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Abstract. In this paper, we describe the implementation of a heterogeneous cooperative multi-robot system
that was designed with a goal of engineering a grounded symbalic representation in a bottom-up fashion. The
system comprises two autonomous mobile robots that perform cooperative cleaning. Experiments demonstrate
successful purposive navigation, map building and the symbolic communication of locations in a behavior-based
system. We also examine the perceived shortcomings of the system in detail and attempt to understand them in

terms of contemporary knowledge of human representation and symbolic communication. From this
understanding, we propose the Adaptive Symbol Grounding Hypothesis as a conception for how symbolic

systems can be envisioned.

Keywords: cooperative robotics, heterogeneous systems, symbolic communication, symbol grounding, learning,

representation, behavior-based, mobile robots

1. Introduction

The Behavior-based approach to robotics has proven that
it is possible to build systems that can achieve tasks
robustly, react in real-time and operate reliably. The
sophistication of applications implemented ranges from
simple reactivity to tasks involving topological map
building and navigation. Conversely, the classical Al
approach to robotics has attempted to construct symbolic
representational systems based on token manipulation.
There has been some success in this endeavor also.
While more powerful, these systems are generally sow,
brittle, unreliable and do not scale well — as their
‘symbols’ are ungrounded.

In this paper, we present an approach for
engineering grounded symbolic communication between
heterogeneous cooperating robots. It involves designing

behavior that develops shared groundings between them.
We demonstrate a situated, embodied, behavior-based
multi-robot system that implements a cooperative
cleaning task using two autonomous mohbile robots.
They develop shared groundings that alow them to
ground a symbolic reationship between positions
consistently. We show that this enables symbolic
communication of locations between them.

The subsequent part of the paper critically examines
the system and its limitations. The new understanding of
the system we come to shows that our approach will not
scale to complex symbalic systems. We argue that it is
impossible for complex symbolic representational
systems to be responsible for appropriate behavior in
Situated agents. We propose the Adaptive Symbol
Grounding Hypothesis as a conception of how systems
that communication symbolically can be envisioned.

Before presenting the system we have developed,
the first section briefly discusses cooperation and
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communication generally and looks at some instances of
biological cooperation in particular. From this, we
determine the necessary attributes of symbolic systems.

2. Cooper ation and Communication

Cooperation and communication are closdy tied.
Communication is an inherent part of the agent
interactions underlying cooperative behavior, whether
implicit or explicit. If we are to implement a concrete
cooperative task that requires symbolic level
communication, we must first identify the relationship
between communication and cooperative behavior. This
section  introduces a framework for classifying
communication and uses it to examine some examples of
cooperative behavior in biological systems. From this
examination, we draw conclusions about the mechanisms
necessary to support symbolic communication. These
mechanisms are utilized in our implementation of the
cooperative cleaning system, as described in the
subsequent section.

It isimportant to realize that ‘ cooperation’ is a word
— alabel for a human concept. In this case, the concept
refers to a category of human and possibly animal
behavior. It does not follow that this behavior is
necessarily beneficial to the agents involved. Since
evolution selects behavioral traits that promote the genes
that encourage them, it will be beneficial to the genes but
not necessarily the organism or species.  Human
coaoperative behaviour, for example, is a conglomerate of
various behavioural tendencies selected for different
reasons (and influenced cultural knowledge). Because
the design of cooperative robot systems is in a different
context altogether, we need to understand which aspects
are peculiar to biological systems.

2.1 Some Characteristics of Communication

Many authors have proposed classifications for the types
of communication found in biological and artificial
systems (e.g. see Arkin and Hobbs, 1992b; Balch and
Arkin, 1994; Cao et al., 1995; Dudek et a., 1993; Kube
and Zhang, 1994; Mataric, 1997a). Like any
classification, these divide the continuous space of
communication characteristics into discrete classes in a
specific way — and hence are only useful within the
context for which they are created. We find it necessary
to introduce another classification here.

A communicative act is an interaction whereby a
signal is generated by an emitter and ‘interpreted’ by a
receiver. We view communication in terms of the
following four characteristics.

Interaction distance — This is the distance
between the agents during the communicative
interaction. It can range from direct physical

contact, to visual range, hearing range, or long
range.

Interaction simultaneity — The period between
the signal emission and reception. It can be
immediate in the case of direct contact, or
possibly along timein the case of scent markers,
for example.

Sgnaling explicitness — This is an indication of
the explicitness of the emitter’s signaling
behavior. The signaling may be a side effect of
an existing behavior (implicit), or an existing
behavior may have been modified dightly to
enhance the signal through evolution or
learning. The signaling may also be the result
of sophisticated behavior that was specifically
evolved, learnt, or in the case of a robot,
designed, for it.

Sophigtication of interpretation — This can be
applied to either the emitter or thereceiver. Itis
an indication of the complexity of the
interpretation process that gives meaning to the
signal. For example, a chemical signal may
invoke a relatively smple chain of chemical
events in a receiving bacterium. It is possible
that a signal has a very different meaning to the
emitter and receiver — the signal may have no
meaning at all to its emitter. Conversdly, the
process of interpretation of human language is
the most complex example known.

2.2 Representation

It is not possible to measure the sophistication of the
interpretive process by observing the signal aone
Access to the mechanics of the process within an agent
would be necessary. Unfortunately, our current
understanding of the brain mechanisms underlying
communication in most animals is poor, at best.
Therefore, our only approach is to examine the structure
of the communicated signals. Luckily, there appears to
be some correlation between the structural complexity of
communicated signals and the sophigtication of their
interpretive processes. Insect mating calls are simple in
structure and we posit a smple interpretive process. At
the other end of the spectrum, human language has a
complex structure and we consider its interpretation
amongst the most sophisticated processes known. Bird
song and human music are possible exceptions, as they
are often complex in structure, yet have a relatively
simple interpretation. This is due to other evolutionary
selection pressures, since song also provides fitness
information about its emitter to prospective mates and, in
the case of hirds, serves to distinguish between members
of different species.

Science, through the discipline of linguistics, has
learned much about the structure of the signals generated



by humans that we call language (see Robins, 1997). We
utilize a small part of that here by describing a
conception of the observed structure of language. Using
Deacon’s terms we define three types of reference, or
levels of representation: - iconic, indexical and symbolic
(Deacon, 1997).

Iconic representation is by physical similarity to
what it represents. The medium may be physicaly
external to the agent — for example, as an orange disc
painted on a cave wall may represent the sun.
Alternatively, it may be part of the agent, such as some
repeatable configuration of sensory neurons, or “internal
analog transforms of the projections of distal objects on
our sensory surfaces’ (Shepard and Cooper, 1982).

Indexical reference represents a correlation or
association between icons. All animals are capable of
iconic and indexical representation to varying degrees.
For example, an animal may learn to correlate the icon
for smoke with that for fire. Hence, smoke will come to
be an index for fire. Even insects probably have limited
indexical capabilities. Empirical demonstrations are a
mechanism for creating indexical references in others.
Pointing, for example, creates an association between the
icon for the physical item being indicated and the object
of a sentence. The second part of this paper describes
how we have used empirical demonstration to enable the
communication of locations between robots.
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Figure 1 — Levels of representation

The third level of representation is symbolic. A
symboal is a relationship between icons, indices and other
symbols. It isthe representation of a higher-level pattern
underlying sets of relationships. It is hypothesized that
language can be represented as a symbolic
hierarchy (Newell and Simon, 1972). We will use the
term sub-symbolic to refer to representations that need
only iconic and indexical references for their
interpretation. If the interpretation of a symbol requires
following references that all eventually lead to icons, the
symboal is said to be grounded. That is, the symbols at
the top of Figure 1 ultimately refer to reationships
between the icons at the bottom. A symbol’s grounding
isthe set of icons, indices and other symbols necessary to
interpret it.

The problems associated with trying to synthesize
intelligence from ungrounded symbol systems — the
classical Al approach — have been well documented in

the literature. One such problem is termed the frame
problem (see Ford and Hayes, 1991; Pylyshym, 1987).
The importance of situated and embodied agents has
been actively espoused by members of the behavior-based
robotics community, in recognition of these problems, for
many Yyears (see Brooks, 1991; Mataric, 1992a;
Pfeifer, 1995; Stedls, 1996 for a selection).  This
hypothesis is called the physical grounding hypothesis
(Brooks, 1990). Consequently, we adopted the behavior-
based approach for our implementation.

2.3 Cooperative biological systems

In this subsection we describe five selected biological
coaoperative systems and classify the communication each
employs using the scheme introduced above. From
these, in the following subsection, we identify the
necessary mechanisms for symbolic communication,
which were transferred to the implementation of the
coaoperative multi-robot cleaning system.

2.3.1 Bacteria

Cooperation between simple organisms on earth is
amost as old as life on earth itself. Over a billion years
ago bacteria existed smilar to contemporary bacteria
recently observed to exhibit primitive cooperation.
Biologists have long understood that bacteria live in
colonies. Only recently has it become evident that most
bacteria communicate using a number of sophisticated
chemical signals and engage in altruistic behavior
(Kaiser and Losick, 1993). For example, Mycobacteria
assemble into multi-cellular structures known as fruiting
bodies. These structures are assembled in a number of
stages each mediated by different chemical signal
systems. In these cases the bacteria emit and react to
chemicals in a genetically determined way that evolved
explicitly for cooperation. Hence, we classify the
signaling as explicit.  The interaction distance is
moderate compared to the size of a bacterium, and the
simultaneity is determined by the speed of chemical
propagation. The mechanism for interpretation is
necessarily smplein bacteria.

We can consider this communication without
meaning preservation — the meaning of the signal is
different for emitter and receiver. The emitter generates
a signa without interpreting it at all (hence, it has no
meaning to the emitter). The recelver interprets it
iconically'.  This type of communication has been
implemented and studied in multi-robot systems. For
example, Balch and Arkin have implemented a collective
multi-robot system, both in simulation and with real
robots, to investigate to what extent communication can

! The stereotypical way a particular chemical receptor on the bacteria's
surface triggers a chain of chemical events within, is an icon for the
presence of the external chemical signal.



increase their capabilities (Balch and Arkin, 1994). The
tasks they implemented were based on eusocial insect
tasks, such as forage, consume, and graze. One scheme
employed was the explicit signaling of the emitter’s state
to the receiver. They showed that this improves
performance, as we might expect. Specifically it
provides the greatest benefit when the receiver cannot
easily sense the emitter’s state implicitly. This finding
was also observed by Parker in the implementation of a
puck moving task where each robot broadcast its state
periodically (Parker, 1995); and by Kube and Zhang with
their collective box pushing system (Kube and
Zhang, 1994). The second part of this paper will
demonstrate that the result also holds for our system.

2.3.2 Ants

Of the social insect societies, the most thoroughly studied
are those of ants, termites, bees and wasps
(Wilson, 1971; Wilson, 1975; Crespi and Choe, 1997).
Ants display a large array of cooperative behaviors. For
example, as described in detail by Pasteels et al. (Pasteels
et a., 1987), upon discovering a new food source, a
worker ant leaves a pheromone trail during its return to
the nest. Recruited ants will follow this trail to the food
source with some variation while laying their own
pheromones down. Any chance variations that result in
a shorter trail to the food will be reinforced at a dightly
faster rate, as the traversal time back and forth is less.
Hence, it has been shown that a near optimal shortest
path is quickly established as an emergent consequence
of simpletrail following with random variation.

In this case, the interaction distance is local — the
receiver senses the pheromone at the location it was
emitted. As the signal persists in the environment for
long periods, there may be significant delay between
emission and reception. The signaling mechanism is
likely to be explicit and the interpretation, while more
complex than for bacteria, is sill relatively smple. The
ants also communicate by signaling directly from
antennae to antennae.

Since both emitter and recelver can interpret the
signal in the same way, we consider it communication
with meaning preservation. The crucial element being
that both agents share the same grounding for the signal.
In this case, the grounding is probably genetically
determined — through identical sensors and neural
processes. This mechanism can also be applied to multi-
robot systems. For example, if two robots shared
identical sensors, they could simply signal their sensor
values. This congtitutes an iconic representation, and it
is grounded directly in the environment for both robots
identically. Nothing special needs to be done to ensure a
shared grounding for the signal.

2.3.3 Wolves

A social mammal of the Canine family, wolves are
carnivores that form packs with strict social hierarchies
and mating systems (Stains, 1984). Wolves are
territorial. Territory marking occurs through repeated
urination on objects on the periphery of and within the
territories. Thisisacommunication scheme reminiscent
of our ants and their chemical trails. Wolves also
communicate with pheromones excreted via glands near
the dorsal surface of the tail.

Wolves hunt in packs. During a pack hunt,
individuals cooperate by closaly observing the actions of
each other and, in particular, the dominant male who
directs the hunt to some extent. Each wolf knows al the
pack members and can identify them individually, both
visually and by smell. Communication can be directed
at particular individuals and consists of a combination of
specific postures and vocalizations. The interaction
distance in this case is the visual or auditory range
respectively, and the emission and reception is effectively
simultaneous. The signals may be implicit, in the case of
observing locomotory behavior, for example; or more
explicit in the case of posturing, vocalizing and scent
marking. It seems likely that the signalsin each of these
cases are interpreted similarly by the emitter and
receiver.

Again, this is an instance of communication with
meaning preservation. A significant difference is that
the shared grounding enabling the uniform interpretation
of some signals (e.g. vocalizations and postures) is not
wholly genetically determined. Instead, a specific
mechanism exists such that the grounding is partially
learnt during development — in a social environment
sufficiently similar to both that a shared meaning is
ensured.

2.3.4 Non-human primates

Primates display sophisticated cooperative behavior. The
majority of interactions involve passive observation of
collaborators via visual and auditory cues, which are
interpreted as actions and intentions. As Bond writes in
reference to Vervet monkeys, “They are acutely and
sensitively aware of the status and identity of other
monkeys, as well as their temperaments and current
dispositional states” (Bond, 1996). Higher primates are
able to represent the internal goals, plans, dispositions
and intentions of others and to construct collaborative
plans jointly through acting socially (Cheney and
Seyfarth, 1990). In this case, the interaction is
simultaneous and occurs within visual or auditory range.
The signaling is implicit but the sophistication of
interpretation for the receiver is considerable. Some
explicit posing and gesturing is also utilized, which is
used to establish and control ongoing cooperative
interactions.



As with the Wolves, we observe communication
with meaning preservation through a shared grounding
that is developed through a developmental process. In
this case, the groundings are more sophisticated, asisthe
developmental process required to attain them.

2.3.5 Humans

In addition to the heritage of our primate ancestors,
humans make extensive use of communication, both
written and spoken, that is explicitly evolved or learnt.
There is almost certainly some a priori physiological
support for language learning in the developing human
brain (Bruner, 1982). Humans cooperate in many and
varied ways. We display a basic level of altruism toward
all humans and sometimes animals. We enter into
cooperative relationships — symbolic contracts — with
mates, kin, friends, organizations, and societies whereby
we exchange resources for mutual benefit. In many
cases, we provide resources with no reward except the
promise that the other party, by honoring the contract,
will provide resources when we need them, if possible.
We are able to keep track of all the transactions and the
reliability with which others honor contracts (see
Deacon, 1997 for a discussion).

Humans also use many types of signaling for
communication. Like our primate cousins, we make
extensve use of implicit communication, such as
posturing (body language). We also use explicit
gesturing — pointing, for example. Facial expressions
are a form of explicit signaling that has evolved from
existing expressions to enhance the signaling reliability
and repertoire.  Posturing, gesturing and speaking all
involve smultaneous interaction. However, with the
advent of symbolic communication we learned to utilize
longer-term interactions. A physically realized icon,
such as a picture, a ring or body decoration, is more
permanent. The ultimate extension of this is written
language. The coming of telephones, radios and the
Internet have obviously extended the interaction
distances considerably.

While  symbalic communication requires
considerable sophistication of interpretation, humans
also use signals that can be interpreted more simply. For
example, laughter has the same meaning to all humans,
but not to other animals. We can make the necessary
connection with the emotional state since we can hear
and observe others and ourselves laughing — we share the
same innate involuntary laugh behavior.

The developmental process that provides the shared
groundings for human symbolic communication —
cultural language learning — can be seen as an extension
of the processes present in our non-human primate
ancestors  (Hendriks-Jansen, 1996). The major
differences being in the complexity due to the sheer
number of groundings we need to learn and the intrinsic
power of symbolic representation over exclusively

indexical and iconic representation.  Symbolic
representations derive their power because they provide a
degree of independence from the symbolic, indexical and
iconic references that generated the relationship
represented. New symbols can be learnt using language
metaphor (Lakoff and Johnson, 1980; Johnson, 1991).

2.4 Symbolic communication and its prerequisites

Evolution does not have the luxury of being able to make
simultaneous independent changes to the design of an
organism and also ensure their mutual consistency (in
terms of the viability of the organism). For this reason,
once a particular mechanism has been evolved, it is built
upon rather than significantly re-designed to effect a new
mechanism. It is only when selection pressures change
enough to render things a liability that they may be
discarded. This is why layering is observed in natural
systems (e.g. Mallot, 1995).

In the examples above, we can perceive a layering
of communication mechanisms that are built up as we
look at each in turn — from bacteria to humans. Each
leveraging the mechanism developed in the previous
layer. The ant’s use of chemical pheromone trails to
implement longer duration interactions is supported by
direct-contact chemical communication, pioneered by
their distant bacterial ancestors. Wolves also employ this
type of communication, which provides an environment
that supports the developmental process for learning
other shared groundings. The sophistication of such
developmental processes is greater in non-humans
primates and significantly so in humans. However, even
for humans, these processes till leverage the simpler
processes that provide the scaffolding of shared iconic
and indexical groundings (see Thelen and Smith, 1994;
Hendriks-Jansen, 1996).

We believe such layering is integral to the general
robustness of biological systems. If a more sophisticated
mechanism fails to perform, the lesser ones will still
operate. We emulate the layering in the implementation
of our system for this reason.

From our examination, the following seem to be
necessary for symbolic communication between two
agents.

- Some iconic representations in common (e.g. by
possessing some physically identical sensory-
motor apparatus).

Either a shared grounding for some indexical
representations, a common process that devel ops
shared indexical groundings, or a combination
of both (e.g. a mechanism for learning the
correlation between icons — such as correlating
‘smoke’ with ‘fire’).

A common process that develops shared
symbolic groundings (e.g. mother and infant



‘innat€ behavior that scaffolds language
development —  turn-taking, intentiona
interpretation, mimicking etc.)
Additionally, unless the symboal repertoire is to be fixed
with specific processes for acquiring each symboal, it
seems necessary to have:
A mechanism for learning new symbols by
communicating known ones (e.g. interpretation
and learning through metaphor).

The implementation of this last necessity in a robot
system is currently beyond the state-of-the-art. However,
the first three are implemented in the cooperative
cleaning system, as described in the following section.

3. The System

Our research involved the development of an architecture
for behavior-based agents that supports cooperation
(Jung, 1998; Jung and Zelinsky, 1999)°. To validate the
architecture we implemented a cooperative cleaning task
using the two Y amabico mobile robots pictured in Figure
2 (Yutaetal., 1991). Thetask isto clean our laboratory
floor space. Our laboratory is a cluttered environment,
s0 the system must be capable of dealing with movable
obstacles, people and other hazards.

3.1 The Robots

As we are interested in heterogeneous cooperation, we
built each robot with a different set of sensors and
actuators, and devised the cleaning task such that it
cannot be accomplished by either robot alone. One of
the robots, ‘Joh’, has a vacuum cleaner that can be
turned on and off via software. Joh’s task is to vacuum
piles of ‘litter’ from the laboratory floor. Asour aim was
not to design a high performance cleaning system per sg,
chopped Styrofoam serves as ‘litter’. Joh cannot vacuum
close to walls or furniture, as the vacuum is mounted
between the drive whedls. It has the capahility to ‘see’
piles of litter usng a CCD camera and a video
transmitter that sends video to a Fujitsu MEP tracking
vison system. The vison sysem uses template
correlation, and can match about 100 templates at frame
rate. Thevision system can communicate with the robot,
viaaUNIX® host, over aradio modem. Visual obstacle-
avoidance behavior has been demonstrated at speeds of
up to 600mm/sec (Cheng and Zelinsky, 1996).

2Seealsohtt p: // pobox. conl ~davi d. j ung/ t hesi s. ht m

Figure 2 — The two Yamabicos ‘Flo’ and ‘Joh’

The other robot, ‘Flo’, has a brush tool that is
dragged over the floor to sweep distributed litter into
larger piles for Joh to pick-up. It navigates around the
perimeter of the laboratory where Joh cannot vacuum
and deposits the litter in open floor space. Sensing is
primarily using four specifically developed passive tactile
‘whiskers (Jung and Zdinsky, 1996a). The whiskers
provide values proportional to their angle of deflection.
Both robots are also fitted with ultrasonic range sensors
and wheel encoders.

3.2 Alayered solution

We implemented the cleaning task by layering solutions
involving more complex behavior over smpler solutions.
This provides a robust final solution, reduces the
complexity of implementation and allows us to compare
the system performance at intermediate stages of
development.

The first layer involves all the basic behavior
required to clean the floor, but does not include any
capacity to  purposefully  navigate,  explicitly
communicate or cooperate. Flo sweeps up litter and
periodically deposits it into piles where it is accessible by
Joh. Joh uses the vision to detect the piles and vacuum
them up. Therefore, the signaling — depositing litter
piles — is implicit in this case, as it is normal cleaning
behavior. The interaction is not simultaneous, as Joh
doesn’t necessarily see the piles as soon as they are
deposited. The interaction distance ranges over the size
of the laboratory. Flo doesn’t interpret the piles of litter
as a dignal a all — and in fact has no way of sensing
them. Joh has a smple interpretation — the visual iconic
representation of the pile acts as a releaser to vacuum
over it.



Layer 4
symbolic communication
of litter locations

Layer 3
explicit communication
of litter relative positions

Layer 2
implicit visual communication
of likely litter position

Layer 1
no awarness of each other

Figure 3 - Layered solution

Figure 4 — Joh visually tracking Flo (no vacuum attached)

The second layer gives Joh an awareness of Flo.
We added the capability for Joh to visually detect and
track the motion of Flo. This is another communication
mechanism that provides state information about Flo to
Joh. In this case, the signaling is again implicit, the
interaction distance is visual range and the interaction is
simultaneous. Joh uses the visual iconic representation
of Flo to ground an indexical reference for the likely
location of the pile of litter deposited. Figure 4 shows
Joh visually observing Flo via a digtinctive pattern.
Details of the implementation the visual behavior we
employed can be found in (Jung et a., 1998a). A top
view of typica trajectories of the robot is shown in
Figure5.

The third layer introduces explicit communication.
Specifically, upon depositing a pile of litter, Flo signals
via radio the position (distance and orientation) of the
pile relative to its body and the relative positions of the
last few piles deposited. Flo and Joh both have identical
whed encoders, so we are ensured of a shared grounding
for the interpretation of the communicated relative
distance and orientation to piles. Although odometry has
a cumulative error, this can be ignored over such short
distances. The catch is that the positions are réelative to
Flo. Hence, Joh must transform them to egocentric
positions based on the observed location of Flo. If Flois

not currently in view, the information is ignored. A
typical set of trgjectoriesis shown in Figure 6.

Figure 5 - Typical trajectories when Joh can observe Flo
depositing litter (Layer 2)

Figure 6 - Typical trajectories when explicit communication is
utilized (Layer 3)

The fourth and final layer involves communication
of litter locations by Flo to Joh even when Flo cannot be
seen.  This is accomplished by using a symbolic
interpretation for a specific geometric relationship of
positions to each other. What is communicated to
convey a location is analogous to ‘litter postion is
<specific-geometric-relation-between>  <position-A>
<position-B> <direction> <distance>'. The positions
are indexical references that are themselves grounded
through a shared process, a location-labeling behavior,
described below. The distance and direction are in fact
raw encoder data, hence an iconic reference, relying on
the shared whed encoders. There is no signa
communicated for the symbolic relation itsdf (like a
word), since there is only one symboal in the system, it is
unambiguous. Obvioudly, if more symbols were known,
or a mechanism for leaning new symbols available,
labels for the symbols would need to be generated and
signaled (and perhaps syntax established).



First, we describe the action selection scheme
employed, as it is the basis for the navigation and map
building mechanism, which in turn is the basis for the
location-labeling behavior.

3.3 Action Slection

We needed to design an action selection mechanism that
isdistributed, grounded in the environment, and employs
a uniform action selection mechanism over all behavior
components. Because the design was undertaken in the
context of cooperative cleaning, we also required the
mechanism to be capable of cooperative behavior and
communication, in addition to navigation. Each of these
requires some ability to plan. This implies that the
selection of which action to perform next must be made
in the context of which actions may follow — that is,
within the context of an ongoing plan. In order to be
reactive, flexible and opportunistic, however, a plan
cannot be a rigid sequence of pre-defined actions to be
carried out. Instead, a plan must include alternatives,
have flexible sub-plans and each action must be
contingent on a number of factors. Each action in a
planned sequence must be contingent on internal and
external circumstances including the anticipated effects
of the successful completion of previous actions. Other
important properties are that the agent should not stop
behaving while planning occurs and should learn from
experience.

There were no action selection mechanisms in the
literature capable of fulfilling all our requirements. As
our research is more concerned with cooperation than
action sdection per se, we adopted Maes spreading
activation algorithm and modified it to suit our needs.
Her theory “models action selection as an emergent
property of an activation/inhibition dynamics among the
actions the agent can select and between the actions and
the environment” (Maes, 1990a).

3.3.1 Components and I nterconnections

The behavior of a system is expressed as a network that
consists of two types of nodes — Competence Modules
and Feature Detectors. Competence modules (CMs) are
the smallest units of behavior selectable, and feature
detectors (FDs) deliver information about the external or
internal environment. A CM implements a component
behavior that links sensors with actuators in some
arbitrarily complex way. Only one CM can be executing
at any given time — a winner-take-all scheme. A CM is
not limited to information supplied by FDs — the FDs are
only separate entities in the architecture to make explicit
the information involved in the action selection
calculation.

Key:
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Figure 7 - Network components and interconnections

The graphical notation is shown above where
rectangles represent CMs and rounded rectangles
represent FDs. Although there can be much exchange of
information between CMs and FDs the interconnections
shown in this notation only represent the logical
organization of the network for the purpose of action
selection.

Each FD provides a single Condition with a
confidence [0...1] that is continuously updated from the
environment (sensors or internal states). Each CM has
an associated Activation and the CM sdlected for
execution has the highest activation from all Ready CMs
whose activations are over the current global threshold.
A CM is Ready if all of its preconditions are satisfied.
The activations are continuously updated by a spreading
activation algorithm.

The system behavior is designed by creating CMs
and FDs and connecting them with precondition links.
These are shown in the diagram above as solid lines
from a FD to a CM ending with a white square. It is
possible to have negative preconditions, which must be
fase before the CM can be Ready. There also exist
correlation links, dotted linesin the figure, from a CM to
a FD. The correlations can take the values [-1...1] and
are updated at run-time according to a learning
algorithm. A positive correlation implies the execution
of the CM causes, somehow, a change in the
environment that makes the FD condition true. A
negative correlation implies the condition becomes false.
The designer usualy initializes some correlation links to
bootstrap learning.

Together these two types of links, the precondition
links and the correlation links, completely determine
how activation spreads thought the network. The other
activation links that are shown in Figure 7 are
determined by these two and exist to better describe and
understand the network and the activation spreading
patterns. The activation links dictate how activation
spreads and are determined as follows.

There exists a successor link from CM pto CM s
for every FD condition in s's preconditions list
that is positively correlated with the activity of p.

There exists a predecessor link in the opposite
direction of every successor link.
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Figure 8 — Partial network for Flo (produced by our GUI).

There exists a conflictor link from CM xto CM y
for every FD condition in y's preconditions list
that is negatively correlated with the activity of x.

The successor, predecessor and conflictor links resulting
from the preconditions and correlations are shown in
Figure7.

In summary, a CM s has a predecessor CM p, if p's
execution is likely to make one of S's preconditions true.
A CM x has a conflictor CM v, if y's execution is likely
to make one of X' s preconditions false.

3.3.2 The Spreading of Activation

A rigorous description of the spreading activation
algorithm is beyond the scope of this paper. The
algorithm has been detailed in previous publications
(Jung, 1998; Jung and Zelinsky, 1999). The activation
rules can be more concisely described in terms of the
activation links. The main spreading activation rules
can be simply stated:

Unready CMs increase the activation of

predecessors and decrease the activation of

conflictors, and

Ready CMs increase the activation of successors.

In addition, these special rules change the activation of
the network from outside in response to goals and the
current situation:

Goals increase the activation of CMs that can
satisfy them and decrease the activation of those
that conflict with them, and
FDs increase the activation of CMs for which they
satisfy a precondition.
To get afed for how it works, we describe part of a
network that implements the cleaning task for Flo, as

shown in Figure 8. With some of the components
shown, a crude perimeter-following behavior is possible.

The rectangles are basic behaviors (CMs), the ovals
feature detectors (FDs), and only the correlation and
precondition links are shown (the small circles indicate
negation of a precondition). The goa is Cl eani ng.
This occurs when Flo roughly follows the perimeter of
the room by using Follow to follow walls and
ReverseTurn to reverse and turn away from the
perimeter when an obstacle obstructs the path.
Periodically the litter that has accumulated in the
sweeper is deposited away from the perimeter by
DunpLitter.

The spreading activation algorithm ‘injects
activation into the network CMs via goals and via FDs
that meet a precondition. Therefore, the Cl eani ng goal
causes an increase in the activation of Fol | ow,
DunpLi tter and ReverseTurn. Suppose Floisin a
situation where its left whiskers are against a wall
(Obst acl eOnLef t istrue) and there are no obstacles in
front (Cbst acl eAhead and Front Hi t both false). In
this case, the activation of Fol | ow will be increased by
al the FDs in its precondition set (including Ti nmer
which is false before being triggered). Being the only
CM ready, it is scheduled for execution until the
situation changes. Once the Ti ner FD becomes true,
Fol | ow is no longer ready, but DunpLitter becomes
ready and is executed. Fol | ow and DunpLitter also
decrease each other’s activation as they conflict — each is
correlated with the opposite state of Ti mer .

Although, the sdection of CMs in this example
depends mainly on the FD states, when the selection of
CMs depends more on the activation spread from other
CMs, the networks can exhibit ‘planning’ — as Maes has
shown. This is the basis for action planning in our
networks, and gives rise to path planning as will be
described below.



From the rules we can imagine activation spreading
backward through a network, from the goals, through
CMs with unsatisfied preconditions via the precondition
links until a ready CM is encountered. Activation will
tend to accumulate at the ready CM, as it is feeding
activation forward while its successor is feeding it
backward. Eventualy it may be selected for execution,
after which its activation is reset to zero. If its execution
was successful, the precondition of its successor will
have been satisfied and the successor may be executed (if
it has no further unsatisfied preconditions). We can
imagine multiple routes through the network, activation
building up faster via shorter paths. These paths of
higher activation represent ‘plans within the network.
The goals act like a*homing signal’ filtering out through
the network and arriving at the current ‘situation’.

One important difference between our and Maes
networks isthat in ours the flow of activation is weighted
according to the corrdations — which are updated
continuousy at run-time according to previous
experience. The mechanism for adjusting the correlation
between a given CM-FD pair is smple. Each time the
CM becomes active, the value of the FD’s condition is
recorded. When the CM is subsequently deactivated, the
current value of the condition is compared with the
recorded value. It is classified as one of: Became True,
Became False, Remained True or Remained False. A
count of these cases is maintained (B, B, R, R). The
correlation is then:

(2B +R) (2B; +Ry)
2N 2N
Wherethetotal samples N=B; +B; + R + R;

corr =

To keep the network plastic, the counts are decayed so
recent samples have a greater effect than historic ones.

3.4 Navigation and map building

3.4.1 Spatial and Topological path planning

There are two main approaches to navigational path
planning. One method utilizes a geometric
representation of the robot environment, perhaps
implemented using a tree structure. Usually a classical
path planner is used to find shortest routes through the
environment. The distance transform method falls into
this category (Zelinsky et a., 1993). These geometric
modeling approaches do not fit with the behavior-based
philosophy of only using categorizations of the robot-
environment system that are natural for its description,
rather than anthropocentric ones. Hence, numerous
behavior-based systems use a topological representation
of the environment in terms only of the robot’s behavior
and sensing (eg. see Mataric, 1992). While these
approaches are more robust than the geometric modeling

approach, they suffer from non-optimal performance for
shortest path planning. This is because the robot has no
concept of space directly, and often has to discover the
adjacency of locations.

Consider the example below, where the robot in (a)
has a geometric map and its planner can directly
calculate the path of least Cartesian distance, directly
from A to D. However, the robot in (b) has a topological
map with nodes representing the points A, B, C and D,
connected by a follow-wall behavior. Since it has never
previously traversed directly from A to D, the least path
through its map is A-B-C-D.

D c D c

A B A B
Figure 9 — (a) Geometric vs (b) Topological Path Planning

Consequently, our aim was to combine the benefits
of geometric and topological map representations in a
behavior-based system using our architecture.

3.4.2 A self-organizing map

In keeping with the behavior-based philosophy, we found
no need to explicitly specify a representation for a map
or a specific mechanism for path planning. Instead, by
introducing the key notion of location feature detectors
(location FDs), the correation learning and action
selection naturally gave rise to map building and path
planning — for ‘free'.

A location feature detector is a component of our
architecture specialized to respond when the robot isin a
particular location (the detector’s characteristic location).
We employ many detectors and the locations to which
they respond are non-uniformly distributed over the
laboratory floor space. Each location FD contains a
vector v, whose components are elements of the robot
State vector:

x =[g,s,fds]

where g = (x,y,q) global odometry coordinates
S = sensor values
fds = non-location FD values

The variable g contains global Cartesian coordinates and
orientation estimated from whee encoders and a model
of the locomotion controller. The sensors include
ultrasonic range readings and in Flo's case, tactile
whisker values. The fds component contains the
condition values of all FDs in the system, except for the
location FDs themselves. For example, in Joh's case this
includes visual landmark FDs.

The condition confidence value of each location FD
is updated by comparing it to the current state of the



robot’s sensors and other non-location FDs. A weighted
Euclidean norm N, is used — with the (x,y) coordinate
weights dominating.

G =1- Ny(v, X)
Hence, the vector of the location FD whose condition is
true with highest confidence is considered to represent

the ‘current location’ of the robot. The detectors are
iconic representations of locations (see Figure 10).

The location FD vectors v are initialized such that
the (x,y) components are distributed as a regular grid
over the laboratory floor space, and the other components
are randomly distributed over the vector space. During
operation of the system, the location FD vectors are
updated using Kohonen's self-organiziing map (SOM)
algorithm (Kohonen, 1990). This causes the spatial
distribution of the location FD vectors to approximate
the frequency distribution of the robot’s state vector over
time. Figure 16 shows how the detectors have organized
themselves to represent one of our laboratories. One
useful property of a SOM is that it preserves topology —
nodes that are adjacent in the representation are
neighboring locations in the vector space.

Since the location FD vectors v are continuously
matched with the robot state vector x, in which the (x,y)
coordinates are estimated via odometry, there is a major
drawback. The odometry error in (X,y) is cumulative.
We remedy this by updating the robot state vector
coordinates.  Specifically, the system has feature
detectors for various landmark types that are
automatically correlated with the location FDs by the
correlation learning described above. If it should happen
that a landmark FD becomes true with high confidence
that is strongly correlated with a location FD
neighboring the location FD for the ‘current location’,
then the state vector (x,y) component is updated. The
coordinates are simply moved closer to the coordinates of
the location FD to which the landmark is correlated.
Assuming the landmarks don’'t move over moderate
periods, this serves to keep the location FD (x,y)
components registered with the physical floor space.

Indexical reference to
current location

Figure 10 — Schematic of location detector SOM and current
location index

The system also maintains an indexical reference
that represents the robot’s current location. Recall that
an indexical reference is a correlation between icons.
The robots each have a sense of time — in terms of the
ordering relation between sensed events (which is shared
to the extent that the ordering of external events is
perceived to be the same by both robots). Hence, the
current location index is an association between the most
active location detector and the current time.

It is clear this mechanism fulfills our reguirement
for spatial mapping. The topological mapping derives
again from the correlation learning in the architecture.
Specifically, the system learns by experience that a
particular behavior can take the robot from one state to
another — for example by changing the current location
index in a consistent way. Over time, behavior such as
follow-wall becomes correlated with the start and end
locations of a wall segment. The spreading activation
will cause the behavior to be activated when the system
needs to ‘plan’ a sub-path from the start to the end.
Similarly, smple motion behavior becomes correlated
with moving the robot from one location to one of its
neighbors.

3.4.3 Navigation

Once we have feature detectors that respond to specific
locations, it is straightforward to add spatial and
topological navigation. Each time a behavior (a CM) is
activated, the identity of the current location FD before
and after its execution isrecorded. A new instance of the
CM s created, and initialized with the *source’ location
FD as a precondition and the ‘destination’ as a positive
correlate. Hence, the system remembers which behavior
can take it from one specific location to another. If the
CM does not consistently do this, its correlation with the
destination location FD will soon fall. If it falls to zero,



the CM is removed from the network. Changes in the
environment also cause correlations to change, thus
allowing the system to adapt.

With this mechanism, the system learns topol ogical
adjacency of locations in terms of behavior. For
example, if the activation of the Follow CM
consistently takes the robot from the location FD
corresponding to the start of a wall, to the end of the
wall, then the links shown below will be created.

Figure 11 - Behavioral adjacency of locations via Follow (FL)

The spreading activation algorithm for action selection is
able to plan a sequence of CM activations to achieve
navigation between any arbitrary locations.

Spatial navigation is achieved by initializing the
network so that a simple For war d behavior links each
location FD with its eight neighbors in both directions.
Hence, initially the system ‘thinks it can move in a
straight line between any locations that are neighbors in
the SOM. If presence of an obstacle blocks the straight-
line path from one location to its neighbor, then this will
be learnt through a loss of correlation between the
corresponding For ward CM and the ‘destination’ FD.
The mechanisms described here for map building and
navigation are presented in detail in (Jung, 1998; Jung
and Zelinsky, 1999a).

3.5 A shared grounding for locations

For layer 4 of the implementation, we wanted to add the
capability for Flo to communicate the locations of litter

pilesin amore general way. In such away that it would
be useful to Joh if Flo were not in view or even in
another room. In the system as described thus far, Flo
and Joh do not share any representations except the
iconic representations of their shared sensors (odometry
and ultrasonic). The location feature detectors may be
correlated with visual landmarks in Joh's map, and
whisker landmarksin Flo's (among other information).

Hence, before we can communicate FlO's
representation for location we need a procedure to
establish a shared grounding with Joh. For this purpose,
we have implemented a location labeling procedure.
Location labeling is essentially behavior whereby Flo
teaches Joh a location by empirical demonstration. It
proceeds as follows.

If Joh is tracking Flo in its visua field at a
particular time and there are no previoudy labeled
locations near by, then Joh signals Flo indicating that
Flo's current location should be labeled. Although an
arbitrary signal could be generated and communicated to
serve as a common labeling icon for the location, in this
specific case no signal is necessary. Because there are
only two robots, the time ordering of the labeling
procedures is identical to each. Hence, a time ordered
sequence number maintained by each serves as the
labeling icon with a shared grounding. Thefirst location
is labdled ‘1% Label’, the next ‘2™ Label’, etc. If Joh
receives a confirmation signal from Flo, it associates the
label icon with Flo's current location. Joh calculates
Flo'slocation based on its own location and a calculation
of Flo'srange from visual tracking information. Flo also
labels its own location index in the same way. This
procedure creates an indexical representation of specific
locations that are associations between a location
detector icon and the labd icon (the shared sequence
number). Although the locations themselves are not
represented using the same icons by both Flo and Joh,
they represent the same physical location. Figure 12
shows the situation after the labeling procedure has
occurred four times (the symboal is explained below).
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Figure 12 — Shows Iconic references that represent sensory data, Indexical references that associate pairs of icons (a label with a

location) and a symbol (see text). The fine lines between location feature detectors show their adjacency in the SOM; the pairs of

arrow headed lines from indexical references define which two icons they associate; and the two sets of arrow headed lines from
the symbol designate two ‘exemplars’ (see text).

3.6 A symbol for a relationship between locations

The next step is to endow both Joh and Flo with the
ability to represent an arbitrary location in relationship to
already known locations. Recall that a symboal is defined
as a relationship between other symbolic, indexical and
iconic references.

Ideally, symbols should be learnt, as in biological
systems. The relationship a symbol represents is a
generalization from a set of observed ‘exemplars —
specific relationships between other symbols, indices and
icons. How this can be accomplished is till an open
research area. For thisreason, and because we only need
a single symbol that will not be referenced by higher-
level symbols, we chose to simply provide the necessary
relationship. We can consider the symbol a ‘first-level
symboal’, asit is not dependent on any other symbols, but
grounded directly to iconic and indexical representations.
As symbol systems go, ours is as impoverished as it can
be.

The relationship represented by the symbol is
between two known location indices and a distance and
orientation in terms of wheel encoder data. The two
known locations define a line segment that provides an
origin for position and orientation. The whedl encoder
data then provides a distance and orientation relative to
this — which together defines a unique location (see
Figure 13). For example, a pile could be specified as
being approximately 5m away from the 2" labeled

location at an angle of 30° relative to the direction of the
1% labeled location from the 2". The top of Figure 12
shows the symbol in the context of the overall system.

Represented
position

\

iconic distance and orientation
(wheel encoder data)

Indexical
references to
shared labeled

locations

Figure 13 - Schematic of the <specific-geometric-relation-
between>symbol used to communication locations

3.7 Symbolic communication

Finally, we arein a position to see how a location can be
symbolically communicated from Flo to Joh. With a
particular pile location in mind, Fo first calculates the
representation for it using the symbolic relationship
above. It sdlects the two closest locations, previously
labeled, as the indexical references and computes the
corresponding iconic wheel encoder data that will yield
the desired pile location. This information is then
signaled to Joh by signaling the labels for each of the
known locations in turn, followed by the raw encoder
data. This signal is grounded in both robots, as the



labels were grounded through the location labeling
procedure, and the whedl encoders are a shared sense.
Hence, the meaning is preserved. Joh can recover the
location by re-grounding the labels and reversing the
computation.

3.8 Reaults

Thetypical trgjectoriesin Figure 14 show that Joh is able
to successfully vacuum the litter in the pile to the left.
This occurs after the location of the pile has been
communicated symbolically by Flo. The pile was
initially obscured by the cardboard box, but Joh was able
to correctly compute its location and plan a path around
the box using its map. This can be contrasted with the
layer 3 solution shown in Figure 6, where no symbolic
communication or map was utilized. If the box were
blocking the straight-line path to the litter pile in that
case, Joh would not have been able to navigate to within
visual rangeto locate it.

As the system was not designed as a floor cleaning
system per-se, rigorous experiments to record its
cleaning performance were not conducted. However, we
did run experiments that seem to show that the addition
of symbolic communication does improve cleaning
performance.  We expect this intuitively, as the
governing factor in vacuuming performance is the path
length between litter piles. The ability to navigate
purposively from one known litter pile location to the
next, instead of having to rely on an obstacle free path,
or chance discovery of the pile locations, shortens the
average path length.

Figure 14 - Typical trajectories during cooperation

We also ran experiments utilizing each layer in turn
(including the lower ones on which it builds). We
recorded the percentage of the floor cleaned every two
minutes from 3-15 minutes. It was difficult to run all of
the experiments consistently for more than 15 minutes
due to problems with hardware reliability. The results
are plotted in Figure 15. |Initially, about 30% of the
‘litter’ was distributed around the perimeter and the

remainder scattered approximately uniformly over the
rest of the floor. The percentage cleaned was estimated
by dividing the floor into a grid and counting how many
tiles had been cleaned.

‘+ Layer 1 —=— Layers 1&2 —— Layers 1-3 —O— Layers 1-4 ‘
" _
80

70 7

o //

50 /_/-'/J
/"/40

40 *>

30 1

20 1

10 +

0 T T
0 5 10 15

Time (mins)

% Cleaned

Figure 15 - Performance of layered cleaning solutions

Clearly, the addition of each layer improves the
cleaning performance. In particular, layer 4, utilizing
symbolic communication, initially falls behind as some
time is used to perform location labeling rather than
cleaning. This starts to pay off later after a number of
locations have been label ed.

This experiment also shows the robustness gained
by layering the solution. The implementation of layer 1
isrobust due to its simplicity. If any of the mechanisms
employed in the subsequent layers were to fail, we have
demonstrated that the system will continue to perform
the cleaning task, although not as quickly.

4. A Critical Examination

4.1 The limitations of our system

The are two obvious limitations to the approach we have
described  for  developing grounded  symbolic
communication between robots. The first is that the
common process by which a shared symbol grounding is
developed is the design process. That is, the shared
grounding was established by identical design and
implementation of the mechanism for its interpretation.
This is an impractical way to develop sophisticated
symbol systems, as the mechanism for the interpretation
of each symbol must be designed in turn.

Isthisjust a practicality problem, or it isimpossible
in principle? When we designed the system, we believed
that it was possible, if impractical, to build general
symbol systems in this way — by explicitly designing the
process of interpretation for each symbal. We
hypothesized that all that was missing was a mechanism
to learn the symbolic representations — to effectively
automate the process. However, we argue below that is it
in fact impossible in principle (for all but the smplest
symbol systems — like the one presented).



The second obvious limitation is arelated one. The
approach doesn’t include a mechanism for learning new
symboals, even if it had an existing symbol repertoire
designed in.

4.2 Symbolsrevisited

Our definition of grounded from section 2.2 contained a
hidden assumption. We defined a symbol to be grounded
if its interpretation required following references that all
eventually lead to icons. Recall that, symbols and the
dtructure of their relationships to each other and to
indices and icons, is a linguistic one. It is the
empirically observed structure of the signals that humans
generate and interpret. This grammatical structure of
spoken and written language is arelatively persistent one
(ignoring the fact that languages change slowly over
time). The hidden assumption, which we now believe to
be incorrect, was that this somehow implies that a
similarly persistent analogous structure must be present
within the mind of the humans that generate signals
conforming to the structure. That is, just because thereis
ardatively persistent symbolic system present in human
cultural artifacts — such as books, paintings, buildings,
music, etc. — this does not imply that any symbol system
persists within the human mind. It was with thisinvalid
assumption that we proceeded to construct just such a
symbol system within the robots, by representing and
relating icons, indices and symbols.

We believe there is ample evidence that no
persistent symbolic structure within the human mind that
mirrors the structure of human language exists — but this
remains to be seen. Dennett has argued strongly against
the idea of a Cartesian theater — a place in the mind
where all the distributed information is integrated for a
central decision-maker (Dennett, 1993). It seems that
distributed information about the external world
(possibly contradictory) need not be integrated unless a
particular discrimination is necessary for performance
(for example to speak or behave). Even then, only the
information necessary for the discrimination need be
integrated.

Even if humans don’'t use the equivalent of a
persistent cognitive grammar to reason about the world,
why can’t robots use one?

4.3 Symbolic representation is not situated

A symbol represents a discrete category in the continuous
space of sensory-motor experience. Hence it defines a
boundary such that points in the space lie either within
the category or outside of it — there are no gray aress.
Therefore, a symbol system is a way of characterizing
sensory-motor experience in terms of membership of the
categories it defines. Symbols derive their power by
conferring a degree of independence from the context

dependent, dynamic and situated experiences from which
they are learnt. This allows symbolic communication to
preserve its meaning when the interaction is extended in
time (e.g. the period between these words being written
and you reading them).

Suppose we build a robot for a particular task that
necessitates symbolic communication, and endow it with
a symbolic representation system according to the
approach we have outlined, whereby static symbol
groundings are designed in. The robot is situated in the
sense that the task for which is it designed provides a
context for itsinteraction with the environment (from the
theory of situated action — Mills, 1940; Suchman, 1987).
The robot is an embodied agent and has a grounded
symbol system. It satisfies the criteria of the physical
grounding hypothesis (Brooks, 1990).

We argue that this approach to building a robot will
not necessarily work, except in the smplest cases. The
task in which the robot is situated dictates the
discriminations it must make in order to behave
appropriately — it must behave in terms of its affordances
(Gibson, 1986). Since the discriminations it can make
are determined by the categories defined by its symbol
system, which is necessarily static, it will only work if
the task very specific — ensuring the appropriate
discriminations don’'t change. This is precisely the
Situation in which our system operates — in the situated
context defined by a statically specified cleaning task.

A robot capable of operating flexibly in a dynamic
Situated context must continualy adapt the
discriminations it makes. If usng a symbolic
representation system, this implies the categories defined
by the symbols, and hence the meaning of the symbols
themselves, must change®. However, a dynamic symbol
system looses its power for communication — one of the
main reasons for endowing the robot with a symbol
system in the first place.

Consequently, a robot that utilizes a static symbolic
representation system (like the one we presented) cannot
be situated if its task is to behave flexibly in a dynamic
context. Hence, our approach of designing in the robot’s
symbol groundings does not scale from systems designed
to achieve ssimple specific tasks, to more general flexible
behavior.

We also see a more pragmatic way in which larger
symbol systems built via our approach can become
unsituated. In order to manage complexity in the design
process, we often structure a system by categorizing and
apply linguistic labels to design components (i.e. we
need to name elements of our designs). Although this
activity is logically independent from the way the system

% It may be possible in principle for an agent to use a static symbol system
that covers al possble categorizations and hence accommodates any
possible discrimination needed for appropriate behavior in any situated
context. However, we dismiss this as impossible in practice due to
computation intractability.



functions, the anthropocentric groundings we use in our
interpretation of the linguistic labels inevitably effect the
design.

For example, by naming a behavior component
val | Fol | owi ng, we may accidentally allow hidden
assumptions from our understanding of ‘walls to come
into play, despite being aware of this pitfall. If the robot
possesses anything that could be called a concept for a
‘wall’, it is surely impoverished compared to our human
understanding of ‘walls’. We contend that avoiding this
pitfall becomes harder, to the point of practica
impossibility, as the symbol systems become more
complex and the discrepancy between our labels and the
robot’ s representations grow.

4.4 Adaptive Symbol Grounding Hypothesis

There is increasing evidence that humans do not reason
about the world and behave using symbolic
representations  (Hendriks-Jansen, 1996 provides a
thorough argument). Instead, like other biological
systems, we represent® the world in terms of changing
affordances — dictated by our situatedness. We make
only the discriminations necessary to behave
appropriately. The symbols we use to communicate seem
to be generated during language production and
interpretation by a dynamic process that grounds them in
our adaptive internal representations while preserving
their static, public, Satistically persistent meaning.
Hence, the symbols we generate are influenced by our
Situated representations during production and they have
the power to influence them during interpretation. The
symbolic representations themselves are only transient.
We refer to this conception as the Adaptive Symbol
Grounding Hypothesis.

By this conception, we envisage the process of
learning new concepts as follows. A process within the
emitter wishing to communicate a new concept
dynamically  generates a transient  symbolic
representation that best approximates it by matching the
internal representation with learnt static linguistic
symboal relationships. This structure is reflected in the
signal. The interpretation process within the receiver
causes a similar transient symbolic structure to emerge.
Again, an approximate match is made between the
symbolic structure and the internal representation —
which influences the representations. In this case, the
influence causes a new concept to be discovered. The
symboalic structure provides the scaffolding necessary to
get the receiver thinking in the right way to discover the
new concept.

4 We do not mean to imply that biological agents represent the world to
themsdves. Of course any observations of the internal states of an agent
can be said to represent something — if we as scientific observers interpret
it, it represents something to us.

So the essential points of the Adaptive Symbol
Grounding Hypothesis can be summarized as follows.

The persistent reationships between icons,
indices and symbols that comprise the
hierarchical structure of language (e.g. grammar)
are only observed in the communicated signals.
Agents engaging in symbolic communication do
not need to maintain an explicit representation
analogous to the symbolic structure of the
language.

Symbol grounding is transient and adaptive.
Explicit symbolic representations and ther
Situated groundings only persist during the
generation and interpretation of the signals of
symbolic  communication. The gspecific
groundings with which icons for particular
symbols are associated depend upon a history of
use. The mapping adapts both to the immediate
context and to track long-term common usage
within a community of language users.

4.5 Implication for cooperative robotics

In the future, we will require increasingly complex tasks
to be carried out by multi-robot teams. Hence, the
behavioral sophistication of the individual robots will be
greater. If we wish to engineer multi-robot systems that
can cooperate in complex ways, they will eventually
reguire symbolic communication.

The Adaptive Symbol Grounding Gypothesis
implies that all symbols are learnt. Hence, we advocate
the ubiquitous use of learning in engineering all robotic
systems.  Without it, we don’'t believe symbolic
communication of significance is possible.

Multi-robot systems are usually classified as either
homogeneous or heterogeneous. This is usually based
upon physical attributes, such as sensors and actuators;
but can be equally applied to the computational and
behavioral ahility of the robots. A robot system is
classified as heterogeneous if one or more agents are
different from the others. Balch proposes a metric to
measure the diversity in multi-robot systems he calls
social entropy — which also recognizes physically
identical robots that differ only in their behavioral
repertoire (Balch, 1997).

If robots are engineered with an emphasis on
learning and are consequently more a product of their
experience, as we suggest above, then even physically
homogeneous teams will have significant social entropy.
The teams will necessarily be heterogeneous in terms of
their representation of the world and hence behavior.
Therefore, we don’t envisage homogeneous multi-robot
systems playing a large role in the cooperative robotics
domain in the long term.



5. Summary

In the first part of the paper, we defined what we mean
by grounded and provided a framework for talking about
symbols in terms of indexical and iconic references. We
aso introduced the classification scheme for
communication involving the characteristics interaction
distance, interaction simultaneity, signaling explicitness
and sophigtication of interpretation. We discussed
cooperation and communication in bacteria, ants
wolves, primates and humans in these terms to deduce
some prerequisites for symbolic communication.

If we are not interested in preserving the meaning of
a dgna between emitter and receiver, then the
implementation is straightforward. If we wish to
preserve meaning, then we have to ensure a shared
grounding between the agents. In the case of iconic
representations, as they are essentially grounded directly
in sensory information, this can only be ensured if the
sensors are identical between the agents. In the case of
indexical and symbolic representations, a specific
mechanism for establishing a shared grounding is
needed. For indexical representations, an empirical
demonstration can serve to ground them to appropriate
icons. The location labeling procedure we implemented
on our robots takes this form.

We described the implementation of the cooperative
cleaning system, including the spreading activation
action-selection mechanism and purposive navigation in
order to provide an understanding for the communication
mechanism. The symbolic communication relies on:

the shared grounding of icons through common
SENsOors,

the shared grounding for locations, developed
through a specific process — the location labeling
behavior, and

the shared grounding for the symbol representing
a specific relationship between locations —
provided by design.

In the final part of the paper, we critically examined
the system and its limitations. Specifically, one obvious
limitation is that the system only contains a single
symbol, and it was provided at design time — with no
mechanism for learning further symbols. By looking
again at the notion of a symbol we were able to
understand that this approach cannot scale to larger
symbol systems.

We argued that situated, embodied agents cannot
use symbalic representations of the world to interactively
behave in it. The Adaptive Symbol Grounding
Hypothesis was introduced as an alternative conception
for how symbol system might be used in situated agents.
Finally, we concluded that symbol grounding must be
learnt. Conseguently, we advocate the ubiquitous use of
learning in heterogeneous multi-robot systems, because
without it symbolic communication is not possible. We

believe this would be a severe limitation to the
sophistication of cooperation in the future.
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