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Abstract The task is for our two autonomous mobile robots to
This paper describes the design and clean the floor of our laboratory. The ‘“Yamabico’ robots
implementation of a  behaviour-based [Yuta 91] shown in Figure 1 are heterogeneous in the sense
architecture in the context of multi-robot that each has different tools and sensors such that neither
cooperative cleaning. The architecture uses a  can accomplish the task alone.
distributed action selection mechanism that One of the robotsJoh’, has a vacuum cleaner that can
unifies planning of spatial and topological paths, be turned on and off via software. Joh'’s task is to vacuum
cooperative  interactions  and  reactive piles of litter from the laboratory floor. It cannot vacuum

behaviours. The system is implemented using & ¢jose to walls or furniture. It has the capability to ‘see’
nurlntta_er O.f. sensing  technologies  including piles of litter using a CCD camera and a video transmitter
real-time vision. that sends video to thHaujitsu MEP tracking vision system
1. INTRODUCTION The vision system is capable of Ia'mdma'rk-based navigation
) . ) . and can operate safely in dynamic environments at speeds
Research into multi-robot systems is driven by thg,; o soomm/sec [Cheng 96]. The vision system uses
assumption that multiple agents have the possibility Qgmpiate correlation, and can match about 100 templates at

solve problems more efficiently than a single agent doe?rame rate. The vision system can communicate with the

Agents must therefore cooperate in some way. There A8bot, via a UNIX host, over radio modems (see Figure 2).

many tasks for which a single complex robot could be , .
engineered; however, in many cases there are advantages to | 1€ other robotFlo’, has a brush tool that is dragged

using multiple robots. A muiti-robot system can be more?Ver the floor to sweep distributed litter into larger piles for
robust because the failure of a single robot may only caus®h to pick up. It navigates around the perimeter of the
partial degradation of task performance. In addition, théaboratory where Joh cannot vacuum and deposits the litter
robots can be less complex since each is only responsibi open floor space.

for partial fulfilment of the task. Our philosophy is to

design heterogeneous multi-robot  systems  where Velaz et
appropriate.
The aim of the research is to investigate cooperation el

by implementing a cooperative multi-robot cleaning task.
One result was the development of an architecture for
distributed planning within  the behaviour-based

framework. This paper describes the architecture, but first
a description of the task and the implementation of the
required sensing technologies.
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Figure 2 - Joh’s System Configuration

_ : The task is to be performed in a real laboratory
Figure 1 - Yamabico's Flo and Joh environment. Our laboratory is cluttered and the robots
have to contend with furniture, other robots, people,



opening doors, changing lighting conditions, equipment  The CCD camera lens distorts the images and this

with dangling cables and other hazards. effect can be seen in the correlation values, and must be
compensated for using a normalisation procedure.
2. SIMPLE BEHAVIOUR The first graph in Figure 3 shows the raw correlation

One particular experiment involves visual observation/@!ues while looking at bare carpet. The normalisation
of Flo by Joh, and communication between themConsists of applying weights to these values that have been
Specifically, Flo announces to Joh when it initiates the littefa/culated by fitting a polynomial to the lens distortion
dumping procedure, and then communicates the relativilfing calibration, and then thresholding. The procedure

position of the dumped pile of litter upon completion. Joh@iSO normalises for the average brightness of the image.
can observe Flo, and if Joh can see Flo when th he result can be seen in the graph on the right of the

announcement is made, then Joh can calculate tHEY'€:

approximate position of the litter relative to itself. Joh then [ g . lﬁ- ——
navigates to the location and visually looks for and servo’s il T - =
on the litter in order to vacuum it. This experiment requires » EEEN 3 ]
a number of simple behaviours and visual sensing aEEEswH
capabilities, which will now be described.

2.1Whisker based wall following

In order to sweep litter close to the walls, Flo needs g
close wall following behaviour. We investigated a number
of sensor technologies for this purpose, but finally we hac '
to develop unique proportional whiskersijig 96a]. Flo Figure 4 - (a) Obstacle avoidance (b) Interest operator

has two whiskers mounted on its left side for wall following Although using template matching to match a texture
and two whiskers in front for collision detection. Thesuch as carpet works poorly on single matches, at

whiskers are also used for navigation (see Figure 1). The, e rate and with robot motion, the stochastic behaviour
whiskers are contact sensors that give direct mformatlo[g robust.

about the distance between the robot and the wall being ~ 5nce Joh has navigated to the approximate location of
followed. '_rhe |nfo_rmat|or_1 from two whlsl_<ers is fused_ with 5 pile of litter left by Flo, it has a vacuum behaviour that

odometry information using a Kalman filter to obtain any st yisually locate the pile and servo on it in order to

estimate of the robot’s position and orientation relative tQ,;-,um over it.

the wall. This is then fed into a standard Proportiona

Integral Differential (PID) controller to track along the wall. Interest Operator

The behaviour architecture used to navigate the robot (see Joh needs to identify piles of litter on the laboratory

[Jung 97]) also uses the whiskers to detect landmarks, suflbor in order to visually servo on them and vacuum over

as doors, corners, walls, poles etc. them. The vacuum is mounted under the robot so it must
) ] drive over the pile, which takes it out of view. Because a
2.2Visual behaviour pile of litter doesn't have a definite shape, matching against

Joh also needs to navigate reliably around th& template is unlikely to locate it in the image. Hence we
laboratory without colliding with obstacles, people or Flo,deyelope.d a simple ‘interest operator'. can locates isolated
and it has the advantage of vision. A number of visuapbjects in the scene, with approximately the correct

behaviours were required. colouring. The interest operation primarily applies a zero-
) crossing convolution to the correlation values. The effect
Free-space segmentation from the image in Figure 4b can be seen in the graph below.

We have implemented a visual free floor space
detector using the real-time template matching capability of
the Fuijitsu vision system to segment the image into ‘carpet’
and ‘non-carpet’ areas.

The vision system delivers a correlation value for each
template matched - the lower the value the better the match.
A set of templates of the carpet in our laboratory is stored
for matching. In Figure 4a, the smaller white squares
indicate a better match. All values below a threshold
signify free-space.

A\ Figure 5 - Correlation values from 'interest operator’

In order to servo on the litter, a transformation from
image coordinates to floor coordinates is performed and the
PID controller directed to drive in the appropriate direction.
Joh is also fitted with a bump sensor, which will trigger in
the event that the behaviour erroneously servos on an
obstacle on the floor, for example a book.

Figure 3 - Before and after normalisation and thresholding



Visual Servoing integrated learning and adapted it to fit with the

Joh has a behaviour that can visually detect and tradkehaviour-based philosophy. It is important to note that the
Flo's motion. This behaviour servos on Flo to keep itrchitecture does not comprise of an existing scheme
visible and hence calculate the motion relative to Joh'setro-fitted with new features but is a homogeneous one that
coordinates.  This information is used to deduce th@nly borrows theideas from other architectures. The
approximate location of the dumped litter for the vacuunfemainder of this section discusses the ABBA architecture.
behaviour. There are two components to this behaviouMany details are omitted for brevity.
tracking Flo’s image for visual servoing, and determining,

the 3D position and pose. .1Components and Interconnections
Flo has been marked with a unique rectangular pattern The behaviour of a system is expressed as a network
for tracking, as shown in Figure 6a below. that consists of two types of nodes in ABBA -

— Competence Moduleand Feature Detectors Competence
modules (CMs) are the smallest units of behaviour
selectable, and feature detectors (FDs) deliver information
about the external or internal environment.

The graphical notation is shown below where
rectangles represent competence modules and rounded
rectangles represent feature detectors. Although there can
be much exchange of information between CMs and FDs
the interconnections show in this notation only represent the
logical organisation of the network for the purpose of action
selection, and hence planning.
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Figure 6 - (a) Flo from Joh's camera (b) Cleaning

Ten templates from the corners and sides of the
rectangle are tracked. Due to changes in lighting,
orientation and size, the templates would easily be lost. So
a network of Kalman filters is used, one per template, to
estimate the position of each from the vision system
matching information and the position of the other nine 5182, c.87 -87 - = - +veCorrelation
templates [Heinzmann 97]. This results in tracking that is
very robust to changes in scale and orientation.

\p:.82 \\/ - - 4 -ve Correlation
c.82 - .
Joh needs to know the relative location and pose of Fl

in order to arrange a ‘rendezvous’. The position and posgigure 7 - ABBA Network components and interconnections

of Flo are computed using a projective transformation .. cM has an associatédtivation and the CM
between the plane of the rectangular pattern marking on JQfecteq for execution has the highest activation from all

and_ a model rectangular pattern marking in a know eadyCMs whose activations are over the current global
arbitrary plane. Four of the ten templates tracked_ on Mfreshold. A CM isReadyif all of its preconditionsare
pattern are sufficient to  compute the projectivegyiisfied. The activations are continuously updated by a
transformation. spreading activation algorithmEach FD provides a single
Condition that is continuously updated from the
3. DISTRIBUTED PLANNING environment.

One of the more sophisticated experiments requires It is important to note that although ABBA seems to
both robots be capable of robust navigation around theake an arbitrary Cartesian style division between sensing
department floor such that they can arrange rendezvous and acting (FDs and CMs), that this is not necessarily so.
particular locations.  This implies that the simpleFeature detectors can deliver conditions based in the
behaviours must be combined in a way that allows both thiaternal state of CMs as well as conditions based on
execution of the cleaning task and navigation via an internaensors. This is analogous to saying that CMs can operate
map. The map should be learnt. by effecting FDs as well as actuators.

So we are faced with the classic action selection  Care should be taken to ensure feature detectors are
problem. We needed to design a planning mechanism thatitten to deliver information from sensors as directly as
is distributed, grounded in the environment (situated), angossible, rather than from any internal representation of an
employs a uniform action selection mechanism over alnthropomorphic category.
behaviour components. Because the design was undertaken The network designer needs to be mindful that the
in the context of cooperative cleaning, we also required thdynamics of a multi-robot/environment system has no a
mechanism to be capable of planning cooperativeriori boundaries. The boundaries can be redrawn as
behaviour. appropriate for thinking about the system dynamics to

After examining the advantages of a number ofinclude arbitrary portions of robot and environment
existing schemes, we have developed Anshitecture for  behaviour. A single network may describe part of a robot-
Behaviour Based Agents ABBA borrows, adapts and environment interaction, or possibly a whole multi-robot-
integrates many mechanisms from other architectures. Environment system.
particular it utlises a spreading activation mechanism  The system behaviour is designed by creating CMs
similar to that proposed by Maes [Maes 90a]. We addednd FDs and connecting them wigtecondition links

Key:

—» Activation Link
(sucessor, predecessor or conflictor)

Precondition



These are shown in the diagram above as solid lines from a & - Activation removed from conflictors to goals that
FD to a CM ending wi;h a whitg square. It is possible to need to remain achieved

have negative precondltlons, which must be_ f{;\l_se_ before the ¢ - Activation injected by a feature detector whose
CM can beReady The designer may also initialise some condition is true (C > T)

correlation links to bootstrap learning. The correlation i i )
between a FD and a CM, which can take values [-1...1], is | - The confidence threshold. A condition with

updated at runtime as follows. confidence ¢ > T is considered true.

Each time the CM becomes active, the value of the R - The correlation threshold. A correlation
FD’s condition is recorded. When the CM is subsequently coefficient ¢ > R is considered positively
deactivated, the current value of the condition is compared correlated. . _ _
with the recorded value. It is classified as oneBaicame (and c < -R is considered negatively correlated)

True Became Fals€Remained Truer Remained FalseA

. L The first three rules determine how the network is
count of these cases is maintain®] B, R, R). The I " ! W !

activated and inhibited from external sources, such as the

correlation is then: current situation as perceived by the set of FDs that output
(2B, +R) (2B +Ry) conditions, and the global goals of the agent.
corr =—— -
2N 2N 1. ACTIVATION BY THE SITUATION
Where the total sampled = B, + B + R+ R Feature detectors (FDs) that output a conditon

spread activation to any CM whose precondition set

At each update the counts are decayed by multiplying containsc, if c is true. The activation sent to a CM is

with N/(N+1) so that recent samples have a greater effect .
than historic ones. This keeps the network plastic. The (C.a/n y\(here nis the numb_er of CMS whose
diagram shows the correlation values on the dashed lines - Precondition sets contam and C is the confidence of
thecorrelation links the condition. When a CM receives activation from a
Together these two types of links, the precondition FD it |s_Q|V|ded by the number of conditions in it's
links and the correlation links, completely determine how precondition set.
activation spreads thought the network. The othe
activation linksthat are shown in Figure 7 are determinec?: ACTIVATION BY GOALS N
by these two and exist to better describe and understand the An external goal is represented by a conditto(as
network and the activation spreading patterns. The output by a FD) that must be achieved. There are two
activation links will feature in the description of the types of goalspnce only goalswhich need only be

spreading activation algorithrim the following section, and achieved once, andermanent goals that once
are determined as follows. . achieved need to be maintained.
*  There exists auccessor linfrom CMp to CM s A goal increases the activation of the CMs that are

for every FD condition inss preconditions list
that is positively correlated with the activityof
» There exists gredecessor linkn the opposite

correlated with it's conditios by (W.))/n, where n is
the number of CMs activated by this goal, and W is
direction of every successor link. the qc_)rrelatlon between any paruculqr CM and the
. There exists @onflictor linkfrom CMx to CMy conditionc. When a CM receives activation from a
for every FD condition inys preconditions ist goal it is divided by the count of predecessor links and
that is negatively correlated with the activityxof activating goals for this CM, except that predecessor
The successor, predecessor and conflictor links links or activating goals that share their defining
resulting from the preconditions and correlations are shown condition are counted only once for each condition.
in Figure 7.

In summary, a CM has a predecessprif p is likely 3. INHIBITION BY PERMANENT GOALS

to make one ofs preconditions true. A CM has a A permanent goal is an external goal that once
conflictory, if y is likely to make one af's preconditions achieved, must remain achieved. A goal inhibits CMs
false. that are negatively correlated with it's conditiomy

. - (W.9)/n, wheren is the number of CMs inhibited by
3.2The Spreading of Activation this goal, and W is the negative of the correlation
The scheme for spreading the activation follows the between any particular CM and the conditionwWhen
algorithm proposed by Maes. The system proceeds in a CM receives inhibition from a permanent goal it is
discrete time-steps. At each step some activation is injected divided by the count of conflictor links and inhibiting
into the system, removed from the system, and goqis for this CM, except that conflictor links or

Le-rﬂstnb#\ed within  the ts)yste][n Iagccl)rdlng tot the ruléast inhibiting goals that share their defining condition are
elow. ere are a number ot global parameters used 10 ., nteq only once for each condition.

tune the dynamics of the system:

TU - The mean level of activation The next three rules determine how activation is
® - Threshold for becoming active (CM becomesspread within the action selection network. They are

active, if ready and A 8) analogous to the preceding three rules in the following
y - Activation injected by a goal to be achieved manner. If a CMp is a predecessor of a CH thens

treatsp as a sub-goal by feeding activation backwarg to



until the condition inss precondition set to which is goals that share their defining condition are counted
correlated becomes true, as long as s is inactive. only once for each condition.

If a CM p is ready or active, then it feeds activation The Algorithm
forward to all successor CMs whose precondition sets The action selection mechanism proceeds by iterating
contain a conditiore to whichp is correlated, as long as the above spreading rules and selecting the CM with the
is false. This predicts or primes the successor CMs to Haighest activation above the threshdidfrom the set of
ready for when the CNp achieves it's result and becomesfeady CMs. A CM isreadyif all of its preconditions are

inactive again. It is analogous to activation by the currerg@tisfied. If there are neady CMs above the threshold
situation. then the threshold is decreased by 10%. The correlations

A CM x will inhibit all conflictors for which there P2€ween CMs and FDs are also updated according to the
. ) " L equation above when the active CM changes.

exists a negatively correlated condition ¢ which is in the Maes has shown that with these rules the network
precon.dmon seF ofx, as long asc IS true. This is exhibits a planning capability. The amount of goal-oriented
essentially treating conflictors as if they are permanenjerses opportunistic behaviour can be tuned by varying the
goal conflictors of CMK's preconditions. ratio of yto @ This spreading activation results in CMs
4. ACTIVATION OF SUCCESSORS being selected according to a current plan, which is

; I represented by the current activations of the CMs.
'sA‘u::ecae(iic())rr gf\}llg?osmi:ehn?hsea(;:g;i/r?itrll(;ncf(())r?(ljvftlir(?nt?oall Activation builds up along the path of CMs that lead to the

which p is correlated (which is in the precondition setgoalI because of the spreading forward from the FDs

) " ! representing the current situation, and spreading backward
of ), is false (the FD conditiods confidence C < T).  fom the goals. Conflicting goals or sub-goals inhibit each

If A'is the activation op, then the activation sent to & other via the conflictor rules. There may be multiple paths
successor CMs is (A.(@)).W)in where W is the between a current situation and a goal, but the next
successor link weight (correlation pfto ¢) andn is  appropriate behaviour (CM) on the shortest path will obtain
the number of successor links frgnfor conditionc. greater activation first. This allows for contingency plans

When a CMs receives activation from a predecessorbecause if a CM fails to perform as expected the correlation
CM, the activation is divided by a count of the numberbetween its execution and the expected outcome will fall
of successor links ts, except that successor links that until the next best plan comes into effect. The next best
share their defining condition are counted only oncéPlan, or next shortest path from situation to goal, will

for each condition. already have been primed with activation. The network will
never be caught in @dp performing ineffective behaviour
5. ACTIVATION OF PREDECESSORS if there are alternative solutions.

An inactive CMs sends activation backward to all
predecessor CMg for which the defining condition

to whichp is correlated (which is in the precondition
set of s), is false (the FD conditiom's confidence
C<T). If Ais the activation of s, then the activation
sent to a predecessor GMs (A.W)/n where W is the
predecessor link weight (correlationmfo c) and n is
the number of predecessor links frafior conditionc.
When a CMp receives activation from a successor
CM, the activation is divided by the count of
predecessor links and activating goals for this CM,
except that predecessor links or activating goals the
share their defining condition are counted only once
for each condition.

Example

The network below is an early implementation of Flo’s
litter sweeping and dumping behaviour as it appears
on-screen.

6. INHIBITION OF CONFLICTORS
A CM x inhibits all conflictor CMsn for which the
defining condition ¢ to which n is negatively
Correlated (Wh|Ch iS in the precondition Set)@f iS Figure 8 - Simp|e sweep and dump ABBA network
true (the FD conditior's confidence C > T), and there
is no inverse conflictor link from to x that would be

The solid lines represent the preconditions that are
stronger. If A is the activation of thenx inhibits lprogrammed to give the desired behaviour. The dashed

; . ines represent correlations between the execution of a CM
conflictor CM n by (A.(d)).W)/n where W is the 5 jts effect on the environment in terms of FDs. These
conflictor link weight (negative the correlationoto 516 |eamt during run-time, however it is useful to initialise
c) andn is the number of conflictor links fromfor  them to speed learing, or to manually activate certain
conditionc. When a CMn receives inhibition from a pehaviours to force the robot into situations where the
CM with which it conflicts, it is divided by the count correlations will be recognised.
of conflictor links and inhibiting permanent goals for The network causes Flo t&ollow walls hence
this CM n, except that conflictor links or inhibiting sweeping up litter, until a fixed perio@imer expires



causing it toDumplLitter into a pile. It can also crudely A Graphical User Interface was also developed to aid

navigate around corners and obstacles by repeated reversingualisation and the manual activation of behaviour
and turning or stopping. The top-level goaldkaning  sequences to help direct exploration and hence learning. In
The Stop behaviour is activated as a hard-wired reflex upororder to guarantee the real-time response of the network the
FrontHit becoming true. feature detector conditions are updated at a fixed frequency

(around 100Hz in our current implementation). The active

@ @ CM is also iterated at this frequency. The spreading

@ activation rules are applied asynchronously, so the effective
frequency varies depending on the number of nodes and

other processes running on tiedot's main CPU.

@ m — : 4. NAVIGATION
S
: :ﬂ Once we have a general action selection scheme to

“ﬂk e plan behaviour, we need a method for using this to plan

H “::Q P 3 navigation. This section briefly describes the method we
m % et have developed.

H} e There are two main approaches to navigational path

-lm planning. One method utilises a geometric representation

of the robot environment, perhaps implemented using a tree

Figure 9 - Activation links of sweep and dump network structure. Usually a classical path planner is used to find

The activation links that result from the preconditionShort]‘?St routeﬁ thr?u"gh.the ﬁnvironment. TT_e I((:iistance
and correlation links shown in Figure 8 are shown in Figurd@nsform method falls into this category [Zelinsky 93].
9 above. For exampleFollow is a successor of These_ geometric mpdelllng approaches do not fl_t W!th the
ReverseTurn (and hence the later is a predecessor of th@€haviour-based philosophy of only using categorisations of
former). Because when Flo is following along a wall itsiN€ robot-environment system that are natural for its
behaviour alternates betwedfollow and DumpLitter , description, rather than anthropomorphic ones. Hence,

these CMs feed activation forward to each other vid'imerous behaviour-based systems use a topological
successor links.  SincéumpLitter has the Timer representation of the environment in terms only of the

expiration as a precondition arfebllow has this as a 'oPOts behaviour and sensing (eg. see [Mataric 92]).
negative precondition (see Figure 8), the state of the Tim&i/hile these approaches are more robust that the geometric
effectively alternates these behaviours. Remembering that@odelling approach,  they ~suffer from non-optimal
CM cannot become active until all of its preconditions ard€rformance for shortest path planning. This is because the
satisfied. Follow is also a conflictor ofDumplLitter ~ '0POt has no concept of space directly, and often has to
becauseFollow requires arObstacleOnLeft — a wall to  discover the adjacency of locations.

follow, and DumplLitter is negatively correlated with this D D

condition because it drives the robot away from the wall. c C

3.3The Implementation

ABBA has been implemented as approximately 36000
lines of C++ code, including robot behaviours. Because A B A B
code was developed to run on three different platforms, a _ _ _
Platform Abstraction LayerPAL) was developed over Figure 11 — (a) Geometric vs (b) Topological Path Planning
which the rest of the system was layered. The PAL has  consider the example above, where the robot in (a)
been implemented over the VxWotlaperating system for has a geometric map and its planner can directly calculate
use on our vision system, UNIX and the custom robothe path of least Cartesian distance, directly from A to D.
operating system - MOSRA. The next layer provides apjowever, the robot in (b) has a topological map with nodes
object-oriented  framework  for ~ managing  andyepresenting the points A, B, C and D and connected by a
interconnecting architecture units. The top layer enforcegiow-wall behaviour. Since it has never previously
the particular paradigm — in this case the spreadingayersed directly from A to D, the least path through its
activation rules and constraints on interconnecting FDs anghap is A-B-C-D.

CMs. Consequently, our aim was to combine the benefits of
: geometric and topological map representations in a
[Layer 3 - Paradigm | behaviour-based system using the ABBA framework.
Layer 2 - Structural |

4.1 Spatial representation

[Layer 1 - PAL | The scheme developed involves having feature
Network detectors (FDs) to represent locations. The confidence of
];” 0S the FD condition relates to the certainty of the robot being

at the represented location. How such FDs are

Figure 10 - ABBA Implementation architecture implemented will be described shortly, but first consider

that we have a FD for every location the robot will be. For
! From Wind River Systems, Inc. example, distributions of FDs over the laboratory floor




space. Because an accurate knowledge of the geometviectors, along with other information such as ultrasonic
location of the robot isinnecessary, a course resolution isrange readings, whisker deflection and the currently active
sufficient. This will still require many FDs, hence we will CM. So the SOM nodes are distributed over a high
also allow a non-uniform distribution of FDs over the floor, dimensional state space. The self-organisation of the SOM
so that we can have a higher spatial resolution whengroceeds typically — by moving the nodes closer to
required. Next, we interconnect each pair of neighbouringbserved states with an ever decreasing field of sensitivity.
FDs (locations) with a behaviour that can drive the robofrhis works to distribute the SOM nodes over the space
from one location to the other, as shown in the figure belowaccording to the probability distribution of observed robot
states. SOM nodes with vectors differing significantly in
the 2D-odometry coordinates are assigned to different
location FDs. SOM nodes differing only in the other
elements are assigned to the same location FD.

Therefore, a location FD’s condition is set when its
associated SOM node becomes activated by the current
state. The vector elements are weighted in the distance
calculation according to the importance of the
corresponding sensor.

To overcome the indefinite accumulation of odometry
error, we can utilise the fact that we can repeatedly detect
landmarks in the environment whose position does not
change. We definelandmarkas a recognisable feature at
a distinguishable location.

Note that the correlation calculations performed as part
of the spreading activation algorithm will also cause FDs

Figure 12 - Location FDs connected via 'Forward' CM for significant landmark types to become correlated with the

_ ) N F CMs from Figure 12. For example, if Joh has a visual

The location FDA is a precondition of &orward CM  «red door’ feature detector, and there is a red door at
that is correlated withD, through initialisation or |ocation D, the F CM that drives the robot to the door will
exploration. This F CM drives the robot from the locationpecome correlated with the ‘red door’ ED. Since this CM is
that is its precondition to the location with which it is only correlated with one location FD, we have a correlation
correlated. Hence if the robot is currently at location A anghetween a location and a landmark type FD. Hence, when
some other behaviour requires it to be at D, then activatiogoth a landmark type FD and a location FD both have true
will flow to this F CM both backward from the other conditions and are correlated with the same CM, we can
behaviour and forward from A. This is due to rules 5 and hssume we have detected a landmark. In this case, we
above. In this case F will become active and drive the I'Oqujust the robot's Odometry and the Odometry coordinates
from A to D. If an obstacle has been placed to obstruct thﬁ the location FD’s associated SOM node to a position
direct path from A to D, then the F behaviour would hav%etween the current odometry reading and the SOM
failed. After a small number of failures, the correlation of Fcoordinatesl The actual position depends on the confidence

to D would be low enough that the F CM connecting A ang the location FD’s condition and the current error bounds
B would receive greater activation. Hence the robot woul@n the odometry readings.

drive from A to B and subsequently from B to D.
In practice, neighbours do not need to be fully4.2 Topological representation
connected initially as F CMs can be added at runtime.  The above mechanism provides robust spatial path
Exploratory behaviour can be engaged while recording thgjanning. Extending this to include a topological
location of the robot each time a CM is initiated. If the CMyepresentation is simple. As mentioned previously, the
successfully moves the robot to a new location, a newgrward behaviour CMs can be added at runtime. By
instance of the CM is created with the old location asoting the location when a CM is activated and deactivated,
precondition. The normal correlation calculationsand creating a new instance of the CM with the start
described previously will ensure this CM becomesocation as a precondition and correlated with the final
correlated with the new location. Similarly, if a CM |ocation. This is also performed for other CM types. For
becomes uncorrelated with any FDs it can be removed fro@kample, if the robot activates thEollow CM to
the network. wall-follow from A to C, then a new instance of tRellow
Now to how the FD ‘detect’ the robot’s location. EachCM is created with the location FD A as a precondition and
location FD is associated with a node in a Kohonen selorrelated with the location FD C. Hence, a topological
organising-map (SOM) [Kohonen 90]. Each node in thanap connecting location FDs via behaviour CMs is built
SOM has an associated vector, where the elements aip. Because the wall follow link from A to C is shorter than
contain values representing the robot's sensory anthe two links going via B, the spreading activation will
behavioural state. favour this route (which still passes physically through
The locomotion software on our Yamabico robotslocation B in this case).
constantly delivers an estimated position and orientation o
the robot in a global coordinate system. This is calculateft-3 Rendezvous
from the wheel encoders and hence has a cumulative error. One of the requirements of the cleaning task is for Flo
These odometry coordinates are elements of the SOM noded Joh to arrange a ‘rendezvous’ at a nominated location.




Now that we have described a mechanism for navigation The cooperative interaction consists of a sequence of
from one arbitrary location to another, the only remainingactions by each robot interleaved. In a real network to
problem is how Joh and Flo can communicate thémplement this behaviour, the CM 1b would require a
rendezvous location. The difficulty is since the robots haveariable precondition — the location FD for x. ABBA
heterogeneous sensors and behavioural repertoire, thereirgplements this using a facility for indexicals [Rhodes 95],
no common language that can be used. The solution vee markers, which is not discussed in this paper.

adopted was to communicate only locations that have

previously been grounded in each robot's map6. CONCLUSION

Specifically, if the robots are in close proximity such that
Joh can see Flo it can communicate a request to Flo to Iatm
the current location. In this case, the robots will hav
shared labels for locations in their own maps. When
rendezvous is required, only the label of the location nee%
be communicated.

I We have described our distributed action selection
echanism used for planning in ABBA. We have shown
echanisms utilising ABBA that implement robust and
omogeneous planning of navigation, cooperation,
ommunication and reactive behaviour. The path planning

. . . . echanism also unifies spatial and topological style ma
The mechanisms described above satisfy our aim P po>g ty b

L . ; . presentations. A plan, as represented by a path of high
combining both spatial and topological map representationsgtation through the network, can include any type of

and path planning within the ABBA framework. behaviour as elements in the action sequence.
5C ABBA was used to implement a real multi-robot
- COOPERATION cleaning system. Some of the component behaviours and

The ABBA framework was developed within the sensing techniques were also described.
context of investigating multi-agent cooperation. Hencea ckNOWLEDGMENTS
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