
ROBOT CLEANING : AN APPLICATION OF DISTRIBUTED PLANNING

AND REAL -TIME VISION

David Jung, Gordon Cheng and Alexander Zelinsky
Robotic Systems Laboratory,

Department of Systems Engineering
Research School of Information Sciences and Engineering,

The Australian National University,
Canberra, ACT 0200, Australia

http://wwwsyseng.anu.edu.au/rsl/

Abstract
This paper describes the design and
implementation of a behaviour-based
architecture in the context of multi-robot
cooperative cleaning. The architecture uses a
distributed action selection mechanism that
unifies planning of spatial and topological paths,
cooperative interactions and reactive
behaviours. The system is implemented using a
number of sensing technologies including
real-time vision.

1. INTRODUCTION

Research into multi-robot systems is driven by the
assumption that multiple agents have the possibility to
solve problems more efficiently than a single agent does.
Agents must therefore cooperate in some way. There are
many tasks for which a single complex robot could be
engineered; however, in many cases there are advantages to
using multiple robots. A multi-robot system can be more
robust because the failure of a single robot may only cause
partial degradation of task performance. In addition, the
robots can be less complex since each is only responsible
for partial fulfilment of the task. Our philosophy is to
design heterogeneous multi-robot systems where
appropriate.

The aim of the research is to investigate cooperation
by implementing a cooperative multi-robot cleaning task.
One result was the development of an architecture for
distributed planning within the behaviour-based
framework. This paper describes the architecture, but first
a description of the task and the implementation of the
required sensing technologies.

Figure 1 - Yamabico’s Flo and Joh

The task is for our two autonomous mobile robots to
clean the floor of our laboratory. The ‘Yamabico’ robots
[Yuta 91] shown in Figure 1 are heterogeneous in the sense
that each has different tools and sensors such that neither
can accomplish the task alone.

One of the robots, ‘Joh’, has a vacuum cleaner that can
be turned on and off via software. Joh’s task is to vacuum
piles of litter from the laboratory floor. It cannot vacuum
close to walls or furniture. It has the capability to ‘see’
piles of litter using a CCD camera and a video transmitter
that sends video to the Fujitsu MEP tracking vision system.
The vision system is capable of landmark-based navigation
and can operate safely in dynamic environments at speeds
up to 600mm/sec [Cheng 96]. The vision system uses
template correlation, and can match about 100 templates at
frame rate. The vision system can communicate with the
robot, via a UNIX host, over radio modems (see Figure 2).

The other robot ‘Flo’ , has a brush tool that is dragged
over the floor to sweep distributed litter into larger piles for
Joh to pick up. It navigates around the perimeter of the
laboratory where Joh cannot vacuum and deposits the litter
on open floor space.

Figure 2 - Joh’s System Configuration

The task is to be performed in a real laboratory
environment. Our laboratory is cluttered and the robots
have to contend with furniture, other robots, people,

opening doors, changing lighting conditions, equipment
with dangling cables and other hazards.

2. SIMPLE BEHAVIOUR

One particular experiment involves visual observation
of Flo by Joh, and communication between them.
Specifically, Flo announces to Joh when it initiates the litter
dumping procedure, and then communicates the relative
position of the dumped pile of litter upon completion. Joh
can observe Flo, and if Joh can see Flo when the
announcement is made, then Joh can calculate the
approximate position of the litter relative to itself. Joh then
navigates to the location and visually looks for and servo’s
on the litter in order to vacuum it. This experiment requires
a number of simple behaviours and visual sensing
capabilities, which will now be described.

2.1 Whisker based wall following
In order to sweep litter close to the walls, Flo needs a

close wall following behaviour. We investigated a number
of sensor technologies for this purpose, but finally we had
to develop unique proportional whiskers [Jung 96a]. Flo
has two whiskers mounted on its left side for wall following
and two whiskers in front for collision detection. The
whiskers are also used for navigation (see Figure 1). The
whiskers are contact sensors that give direct information
about the distance between the robot and the wall being
followed. The information from two whiskers is fused with
odometry information using a Kalman filter to obtain an
estimate of the robot’s position and orientation relative to
the wall. This is then fed into a standard Proportional
Integral Differential (PID) controller to track along the wall.
The behaviour architecture used to navigate the robot (see
[Jung 97]) also uses the whiskers to detect landmarks, such
as doors, corners, walls, poles etc.

2.2 Visual behaviour
Joh also needs to navigate reliably around the

laboratory without colliding with obstacles, people or Flo,
and it has the advantage of vision. A number of visual
behaviours were required.

Free-space segmentation
We have implemented a visual free floor space

detector using the real-time template matching capability of
the Fujitsu vision system to segment the image into ‘carpet’
and ‘non-carpet’ areas.

The vision system delivers a correlation value for each
template matched - the lower the value the better the match.
A set of templates of the carpet in our laboratory is stored
for matching. In Figure 4a, the smaller white squares
indicate a better match. All values below a threshold
signify free-space.

Figure 3 - Before and after normalisation and thresholding

The CCD camera lens distorts the images and this
effect can be seen in the correlation values, and must be
compensated for using a normalisation procedure.

The first graph in Figure 3 shows the raw correlation
values while looking at bare carpet. The normalisation
consists of applying weights to these values that have been
calculated by fitting a polynomial to the lens distortion
during calibration, and then thresholding. The procedure
also normalises for the average brightness of the image.
The result can be seen in the graph on the right of the
figure.

Figure 4 - (a) Obstacle avoidance (b) Interest operator

Although using template matching to match a texture
such as carpet works poorly on single matches, at
frame-rate and with robot motion, the stochastic behaviour
is robust.

Once Joh has navigated to the approximate location of
a pile of litter left by Flo, it has a vacuum behaviour that
must visually locate the pile and servo on it in order to
vacuum over it.

Interest Operator
Joh needs to identify piles of litter on the laboratory

floor in order to visually servo on them and vacuum over
them. The vacuum is mounted under the robot so it must
drive over the pile, which takes it out of view. Because a
pile of litter doesn’t have a definite shape, matching against
a template is unlikely to locate it in the image. Hence we
developed a simple ‘interest operator’ can locates isolated
objects in the scene, with approximately the correct
colouring. The interest operation primarily applies a zero-
crossing convolution to the correlation values. The effect
from the image in Figure 4b can be seen in the graph below.

Figure 5 - Correlation values from 'interest operator'

In order to servo on the litter, a transformation from
image coordinates to floor coordinates is performed and the
PID controller directed to drive in the appropriate direction.
Joh is also fitted with a bump sensor, which will trigger in
the event that the behaviour erroneously servos on an
obstacle on the floor, for example a book.

Visual Servoing
Joh has a behaviour that can visually detect and track

Flo’s motion. This behaviour servos on Flo to keep it
visible and hence calculate the motion relative to Joh’s
coordinates. This information is used to deduce the
approximate location of the dumped litter for the vacuum
behaviour. There are two components to this behaviour:
tracking Flo’s image for visual servoing, and determining
the 3D position and pose.

Flo has been marked with a unique rectangular pattern
for tracking, as shown in Figure 6a below.

Figure 6 - (a) Flo from Joh's camera (b) Cleaning

Ten templates from the corners and sides of the
rectangle are tracked. Due to changes in lighting,
orientation and size, the templates would easily be lost. So
a network of Kalman filters is used, one per template, to
estimate the position of each from the vision system
matching information and the position of the other nine
templates [Heinzmann 97]. This results in tracking that is
very robust to changes in scale and orientation.

Joh needs to know the relative location and pose of Flo
in order to arrange a ‘rendezvous’. The position and pose
of Flo are computed using a projective transformation
between the plane of the rectangular pattern marking on Joh
and a model rectangular pattern marking in a known
arbitrary plane. Four of the ten templates tracked on the
pattern are sufficient to compute the projective
transformation.

3. DISTRIBUTED PLANNING

One of the more sophisticated experiments requires
both robots be capable of robust navigation around the
department floor such that they can arrange rendezvous at
particular locations. This implies that the simple
behaviours must be combined in a way that allows both the
execution of the cleaning task and navigation via an internal
map. The map should be learnt.

So we are faced with the classic action selection
problem. We needed to design a planning mechanism that
is distributed, grounded in the environment (situated), and
employs a uniform action selection mechanism over all
behaviour components. Because the design was undertaken
in the context of cooperative cleaning, we also required the
mechanism to be capable of planning cooperative
behaviour.

After examining the advantages of a number of
existing schemes, we have developed our Architecture for
Behaviour Based Agents. ABBA borrows, adapts and
integrates many mechanisms from other architectures. In
particular it utilises a spreading activation mechanism
similar to that proposed by Maes [Maes 90a]. We added

integrated learning and adapted it to fit with the
behaviour-based philosophy. It is important to note that the
architecture does not comprise of an existing scheme
retro-fitted with new features but is a homogeneous one that
only borrows the ideas from other architectures. The
remainder of this section discusses the ABBA architecture.
Many details are omitted for brevity.

3.1 Components and Interconnections
The behaviour of a system is expressed as a network

that consists of two types of nodes in ABBA –
Competence Modules and Feature Detectors. Competence
modules (CMs) are the smallest units of behaviour
selectable, and feature detectors (FDs) deliver information
about the external or internal environment.

The graphical notation is shown below where
rectangles represent competence modules and rounded
rectangles represent feature detectors. Although there can
be much exchange of information between CMs and FDs
the interconnections show in this notation only represent the
logical organisation of the network for the purpose of action
selection, and hence planning.

FD

FDCM

s:.98

p:.82

s:.82 c:.87

CMp:.98CM

FD

Key:

(sucessor, predecessor or conflictor)

+ve Correlation

-ve Correlation

Activation Link

Precondition

.82

.98

-.87

Figure 7 - ABBA Network components and interconnections

Each CM has an associated Activation and the CM
selected for execution has the highest activation from all
Ready CMs whose activations are over the current global
threshold. A CM is Ready if all of its preconditions are
satisfied. The activations are continuously updated by a
spreading activation algorithm. Each FD provides a single
Condition that is continuously updated from the
environment.

It is important to note that although ABBA seems to
make an arbitrary Cartesian style division between sensing
and acting (FDs and CMs), that this is not necessarily so.
Feature detectors can deliver conditions based in the
internal state of CMs as well as conditions based on
sensors. This is analogous to saying that CMs can operate
by effecting FDs as well as actuators.

Care should be taken to ensure feature detectors are
written to deliver information from sensors as directly as
possible, rather than from any internal representation of an
anthropomorphic category.

The network designer needs to be mindful that the
dynamics of a multi-robot/environment system has no a
priori boundaries. The boundaries can be redrawn as
appropriate for thinking about the system dynamics to
include arbitrary portions of robot and environment
behaviour. A single network may describe part of a robot-
environment interaction, or possibly a whole multi-robot-
environment system.

The system behaviour is designed by creating CMs
and FDs and connecting them with precondition links.

These are shown in the diagram above as solid lines from a
FD to a CM ending with a white square. It is possible to
have negative preconditions, which must be false before the
CM can be Ready. The designer may also initialise some
correlation links to bootstrap learning. The correlation
between a FD and a CM, which can take values [-1…1], is
updated at runtime as follows.

Each time the CM becomes active, the value of the
FD’s condition is recorded. When the CM is subsequently
deactivated, the current value of the condition is compared
with the recorded value. It is classified as one of: Became
True, Became False, Remained True or Remained False. A
count of these cases is maintained (Bt, Bf, Rt, Rf). The
correlation is then:

corr
B R

N

B R

N
t t f f=

+
−

+() ()2

2

2

2

Where the total samples N B B R Rt f t f= + + +

At each update the counts are decayed by multiplying
with N/(N+1) so that recent samples have a greater effect
than historic ones. This keeps the network plastic. The
diagram shows the correlation values on the dashed lines -
the correlation links.

Together these two types of links, the precondition
links and the correlation links, completely determine how
activation spreads thought the network. The other
activation links that are shown in Figure 7 are determined
by these two and exist to better describe and understand the
network and the activation spreading patterns. The
activation links will feature in the description of the
spreading activation algorithm in the following section, and
are determined as follows.

• There exists a successor link from CM p to CM s
for every FD condition in s's preconditions list
that is positively correlated with the activity of p.

• There exists a predecessor link in the opposite
direction of every successor link.

• There exists a conflictor link from CM x to CM y
for every FD condition in y's preconditions list
that is negatively correlated with the activity of x.

The successor, predecessor and conflictor links
resulting from the preconditions and correlations are shown
in Figure 7.

In summary, a CM s has a predecessor p, if p is likely
to make one of s’s preconditions true. A CM x has a
conflictor y, if y is likely to make one of x’s preconditions
false.

3.2 The Spreading of Activation
The scheme for spreading the activation follows the

algorithm proposed by Maes. The system proceeds in
discrete time-steps. At each step some activation is injected
into the system, removed from the system, and
re-distributed within the system according to the rules
below. There are a number of global parameters used to
tune the dynamics of the system:

π - The mean level of activation
θ - Threshold for becoming active (CM becomes

active, if ready and A > θ)
γ - Activation injected by a goal to be achieved

δ - Activation removed from conflictors to goals that
need to remain achieved

φ - Activation injected by a feature detector whose
condition is true (C > T)

T - The confidence threshold. A condition with
confidence c > T is considered true.

R - The correlation threshold. A correlation
coefficient c > R is considered positively
correlated.

(and c < -R is considered negatively correlated)

The first three rules determine how the network is
activated and inhibited from external sources, such as the
current situation as perceived by the set of FDs that output
conditions, and the global goals of the agent.

1. ACTIVATION BY THE SITUATION

 Feature detectors (FDs) that output a condition c
spread activation to any CM whose precondition set
contains c, if c is true. The activation sent to a CM is
(C.φ)/n where n is the number of CMs whose
precondition sets contain c, and C is the confidence of
the condition. When a CM receives activation from a
FD it is divided by the number of conditions in it's
precondition set.

2. ACTIVATION BY GOALS

 An external goal is represented by a condition c (as
output by a FD) that must be achieved. There are two
types of goals, once only goals, which need only be
achieved once, and permanent goals, that once
achieved need to be maintained.

 A goal increases the activation of the CMs that are
correlated with it's condition c by (W.γ)/n, where n is
the number of CMs activated by this goal, and W is
the correlation between any particular CM and the
condition c. When a CM receives activation from a
goal it is divided by the count of predecessor links and
activating goals for this CM, except that predecessor
links or activating goals that share their defining
condition are counted only once for each condition.

3. INHIBITION BY PERMANENT GOALS

 A permanent goal is an external goal that once
achieved, must remain achieved. A goal inhibits CMs
that are negatively correlated with it's condition c by
(W.δ)/n, where n is the number of CMs inhibited by
this goal, and W is the negative of the correlation
between any particular CM and the condition c. When
a CM receives inhibition from a permanent goal it is
divided by the count of conflictor links and inhibiting
goals for this CM, except that conflictor links or
inhibiting goals that share their defining condition are
counted only once for each condition.

 The next three rules determine how activation is
spread within the action selection network. They are
analogous to the preceding three rules in the following
manner. If a CM p is a predecessor of a CM s, then s
treats p as a sub-goal by feeding activation backward to p

until the condition in s's precondition set to which p is
correlated becomes true, as long as s is inactive.

 If a CM p is ready or active, then it feeds activation
forward to all successor CMs whose precondition sets
contain a condition c to which p is correlated, as long as c
is false. This predicts or primes the successor CMs to be
ready for when the CM p achieves it's result and becomes
inactive again. It is analogous to activation by the current
situation.
 A CM x will inhibit all conflictors for which there
exists a negatively correlated condition c which is in the
precondition set of x, as long as c is true. This is
essentially treating conflictors as if they are permanent
goal conflictors of CM x's preconditions.

4. ACTIVATION OF SUCCESSORS

 A ready or active CM p sends activation forward to all
successor CMs s for which the defining condition c to
which p is correlated (which is in the precondition set
of s), is false (the FD condition c's confidence C < T).
If A is the activation of p, then the activation sent to a
successor CM s is (A.(φ/γ).W)/n, where W is the
successor link weight (correlation of p to c) and n is
the number of successor links from p for condition c.
When a CM s receives activation from a predecessor
CM, the activation is divided by a count of the number
of successor links to s, except that successor links that
share their defining condition are counted only once
for each condition.

5. ACTIVATION OF PREDECESSORS

 An inactive CM s sends activation backward to all
predecessor CMs p for which the defining condition c
to which p is correlated (which is in the precondition
set of s), is false (the FD condition c's confidence
C < T). If A is the activation of s, then the activation
sent to a predecessor CM p is (A.W)/n, where W is the
predecessor link weight (correlation of p to c) and n is
the number of predecessor links from s for condition c.
When a CM p receives activation from a successor
CM, the activation is divided by the count of
predecessor links and activating goals for this CM,
except that predecessor links or activating goals that
share their defining condition are counted only once
for each condition.

6. INHIBITION OF CONFLICTORS

 A CM x inhibits all conflictor CMs n for which the
defining condition c to which n is negatively
correlated (which is in the precondition set of x), is
true (the FD condition c's confidence C > T), and there
is no inverse conflictor link from n to x that would be
stronger. If A is the activation of x, then x inhibits
conflictor CM n by (A.(δ/γ).W)/n, where W is the
conflictor link weight (negative the correlation of n to
c) and n is the number of conflictor links from x for
condition c. When a CM n receives inhibition from a
CM with which it conflicts, it is divided by the count
of conflictor links and inhibiting permanent goals for
this CM n, except that conflictor links or inhibiting

goals that share their defining condition are counted
only once for each condition.

The Algorithm
The action selection mechanism proceeds by iterating

the above spreading rules and selecting the CM with the
highest activation above the threshold θ, from the set of
ready CMs. A CM is ready if all of its preconditions are
satisfied. If there are no ready CMs above the threshold
then the threshold is decreased by 10%. The correlations
between CMs and FDs are also updated according to the
equation above when the active CM changes.

Maes has shown that with these rules the network
exhibits a planning capability. The amount of goal-oriented
verses opportunistic behaviour can be tuned by varying the
ratio of γ to φ. This spreading activation results in CMs
being selected according to a current plan, which is
represented by the current activations of the CMs.
Activation builds up along the path of CMs that lead to the
goal because of the spreading forward from the FDs
representing the current situation, and spreading backward
from the goals. Conflicting goals or sub-goals inhibit each
other via the conflictor rules. There may be multiple paths
between a current situation and a goal, but the next
appropriate behaviour (CM) on the shortest path will obtain
greater activation first. This allows for contingency plans
because if a CM fails to perform as expected the correlation
between its execution and the expected outcome will fall
until the next best plan comes into effect. The next best
plan, or next shortest path from situation to goal, will
already have been primed with activation. The network will
never be caught in a loop performing ineffective behaviour
if there are alternative solutions.

Example
The network below is an early implementation of Flo’s

litter sweeping and dumping behaviour as it appears
on-screen.

Figure 8 - Simple sweep and dump ABBA network

The solid lines represent the preconditions that are
programmed to give the desired behaviour. The dashed
lines represent correlations between the execution of a CM
and its effect on the environment in terms of FDs. These
are learnt during run-time, however it is useful to initialise
them to speed learning, or to manually activate certain
behaviours to force the robot into situations where the
correlations will be recognised.

The network causes Flo to Follow walls hence
sweeping up litter, until a fixed period Timer expires

causing it to DumpLitter into a pile. It can also crudely
navigate around corners and obstacles by repeated reversing
and turning or stopping. The top-level goal is Cleaning.
The Stop behaviour is activated as a hard-wired reflex upon
FrontHit becoming true.

Figure 9 - Activation links of sweep and dump network

The activation links that result from the precondition
and correlation links shown in Figure 8 are shown in Figure
9 above. For example, Follow is a successor of
ReverseTurn (and hence the later is a predecessor of the
former). Because when Flo is following along a wall its
behaviour alternates between Follow and DumpLitter ,
these CMs feed activation forward to each other via
successor links. Since DumpLitter has the Timer
expiration as a precondition and Follow has this as a
negative precondition (see Figure 8), the state of the Timer
effectively alternates these behaviours. Remembering that a
CM cannot become active until all of its preconditions are
satisfied. Follow is also a conflictor of DumpLitter
because Follow requires an ObstacleOnLeft – a wall to
follow, and DumpLitter is negatively correlated with this
condition because it drives the robot away from the wall.

3.3 The Implementation
ABBA has been implemented as approximately 36000

lines of C++ code, including robot behaviours. Because
code was developed to run on three different platforms, a
Platform Abstraction Layer (PAL) was developed over
which the rest of the system was layered. The PAL has
been implemented over the VxWorks1 operating system for
use on our vision system, UNIX and the custom robot
operating system - MOSRA. The next layer provides an
object-oriented framework for managing and
interconnecting architecture units. The top layer enforces
the particular paradigm – in this case the spreading
activation rules and constraints on interconnecting FDs and
CMs.

OSNetwork

Layer 1 - PAL
Layer 2 - Structural

Layer 3 - Paradigm

Figure 10 - ABBA Implementation architecture

1 From Wind River Systems, Inc.

A Graphical User Interface was also developed to aid
visualisation and the manual activation of behaviour
sequences to help direct exploration and hence learning. In
order to guarantee the real-time response of the network the
feature detector conditions are updated at a fixed frequency
(around 100Hz in our current implementation). The active
CM is also iterated at this frequency. The spreading
activation rules are applied asynchronously, so the effective
frequency varies depending on the number of nodes and
other processes running on the robot’s main CPU.

4. NAVIGATION

Once we have a general action selection scheme to
plan behaviour, we need a method for using this to plan
navigation. This section briefly describes the method we
have developed.

There are two main approaches to navigational path
planning. One method utilises a geometric representation
of the robot environment, perhaps implemented using a tree
structure. Usually a classical path planner is used to find
shortest routes through the environment. The distance
transform method falls into this category [Zelinsky 93].
These geometric modelling approaches do not fit with the
behaviour-based philosophy of only using categorisations of
the robot-environment system that are natural for its
description, rather than anthropomorphic ones. Hence,
numerous behaviour-based systems use a topological
representation of the environment in terms only of the
robot’s behaviour and sensing (eg. see [Mataric 92]).
While these approaches are more robust that the geometric
modelling approach, they suffer from non-optimal
performance for shortest path planning. This is because the
robot has no concept of space directly, and often has to
discover the adjacency of locations.

A B

CD

A B

CD

Figure 11 – (a) Geometric vs (b) Topological Path Planning

Consider the example above, where the robot in (a)
has a geometric map and its planner can directly calculate
the path of least Cartesian distance, directly from A to D.
However, the robot in (b) has a topological map with nodes
representing the points A, B, C and D and connected by a
follow-wall behaviour. Since it has never previously
traversed directly from A to D, the least path through its
map is A-B-C-D.

Consequently, our aim was to combine the benefits of
geometric and topological map representations in a
behaviour-based system using the ABBA framework.

4.1 Spatial representation
The scheme developed involves having feature

detectors (FDs) to represent locations. The confidence of
the FD condition relates to the certainty of the robot being
at the represented location. How such FDs are
implemented will be described shortly, but first consider
that we have a FD for every location the robot will be. For
example, distributions of FDs over the laboratory floor

space. Because an accurate knowledge of the geometric
location of the robot is unnecessary, a course resolution is
sufficient. This will still require many FDs, hence we will
also allow a non-uniform distribution of FDs over the floor,
so that we can have a higher spatial resolution where
required. Next, we interconnect each pair of neighbouring
FDs (locations) with a behaviour that can drive the robot
from one location to the other, as shown in the figure below.

B

FF

F

F

A

C

FF

D
F

F

F

F

Figure 12 - Location FDs connected via 'Forward' CM

The location FD A is a precondition of a Forward CM
that is correlated with D, through initialisation or
exploration. This F CM drives the robot from the location
that is its precondition to the location with which it is
correlated. Hence if the robot is currently at location A and
some other behaviour requires it to be at D, then activation
will flow to this F CM both backward from the other
behaviour and forward from A. This is due to rules 5 and 1
above. In this case F will become active and drive the robot
from A to D. If an obstacle has been placed to obstruct the
direct path from A to D, then the F behaviour would have
failed. After a small number of failures, the correlation of F
to D would be low enough that the F CM connecting A and
B would receive greater activation. Hence the robot would
drive from A to B and subsequently from B to D.

In practice, neighbours do not need to be fully
connected initially as F CMs can be added at runtime.
Exploratory behaviour can be engaged while recording the
location of the robot each time a CM is initiated. If the CM
successfully moves the robot to a new location, a new
instance of the CM is created with the old location as
precondition. The normal correlation calculations
described previously will ensure this CM becomes
correlated with the new location. Similarly, if a CM
becomes uncorrelated with any FDs it can be removed from
the network.

Now to how the FD ‘detect’ the robot’s location. Each
location FD is associated with a node in a Kohonen self-
organising-map (SOM) [Kohonen 90]. Each node in the
SOM has an associated vector, where the elements are
contain values representing the robot’s sensory and
behavioural state.

The locomotion software on our Yamabico robots
constantly delivers an estimated position and orientation of
the robot in a global coordinate system. This is calculated
from the wheel encoders and hence has a cumulative error.
These odometry coordinates are elements of the SOM node

vectors, along with other information such as ultrasonic
range readings, whisker deflection and the currently active
CM. So the SOM nodes are distributed over a high
dimensional state space. The self-organisation of the SOM
proceeds typically – by moving the nodes closer to
observed states with an ever decreasing field of sensitivity.
This works to distribute the SOM nodes over the space
according to the probability distribution of observed robot
states. SOM nodes with vectors differing significantly in
the 2D-odometry coordinates are assigned to different
location FDs. SOM nodes differing only in the other
elements are assigned to the same location FD.

Therefore, a location FD’s condition is set when its
associated SOM node becomes activated by the current
state. The vector elements are weighted in the distance
calculation according to the importance of the
corresponding sensor.

To overcome the indefinite accumulation of odometry
error, we can utilise the fact that we can repeatedly detect
landmarks in the environment whose position does not
change. We define a landmark as a recognisable feature at
a distinguishable location.

Note that the correlation calculations performed as part
of the spreading activation algorithm will also cause FDs
for significant landmark types to become correlated with the
F CMs from Figure 12. For example, if Joh has a visual
‘red door’ feature detector, and there is a red door at
location D, the F CM that drives the robot to the door will
become correlated with the ‘red door’ FD. Since this CM is
only correlated with one location FD, we have a correlation
between a location and a landmark type FD. Hence, when
both a landmark type FD and a location FD both have true
conditions and are correlated with the same CM, we can
assume we have detected a landmark. In this case, we
adjust the robot’s odometry and the odometry coordinates
in the location FD’s associated SOM node to a position
between the current odometry reading and the SOM
coordinates. The actual position depends on the confidence
of the location FD’s condition and the current error bounds
on the odometry readings.

4.2 Topological representation
The above mechanism provides robust spatial path

planning. Extending this to include a topological
representation is simple. As mentioned previously, the
Forward behaviour CMs can be added at runtime. By
noting the location when a CM is activated and deactivated,
and creating a new instance of the CM with the start
location as a precondition and correlated with the final
location. This is also performed for other CM types. For
example, if the robot activates the Follow CM to
wall-follow from A to C, then a new instance of the Follow
CM is created with the location FD A as a precondition and
correlated with the location FD C. Hence, a topological
map connecting location FDs via behaviour CMs is built
up. Because the wall follow link from A to C is shorter than
the two links going via B, the spreading activation will
favour this route (which still passes physically through
location B in this case).

4.3 Rendezvous
One of the requirements of the cleaning task is for Flo

and Joh to arrange a ‘rendezvous’ at a nominated location.

Now that we have described a mechanism for navigation
from one arbitrary location to another, the only remaining
problem is how Joh and Flo can communicate the
rendezvous location. The difficulty is since the robots have
heterogeneous sensors and behavioural repertoire, there is
no common language that can be used. The solution we
adopted was to communicate only locations that have
previously been grounded in each robot’s map.
Specifically, if the robots are in close proximity such that
Joh can see Flo it can communicate a request to Flo to label
the current location. In this case, the robots will have
shared labels for locations in their own maps. When a
rendezvous is required, only the label of the location need
be communicated.

The mechanisms described above satisfy our aim of
combining both spatial and topological map representations
and path planning within the ABBA framework.

5. COOPERATION

The ABBA framework was developed within the
context of investigating multi-agent cooperation. Hence,
one further requirement for the architecture is the ability to
plan multi-agent interactions. First we need to consider the
nature of cooperation. Cooperation between primates
provides many essential ideas.

Primates are very social animals. As Bond writes in
reference to vervet monkeys, “They are acutely and
sensitively aware of the status and identity of other
monkeys, as well as their temperaments and current
dispositional states” [Bond 96]. Humans, as other
primates, have the ability to co-construct plans with more
that one interacting person, and flexibly adapt and repair
them all in real time.

Bond goes on to describe the construction and
execution of joint plans in monkeys. He defines a joint plan
as a conditional sequence of actions and goals involving the
subject and others. In order to achieve interlocking
coordination each agent needs to adjust its action selection
based on the evolution of the ongoing interaction. The
cooperative interaction will consist of a series of actions -
including communication acts. Each agent attempts
different plans, assesses the other agents’ goals and plans,
and alters the selection of its own actions and goals to
achieve a more coordinated interaction where joint goals
are satisfied. This model of interaction is similar to that
proposed by human conversation theorists [Goodwin 81].

The ABBA action selection mechanism can be
effortlessly applied to the distributed planning of these joint
plans. This is because it is irrelevant which robot causes a
change in the environment that triggers the precondition of
the next action of a sequence. The multi-robot-environment
system can be considered a single system.

Consider this deliberately over simplified illustration.
The situation is that Joh wishes to initiate a rendezvous with
Flo, and for Flo to dump its litter for Joh to vacuum.

1a1a 2a2a

1b1b 2b2b

Flo

Joh

Environment

Goto A &
Dump litter

Got OK

Message to Joh - Meet
me at Location A

Got message
goto x Message to Flo - OK

Goto x (=A)

Saw Flo dump
litter (at A)

Vacuum
litter

Figure 13 - Interleaved cooperative action sequence

The cooperative interaction consists of a sequence of
actions by each robot interleaved. In a real network to
implement this behaviour, the CM 1b would require a
variable precondition – the location FD for x. ABBA
implements this using a facility for indexicals [Rhodes 95],
or markers, which is not discussed in this paper.

6. CONCLUSION

We have described our distributed action selection
mechanism used for planning in ABBA. We have shown
mechanisms utilising ABBA that implement robust and
homogeneous planning of navigation, cooperation,
communication and reactive behaviour. The path planning
mechanism also unifies spatial and topological style map
representations. A plan, as represented by a path of high
activation through the network, can include any type of
behaviour as elements in the action sequence.

ABBA was used to implement a real multi-robot
cleaning system. Some of the component behaviours and
sensing techniques were also described.

ACKNOWLEDGMENTS
This work was supported by Fujitsu who produced our

vision system, and Wind River Systems, suppliers of
VxWorks.

REFERENCES
[Bond 96] Bond, Alan H., “An Architectural Model of the Primate

Brain ”, Dept. of Computer Science, University of California, Los
Angeles, CA 90024-1596, Jan 14, 1996.

[Cheng 96] Cheng, Gordon and Zelinsky, Alexander, “Real-Time
Visual Behaviours for Navigating a mobile Robot”, Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), vol 2. pp973. November 1996.

[Goodwin 81] Goodwin, Charles, “Conversational
Organization : interaction between speakers and hearers”,
Academic Press, New York and London, 1981.

[Heinzmann 97] Heinzmann, J. and Zelinsky, A., “Robust Real-
Time Face Tracking and Gesture Recognition”, Proceedings of
IJCAI'97, International Joint Conference on Artificial Intelligence,
August 1997.

[Jung 96a] Jung, David and Zelinsky, Alexander, “Whisker-Based
Mobile Robot Navigation”, Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), vol 2. pp497. November 1996.

[Jung 97] Jung, David, Cheng, Gordon and Zelinsky, Alexander,
“An Experiment in Realising Cooperation between
Autonomous Mobile Robots”, Fifth International Symposium on
Experimental Robotics (ISER), Barcelona, Catelonia, June 1997.

[Kohonen 90] Kohonen, Teuvo, “The self-organising map”,
Proceedings of IEEE, 78(9):1464-1479, Sep. 1990.

[Maes 90a] Maes, P., “Situated Agents Can Have Goals.”,
Designing Autonomous Agents. Ed: P. Maes. MIT-Bradford Press,
1991. ISBN 0-262-63135-0. Also published as a special issue of the
Journal for Robotics and Autonomous Systems,Vol. 6, No 1, North-
Holland, June 1990.

[Mataric 92] Mataric, Maja J., “Integration of Representation Into
Goal-Driven Behavior-Based Robots”, in IEEE Transactions on
Robotics and Automation, Vol. 8, No. 3, June 1992, 304-312.

[Rhodes 95] Rhodes, Bradley, “Pronomes in Behaviour Nets”, Tech.
Report #95-01, MIT Media Lab, Learning and Common Sense
Section. Jan 1995.

[Yuta 91] S. Yuta, S. Suzuki and S. Iida, “Implementation of a
small size experimental self-contained autonomous robot -
sensors, vehicle control, and description of sensor based
behavior”, Proc. Experimental Robotics, Tolouse, France,
LAAS/CNRS (1991).

[Zelinsky 93] Zelinsky, A., Jarvis, R.A., Byrne, J. and Yuta, S.,
“Planning Paths of Complete Coverage of an unstructured
Environment by a Mobile Robot”, International Conference on
Advanced Robotics (ICAR), Tokyo, Japan, November 1993.

