vU² D .
Therobot in Figure3(b) consistsof anend-effector

body connectedto the end of a rigid robot arm via
a generalizedspringanddamper. A systemlike this
could beusedto modela robot with a wrist-mounted
6-axisforcesensor. Theendeffectorin thisexampleis
kinematicallyindependentof thearm,soEq.1 should
be the equationof motion of just this onebody. ���
shouldbe the inverseof the end-effector’s rigid-body
inertia;

8 � shouldbe the force transmittedto the end-
effectorthroughthespringanddamper;and

¢ � should
accountfor gravity andvelocity-productterms. Bear
in mind that � � refersto the accelerationof the end-
effector, not theendof thearm.

5. Analysis

This sectionderivesanequationof motionfor ��� , in-
cluding theeffect of thecontact,usingthechange-of-
basistechniquedescribedin [1]. Thismethodrequires�µ� to beanSPDmatrix,soit is applicableonly to sys-
temsin which ��� has6 DMF in the absenceof the
contactconstraint.If � � hasfewerDMF thena differ-
entanalyticalproceduremustbeused,whichis outside
thescopeof this paper.

Thefirst stepis to definefour subspaces,m & , m = , � &
and � = , thatsatisfythefollowing equations:m &Pt m = � �-�@� � &	t � = � ���@�m & �¶m ¡ � � & �¯?¥��� D ` & m & �m = �i���/� = � � = �¯?�m ¡ D � '
Thesespacesaredefineduniquelyby m ¡ and �µ� , and
they have the effect of decomposing

�����9���·�,��
��
into

a pair of dual subsystems,
� m &G� � &���
�� and

� m = � � = ��
�� ,
which arealignedwith the directionsof freedomand
constraintasspecifiedby m ¡ and ?�m ¡ D � .

Thesecondstepis to definematricesp & , p = , ¸ & and¸ = to representtheabove four subspacesandsimulta-
neouslysatisfyw}p & p = x ; w�¸ & ¸ = x �£¹ �,ºy� '
This conditionensuresthat the columnvectorsof the
four matricesform a reciprocalbasison

���-�G��������
��
.

In this special basis, the coordinatesfall naturally
into two groups: one associatedwith

� m & � � & ��
�� and
one with

� m = � � = ��
�� . Furthermore, ��� takesblock-
diagonalform, with one block in

� m & � � & ��
�� andone
in
� m = � � = ��
�� . If p & and ¸ = areany two matrix repre-

sentationsof m & and � = thenthereciprocitycondition
canbesatisfiedby choosing¸ & �o?»� � D ` & p & ?¥p ; & ?»� � D ` & p & D ` &



and p = �£� � ¸ = ?A¸ ; = � � ¸ = D ` & '
Thenext stepis to transformEqs.1–4to thespecial

basis. If we define Y [ and Y _ to be the coordinate
transformationmatricesfor motionandforce vectors,
respectively, from the givenbasisto thespecialbasis,
then Y [ �iw�¸ & ¸ = x ; � Y ` &[ �iw�p & p = x �YC_��iw�p & p =yx ; � Y ` &_ �¯w�¸ & ¸ =yx '
If w�? � � & D ;)? � � = D ; x ; is thecoordinatevectorrepresenting� � in thespecialbasisthen

z � � &� � = { �ZY\[ � � � z ¸�; & � �¸�; = � � {
and � � �5Y]` &[ z � � &� � = { ��p & � � & v p = � � = '
All othermotionvectorstransformsimilarly; andforce
vectorsobey similar equationswith Y _ in place ofY [ .

TransformingEqs.1 and2 to thespecialbasispro-
ducesz � � &� � = { � z �µ� &�& ¦¦ �µ�=�= { z 8 �& B 8 ¡&8 �= B 8 ¡= { v z ¢ � &¢ � = {(5)
andz � � &� �= { � z ��� &�& �§�& =���= & �§�=�= { z 8 ¡&8 ¡= { v z ¢ � &¢ �= { � (6)

where �µ�.R. �o¸µ;. �µ�@¸ . and �§�.�0 �o¸�;. �§�>¸ 0 , 3 � 4c�� 2 � F " , from theappropriateformulain Table1.

TransformingEq.3 to thespecialbasisproduces

z � � & B � � &� � = B � �= { � z ¹¦ { ¤q v z ¢ ¡ &¢ ¡ = {
where

¢ ¡ � ¤p ¡ q . (Notethespecialform of p ¡ in the
specialbasis.)As

¤q is a freevariable,thereis actually
noconstraintonthevalueof � � & B � �= ; sotheconstraint
equationcanbesimplifiedto� � = B � �= � ¢ ¡ = ' (7)

Finally, transformingEq.4 to thespecialbasis,and
simplifying theresult,produces8 ¡& ��¦ ' (8)

Now that theequationsareall expressedin thespe-
cial basis,all that remainsis to solve them. Substitut-
ing Eq.8 into Eqs.5 and6 produces� � & �i� � &�& 8 �& vU¢ � & � (9)� � = �£� �=�= ? 8 �= B 8 ¡= D v¼¢ � = (10)

and � �= �i� �=�= 8 ¡= v³¢ �= ' (11)

(We arenot interestedin � � & .) SubstitutingEqs.10and
11 into Eq.7 produces� � =�= ? 8 �= B 8 ¡= D vU¢ � = B³� �=�= 8 ¡= B ¢ �= � ¢ ¡ = �
from whichweobtain8 ¡= �¯?¥� � =�= v � �=�= D ` & ?¥� � =�= 8 �= vk¢ � = B ¢ �= B ¢ ¡ = D ' (12)

Eqs.9, 10 and 12 betweenthem describethe dy-
namicbehaviour of ��� , taking into accounttheeffect
of the contact. Eq. 9 describesthe behaviour of �§�
in
� m &,� � &,��
�� , while Eq. 10 (with

8 ¡= givenby Eq. 12)
describesits behaviour in

� m = � � = ��
�� .
The moststriking featureof theseequationsis that

Eq.9 is independentof environmentaldynamics.This
meansthatthebehaviour of ��� in

� m &,� � &%��
�� is instan-
taneouslyindependentof environmentaldynamics,al-
though the environmentwill, of course,have an in-
tegral effect that is evident over time. Another use-
ful featureis that Eqs.9 and 10 aredecoupledfrom
eachother, which meansthat the behaviour of �§�
in
� m & � � & ��
�� is instantaneouslyindependentof its be-

haviour in
� m = � � = ��
�� ; anda third interestingfeatureis

thatof all the quantitiesappearingin Eq. 6, only ���=�=
and

¢ �= have any instantaneouseffecton ��� .
To summarize,theequationof motionof ��� canbe

expressedasthesumof two instantaneouslyindepen-
dentsubsystems:one in

� m &,� � &���
 � , which is aligned
with themotionfreedomsof thecontactconstraint,and
onein

� m = � � = ��
�� , which is alignedwith thedirections
of constraint.The former is instantaneouslyindepen-
dent of environmentaldynamics,while the latter de-
pendson only a subsetof the dynamicsof ��� . The
only assumptionneededto achieve theseresultsis that�µ� is anSPDmatrix.

6. Control

This sectionappliesthe resultsof the previous sec-
tion to the analysisof a control law for a hybrid mo-
tion/forcecontroller. It is shown that the motion and
force subsystemsare instantaneouslydecoupled,and
that the former is decoupledfrom the environmental



dynamics. A modificationto the force subsystemis
suggestedthatdecouplesit alsofrom theenvironmen-
tal dynamics.

Considerthefollowingcontrollaw:8 � �¯?¥� � D ` & ?¥p & 
@[5B ¢ � D v ¸ = 
@_ � (13)

where
	[ and
	_ arevectorscomputedby themotion-
and force-controlsubsystems,respectively. Observe
that it doesnot requireany knowledgeof theenviron-
ment’s dynamics. Transformingthis equationto the
specialbasisproduces

z 8 �&8 �= { � z ?¥��� &�& D ` & ?j
 [ B ¢ � & D
 _ B½?¥���=�= D ` & ¢ � = {�¾
andsubstitutingtheexpressionsfor

8 �& and
8 �= from this

equationinto Eqs.9 and10produces� � & �Z
 [ (14)

and 8 ¡= v ?¥� � =�= D ` & � � = �¨
 _ ' (15)

Thesearetheequationsof motionfor ��� underclosed-
loopcontrolvia Eq.13. Eq.14describesthebehaviour
of ��� in

� m & � � & ��
�� asa functionof themotioncontrol
signal 
@[ ; andEq. 15 describesthe behaviour of ���
in
� m = � � = ��
�� asa function of the force control signal
	_ .
Theseequationsdescribea pair of decoupledsub-

systems,in the sensethat 
@[ has no instantaneous
effect in

� m = � � = ��
�� and 
	_ hasno instantaneousef-
fect in

� m & � � & ��
�� . Thereforea hybrid motion/force
controllerthat usesEq. 13 to combinethe outputsof
theforceandmotioncontrollawsexhibits no instanta-
neouscrosstalkbetweenthemotion andforce control
channels.Therewill, of course,still besomedegreeof
cross-couplingbetweenthetwo subsystems;but these
effectsarecarriedvia position-andvelocity-dependent
terms,so it may be feasibleto treat themas slowly-
varyingdisturbancesfor thecontrolsystemto reject.

Observe thatneitherEq.14 norEq.15 containsany
instantaneousdependency on the environment. We
have alreadyestablishedthis propertyfor Eq. 9, so it
is not surprisingif it is inheritedby Eq.14; but Eq.15
demonstratesthattheenvironmentaldependency of

8 ¡=
exactly cancelsthatof ?»�µ�=�= D ` & � � = , sothattheexpres-
sion

8 ¡= v ?»�µ�=�= D ` & � � = is independentof environmental
dynamics.This quantitycanbethoughtof asthesum
of thecontactforceandtheforcerequiredto accelerate
the robot so as to maintaincontactwith the environ-
ment.

If theforcecontrolsubsystemis designedsothatthe
objective is to control the value of

8 ¡= v ?¥���=�= D ` & � � =

ratherthan
8 ¡= , then the controlledbehaviour in both

the motion andforce subsystemswill be independent
of environmentaldynamics.Theenvironmentwill, of
course,still haveaneffectontherobot’sbehaviour, but
it doesso via position-andvelocity-dependentterms
which thecontrolsystemcouldtreatasslowly-varying
disturbances.A control systemthat seeksto control8 ¡= v ?»�µ�=�= D ` & � � = in thefirst instance,still hastheoption
of controlling

8 ¡= via anouterloopoperatingat a lower
frequency.

Finally, note that Eq. 13 is not a new control law;
so theresultsin this sectionapplyalsoto any existing
control schemethat happensto usethe samecontrol
law, or anequivalentone.

7. Conclusion

This paperhas presentedan analysisof frictionless
rigid-bodycontactbetweena generalrobotanda gen-
eral dynamicenvironment,which assumesonly that
theparticipatingrobotbodyhassix degreesof motion
freedom.Theanalysisusesarticulated-bodyequations
to describethe dynamicsof the participatingbodies,
andthechange-of-basistechniqueto resolvetheequa-
tionsinto independentsubsystems.

It wasshown thattheequationof motionof thepar-
ticipatingrobotbodycanberesolvedinto two subsys-
tems,onein thespaceof motionfreedomsandonein
thespaceof contactconstraints,andthat theformeris
instantaneouslyindependentof environmentaldynam-
ics.

A hybrid motion/forcecontrollerbasedon thesere-
sults is free of instantaneouscross-couplingbetween
the motion and force control channels,and the con-
trolled motion behaviour is instantaneouslyindepen-
dentof environmentaldynamics. If the force-control
subsystemis designedto control the sum of the ac-
tual contactforce andthe force requiredto accelerate
the robot in pursuit of maintainingcontact,then the
controlledforce behaviour is also instantaneouslyin-
dependentof environmentaldynamics.

An experimentalinvestigationof thistheoryis being
planned.
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