
Acquiring Mobile Robot Behaviors by
Learning Trajectory Velocities

KOREN WARD
School of Information Technology and Computer Science, The University of Wollongong

Wollongong, NSW, Australia, 2522.
koren@uow.edu.au

ALEXANDER ZELINSKY
Research School of Information Sciences and Engineering, The Australian National University

Canberra, ACT, Australia, 0200.
Alex.Zelinsky@anu.edu.au

Abstract. The development of robots that learn from experience is a relentless challenge confronting artificial intel-
ligence today. This paper describes a robot learning method which enables a mobile robot to simultaneously acquire
the ability to avoid objects, follow walls, seek goals and control its velocity as a result of interacting with the envi-
ronment without human assistance. The robot acquires these behaviors by learning how fast it should move along
predefined trajectories with respect to the current state of the input vector. This enables the robot to perform object
avoidance, wall following and goal seeking behaviors by choosing to follow fast trajectories near: the forward direc-
tion, the closest object or the goal location respectively. Learning trajectory velocities can be done relatively quickly
because the required knowledge can be obtained from the robot’s interactions with the environment without incur-
ring the credit assignment problem. We provide experimental results to verify our robot learning method by using a
mobile robot to simultaneously acquire all three behaviors.

Keywords: robot learning; fuzzy associative memory; trajectory velocity learning; TVL, unsupervised learn-
ing; associative learning; multiple behavior learning.

1. Introduction

Providing mobile robots with reactive behaviors us-
ing conventional programming methods can be a
difficult and time consuming task. This is because:
• It is hard to foresee and encode all situations the

robot could encounter.
• It can be hard to decide precisely which action

the robot should take and how fast it should
move in all situations.

• It may not be possible to predict precisely what
information will emerge from the sensors in
many situations.

• It may not be possible to know if the final en-
coded behavior is robust enough for the in-
tended task or whether it will work effectively in
different environments.

1.1. Learning Robot Behaviors via
Demonstrated Actions

To make the task of encoding robot behaviors simpler,
some researchers have been able to show that certain,
robot behaviors can be learnt by demonstrating actions
with the robot via remote control. For example, Pomer-
leau (1993) Krose and Eecen (1994) and Tani and Fuku-
mura (1994) showed how training data derived from
demonstrated actions could be used to train neural
network based controllers for mobile robot navigation.
Also, Wyeth (1998) demonstrated how neural networks
could be trained to enable a visually guided mobile ro-
bot to avoid objects and fetch a ball. Alternatively, Cas-
tellano et al (1996) showed how Fuzzy Associative
Memory (FAM) matrices (see Kosko (1992)) could be
trained to obtain wall following behavior by demo n-
strating the behavior with a sonar equipped mobile ro-

2

bot. However, the main disadvantage of using dem-
onstrated actions to derive robot controllers is that it
can be difficult to obtain non-conflicting training
data that accurately and comprehensively describes
any specific behaviors. Furthermore, it can be diffi-
cult to extract an efficient controller from the training
data that performs adequately. Also, it may not be
practical or possible to repeatedly teach a robot the
same or different situations in order to improve its
actions if the robot exhibits inadequate behavior in
unknown environments. For these reasons it is
highly desirable for control systems to be built that
allow robots to automatically produce or improve
their behaviors via some form of unassisted robot
learning process.

1.2 Learning Robot Behaviors Without Supervision

To enable robots to learn behaviors automatically, a
variety of techniques have been used. These tech-
niques include the use of Reinforcement Learning
(RL) (e.g. Materic (1997), Kaelbling, (1993), Connel
and Mahadevan (1992)); Genetic Algorithms (GAs)
(e.g. Floreano and Mondada (1994, 1995, 1996), Ja-
kobi (1994), Jakobi et al (1992), Nolfi et al, (1994));
and some more unique approaches (like Sharkey
(1998), Nemhzow et al, (1990), Michaud and Materic
(1998)).

RL has successfully been applied to robots for
learning a wide variety of behaviors and tasks (e.g.
robot soccer Asada et al (1995), light seeking Kael-
bling (1991), box pushing Connel and Mahadevan
(1992), and hitting a stick with a ball Kalmar, et al,
(1998)). Generally, these tasks are acquired by using
RL to get the robot to learn either low-level behav-
iors as in Connel and Mahadevan (1992), Kaelbling
(1995), Asada et al (1995) or behavior switching poli-
cies like Materic (1997) and Kalmar, et al (1998). In
many cases, results are achieved by simplifying the
problem by providing the robot with minimal input
sensing and few output actions or by carefully hand
coding appropriate control and/or reinforcement sig-
nals to facilitate learning. For example, Kaelbling
(1991) devised a robot called "Spanky" to demo n-
strate how different RL algorithms compared in per-
formance at learning light seeking behavior. This
robot was equipped with 5 whiskers and 2 infra red
(IR) sensors. By grouping the front sensors and us-
ing thresholds on the IR sensors Kaelbling was able
to represent the entire input space with just 5 bits.
By also providing the robot with only 3 possible
actions for performing its behavior, the problem was
successfully reduced to one of finding a solution

that works well from the 25 x 3 = 96 possible outcomes.
In cases where the robot is equipped with more com-

prehensive sensing, for example Connel and Ma-
hadevan's (1992) box pushing sonar robot, good results
become much harder to achieve. This is because the
input to output state space becomes to large to be
learnt in real time due to the credit assignment problem
(as explained in Watkins (1989)). This limiting constraint
of RL results mainly from the time lag between time
steps and the uncertainty associated with assigning
credit to actions when delayed reinforcement signals
are involved. Despite this limitation, Connel and Ma-
hadevan were able to show that RL could achieve re-
sults, comparable to hand coded solutions, by using
the learnt input-output associations to statistically
classify the input space. Impressive RL results were
also achieved with the vision equipped soccer playing
robots of Asada et al (1995). However, these results
were obtained by performing learning off-line in simula-
tions and installing the learned associations in the real
robot. Unfortunately, if this approach is used in un-
known or typical unstructured environments, learning
becomes a much harder task due to the difficulties as-
sociated with adequately modeling the environment and
robot’s sensors (particularly if noisy sensors such as
ultrasonic sensors are used). For a more detailed survey
of RL see Kaelbling (1996).

Besides RL, most other forms of unassisted robot
learning involve using various search methods within
the space of possible controllers in an attempt to find a
control solution that performs well. The most common
of these search methods involves the use of genetic
algorithms Holland (1986), Meeden (1996), genetic pro-
gramming Koza (1991) or some more novel search meth-
ods like Schmidhuber (1996). Generally, these ap-
proaches fail to produce results as good as those
achieved with RL, particularly where robots with con-
siderable sensing are involved (i.e. where the state
space is greater than 10,000). This lack of performance
is due mainly to the size of the required search space
and the time it takes to evaluate the performance of
possible control solutions on the physical robot. De-
spite this, Floreano and Mondada (1994, 1995, 1996)
were able to demonstrate that object avoidance, homing
behavior and grasping behavior could be evolved with
GAs on their "Khepera" robot over considerable peri-
ods of time (days in the case of grasping behavior).
Here object avoidance and homing behaviors required
the robot's motion to be carefully monitored with exter-
nal laser sensors. The grasping behavior was achieved
incrementally by saturating the environment with
graspable balls and gradually reducing the ball density
as competence was acquired. In addition to these re-
sults, Jakobi (1994), Jakobi et al (1992), Nolfi et al

3

(1994), Grefenstette and Schultz (1994) and Schultz
(1991) managed to evolve various robot behaviors
on a simulator which were then installed in a real
robot. However, like the soccer playing robots of
Asada et al (1995), controllers obtained this way can
only be expected to produce good results in known
highly structured environments that are capable of
being effectively modeled in the computer. For a
comprehensive survey on evolved robot controllers,
see Materic and Cliff (1996).

An alternative method to RL and evolutionary
techiques for producing behaviors on robots without
significant human assistance was demonstrated by
Sharkey (1998). This method involved operating the
robot with a hand coded innate controller based on
artificial potential fields Khatib (1985), and by col-
lecting sensor-input and command-output associa-
tions generated by the robot's motion. After consid-
erable operation, the subsequent collected training
data was preprocessed and used to train a neural
network which was then used to control the robot.
By using this approach Sharkey was able to demo n-
strate that improved performance and shortcomings
inherent in the innate controller could be overcome
with this method. This however, requires an innate
controller to be devised and implemented first. Fur-
thermore, there can be no guarantee that a poorly
performing hand coded controller will produce an
adequate neural network controller no matter how
much training is performed.

To improve on existing unassisted robot learning
methods we have devised a method for rapidly ac-
quiring object avoidance, wall following and goal
seeking behaviors on mobile robots equipped with
range sensing devises. Unlike most existing robot
learning methods, which are based on learning asso-
ciations between sensors and actions, our approach
is based on learning association between sensors
and trajectory velocities. Previously, Singh et al
(1993) demonstrated that faster learning times could
be achieved with RL by using a simulated robot to
learn associations between the environment state
and so called "Dirichlet" and "Neuman" parameters.
However this approach was environment specific
and also suffered from the credit assignment prob-
lem. By using our approach learning is rapid, online
and suitable for implementation on a real robot. Fur-
thermore, there is no credit assignment problem and
all three behaviors are learnt simultaneously on a
single associative map. Also, the acquired behaviors
can have their object clearance distance changed by
adjusting a single threshold parameter and the robot
also learns to appropriately control its velocity.

In Section 2, we describe our approach to unassisted
robot learning by illustrating some of the similarities
and differences between our trajectory velocity learning
approach and the traditional RL approach to learning
object avoidance behavior. In Section 3 and 4, we de-
scribe how we use Fuzzy Associative Memory (FAM)
matrices (see Kosko (1992)) to store and incrementally
learn associations between sensor range readings and
trajectory velocities. Section 5 describes various ex-
periments we conducted with our robot in a variety of
environments.

2. Trajectory Velocity Learning

To overcome the slow learning times associated with
existing unassisted robot learning methods and to en-
able robots with considerable sensing to learn in real
time we have decided to alter the actual learning task.
Instead of performing the difficult task of learning asso-
ciations between sensor inputs and output responses,
as for example in conventional RL, we use the robot to
learn a much simpler task: i.e. learning associations be-
tween sensors and trajectory velocities as depicted in
Figure 1. We refer to this form of learning as Trajectory
Velocity Learning (TVL). Each input vector is comprised
of immediate sensor range readings and trajectory ve-
locities can be described as appropriate velocities for
negotiating a predefined set of immediate straight or
curved paths based on their collision distances with
nearby objects. Hence, if one of the robot's immediate
trajectories shown in Figure 1 collides with a close ob-
ject, appropriately, it should have a slower velocity than
other trajectories that lead into free space.

Figure 1. Learning associations between range readings and
trajectory velocities.

Recently, Fox et al (1997) demonstrated that trajectory
velocities can be used as an efficient means of making
control decisions for avoiding obstacles with a mobile
robot. However, with Fox et al's "dynamic window"
approach, trajectory velocities were not learnt. Instead,
they were calculated by considering all objects in the

4

vicinity of the robot. This requires all objects around
the robot to be accurately detected in order to cal-
culate trajectory velocities. Usually, this is difficult to
achieve even with the most sophisticated sensing
devices. In particular, sonar sensors will only return
a range reading if the sonar beam is almost normal to
the object surface. Alternatively, if learnt environ-
ment maps or occupancy grids are used to assist in
locating objects around the robot, the robot’s ability
to negotiate unknown regions of the environment is
restricted. This also has the disadvantage that the
robot has to accurately estimate its position which is
difficult to achieve using only odometry.

By using the robot to learn associations between
sensor range readings and trajectory velocities these
deficiencies are overcome. This is because the robot
learns to perceive its environment in terms of trajec-
tory velocities eliminating the need for object loca-
tions to be known in advance when control deci-
sions are made. Furthermore, the use of an associa-
tive map to look up trajectory velocities directly from
sensor data enables trajectory velocities to be deter-
mined quickly. This results in fast response times
and can allow more trajectories to be considered as
candidates during each time step.

To limit the amount of learning required, the ro-
bot's available trajectories are limited to being either
a line straight ahead or a preset number of arcs to the
left or right of the robot with preset radii. Thus the
learning task involves associating a number of in-
stantaneous trajectory velocities (7 in the case of
Figure 1) with each input vector state. Although this
may require the discovery of more information than
learning one to one associations between input vec-
tors and simple command responses, the required
knowledge can be obtained from the robot’s interac-
tions with the environment without incurring the
credit assignment problem or requiring fitness
evaluations. Thus, learning is achieved faster than
other typical unassisted robot learning methods.

To explain this with an example, consider the task
of learning object avoidance behavior using conven-
tional RL. Figure 2(a) shows the path and commands
performed by a robot prior to an unintentional colli-
sion with an object. When this occurs, there is no
certain way of deciding which responses leading up
to the collision should have been taken or even how
many responses were at fault. So with RL, correct
command responses can only be discovered through
the repeated assignment of positive or negative
credit to those actions suspected of being correct or
incorrect respectively. Hence, over long periods of
time and after many similar collisions, correct re-
sponses may accumulate larger credit and exhibit

appropriate actions for this and other similar situations.
Unfortunately, when the input space is of considerable
size and many possible command responses exist,
learning becomes unacceptably slow regardless of the
RL algorithm deployed (see Kaebling (1996)). Hence,
such learning tasks are viable only when applied to
robots with limited sensing and few command re-
sponses or alternatively by performing learning in fast
simulations.

(a)

 (b)

Figure 2. Two different ways a mobile robot can learn from
environmental stimuli. (a) Learning appropriate command
responses by assigning credit to actions via RL. (b) Learning
appropriate trajectory velocities by considering collision points of
traversed trajectories.

Alternatively, if the learning task is based on learn-
ing associations between sensor range readings and
appropriate instantaneous velocities for traversing tra-
jectories, these can easily be calculated by considering
the collision point of each traversed trajectory as
shown in Figure 2(b). To obtain sensor-trajectory ve-
locity associations, sensor data is recorded and held
until the current trajectory's collision point is obtained.
Trajectory collision points can be obtained by using
accumulated sensor data and odometry to estimate their
positions, or alternatively, by just following each se-
lected trajectory slowly until a collision occurs. Once

5

the current trajectory's collision point is determined,
a preset constant deceleration rate is used to calcu-
late the appropriate velocity for each point leading
up to each trajectory’s collision point (if any). By
associating the calculated velocities with the corre-
sponding sensor data that occurred along the trajec-
tory, training patterns are obtained and used to train
an associative map. Thus, if the robot were to follow
any similar colliding trajectories, while complying
with learnt trajectory velocities, it would come to a
safe halt just before coming into contact with the
object. Trajectories which do not collide with ob-
jects (i.e. complete full circles) can be appropriately
associated with a maximum safe velocity.

Therefore by following various trajectories and
calculating appropriate velocities based on trajectory
collision points, a TVL robot, through its sensors,
acquires knowledge of appropriate velocities it
should negotiate each of its pre-designated trajecto-
ries at any instant. The robot thereby becomes capa-
ble of controlling its velocity and making direction
choices based on this information. By providing the
robot with a single instruction to " follow trajectories
which are perceived to be fastest", object avoidance
behavior automatically becomes exhibited since tra-
jectories which lead into free space will be perceived
to have faster velocities than trajectories which col-
lide with nearby objects. Hence, the basic differences
between conventional RL and TVL when used to
learn object avoidance behavior are: the type of in-
formation that is stored, the means by which it is
learnt and the manner by which actions are decided
as Figure 3 depicts.

 (a) (b)
Figure 3. Basic differences between: (a) Reinforcement
Learning (RL) and (b) Trajectory Velocity Learning (TVL)
for learning object avoidance.

2.1. Learning Multiple Behaviors with TVL

TVL also makes it possible for the robot to pro-
duce other behaviors, besides object avoidance be-
havior (shown in Figure 4(a)), without the need for
the robot to learn different associative maps. For
example, if we instruct the robot to "follow fast tra-
jectories which are closest to the nearest detected

object", as in Figure 4(b), wall following behavior be-
comes exhibited in the direction closet to the robot’s
forward motion. By "following fast trajectories closest
to the right of nearest object" produces left wall fol-
lowing behavior and conversely "following fast trajec-
tories closest to the left of the nearest object" produces
right wall following behavior.

(a)

(b)

Figure 4. Using TVL to produce multiple behaviors.
(a) Object avoidance. (b) Wall following.

Goal seeking behavior also becomes possible if the
robot has perception of both its trajectory velocities
and the goal location. This is achieved by providing the
robot with an instruction to follow fast trajectories to-
ward the perceived goal location. Fortunately, this also
produces an implied obstacle avoidance capability
without the need to switch behaviors since any convex
object encountered between the robot and the goal will
cause the direct trajectory to be perceived to be slower
than those which lead around the obstacle. A TVL ro-
bot like that in Figure 5(a) consequently chooses faster

6

alternative trajectories resulting in a path around the
obstacle being negotiated while still maintaining pur-
suit of the goal location. However, if the robot en-
counters a deep crevice, like the one depicted in Fig-
ure 5(b), simply following a fast trajectory toward the
goal will not escape the crevice. To escape deep lo-
cal minimums when seeking goals the robot could
attempt to follow walls in both directions for in-
creasing periods of time or alternatively could use
purposive maps Zelinsky and Kuniyoshi (1996) to
learn the shortest path to the goal.

Figure 5. Goal seeking with a TVL robot. (a) Robot success-
fully avoids object. (b) Robot trapped by deep crevice.

2.2 Adjusting TVL Behaviors

Varied control of the robot’s behaviors is also possi-
ble by providing a variable velocity threshold to de-
termine if perceived trajectory velocities are consid-
ered to be fast or slow. This makes it possible to con-
trol the wall clearance distance in wall following be-
haviors and the object avoidance distance in object
avoiding behaviors as shown by the TVL simulator
screen dumps in Figure 6. For example, if the velocity
threshold is lowered the robot follows trajectories
closer to objects before itsvelocity falls below the
threshold causing another faster trajectory to be
selected. When avoiding objects, as in Figure 6(a),
the robot moves cautiously closer to objects before
avoiding them. Also, when performing wall follow-
ing, as in Figure 6(c), a low velocity threshold results
in walls being followed more closely and at lower
speed. Conversely, raising the threshold causes the
robot to maintain larger object clearances and results
in the robot moving faster and more competently
through the environment when performing its be-
haviors, as Figure 6(b) and 6(d) show.

(a) (b)

(c) (d)

Figure 6. Controlling object clearance distances with a velocity
threshold. (a) and (c) Low velocity threshold: small object
clearance. (b) and (d) High velocity threshold: larger object
clearances.

Figure 7 shows a schematic of TVL and summarizes
how mobile robots can become capable of performing
certain adjustable behaviors by making simple choices
based on learnt trajectory velocities.

Figure 7. Using TVL to acquire multiple adjustable robot be-
haviors simultaneously.

If conventional RL or GA robot learning methods were
used to acquire the same control and competency,
these methods would require each behavior to be learnt
in separate maps (or in neural nets). They would require
the implementation of adequate reinforcement signals
or fitness evaluation functions. It would be difficult for
behaviors learnt with RL or GAs to also acquire an ade-

7

quate means of controlling the robot's velocity. It
may not be possible to provide a facility for adjust-
ing the robot's object clearance distance. Learning
could also be expected to take a long time due to the
credit assignment problem or the fitness evaluation
problem. However, RL and GA methods have the
advantage that they are suitable for learning a vari-
ety of behaviors with a diverse range of sensing de-
vices. Although, TVL (on its own) cannot be ex-
pected to acquire complex tasks that have been suc-
cessfully learnt with RL and GAs (e.g. robot soccer
Asada et al (1995), box pushing Connel and Ma-
hadevan (1992), hitting a stick with a ball Kalmar et
al (1998)), TVL potentially could facilitate learning
complex task with RL or GAs by providing an effec-
tive means of rapidly acquiring essential low level
behaviors.

2.3 What Type of Robot Learning is TVL?

With TVL the robot does not have to perform the
desired behaviors or experience collisions in order to
learn from its environment. TVL therefore does not
use collisions (or the detection of trajectory collision
points) as a behavior based reinforcement signal.
Instead, collisions are used as a means of obtaining
reference points within the environment that enables
associations between sensors and trajectory veloci-
ties to be directly obtained. Thus, TVL does not
learn behaviors via trial and error or suffer from the
credit assignment problem and therefore cannot be
regarded as a reinforcement learning process. As
explained in Section 3 and 4, each sensor-velocity
association obtained from the robot's interactions
with the environment is used to train Fuzzy Associa-
tive Memory (FAM) (or FAMs) via a supervised
machine learning process called compositional rule
inference (see Sudkamp and Hammell (1994)).

Although, supervised machine learning is used to
learn sensor-velocity associations, TVL requires no
teacher (either human or from an innate controller) as
other typical robot learning methods involving su-
pervised machine learning processes have, e.g.
Sharkey (1998) and Tani and Fukumura (1994). This
is because the robot does not directly learn actions
and therefore has no need for any actions to be
demonstrated. TVL instead learns only trajectory
velocities which enables a variety of behaviors to be
easily produced with simple instructions. For this
reason we prefer not to refer to teacher and non-
teacher robot learning methods as supervised or
unsupervised robot learning respectively, as is often
the case in other published works.

The closest form of supervised machine learning
applied to robotics that resembles TVL is Direct Inverse
Control, see Kraft and Campagna (1990) and Guez and
Selinski (1988). An example of this is where a robot arm
uses neural networks to directly learn the mapping from
desired trajectories (of the arm) to control signals (e.g.
joint velocities) which yield these trajectories. As with
TVL no teacher is required. Associations (or training
patterns) are generated by engaging the arm in random
trajectory motion. Each training pattern's output is ob-
tained shortly after the training pattern's input is given.

2.4 TVL Robot Setup

To conduct our TVL experiments we use the Yamabico
mobile robot Yuta et al (1991) shown in Figure 8(a).
This robot is equipped with 16 sonar sensors arranged
in a ring equally spaced around the robot and a bump
sensor for detecting collisions. We provide the robot
with seven trajectory locomotion commands for negoti-
ating its environment labeled T3L to T3R on Figure 8(b).
Each trajectory has a maximum velocity in the forward
and reverse direction appropriate for safely negotiating
these trajectories. Stop and spin commands are also
utilized to halt the robot when collisions occur or to
face the robot in a desired direction.

(a) (b)

Figure 8. (a) Yamabico mobile robot equipped with a 16 sensor
sonar ring. (b) Robot’s trajectory commands with trajectory
radii and maximum velocities shown.

In the following sections, we describe how associa-
tions between input vectors and trajectory velocities
can be learnt by using Fuzzy Associative Memory
(FAM) matrices. We discuss the limitations of using a
single FAM to learn a mapping between sensors and
trajectory velocities and explain how improved percep-
tion and performance can be achieved by using multiple
FAMs to individually map sensors to each trajectory.

8

3. Using FAM Matrices to Map Sensors
to Trajectory Velocities

Considerable work in fuzzy control uses a matrix to
represent fuzzy rule consequents called a Fuzzy As-
sociative Memory (FAM) matrix (see Kosko (1992)
for a concise description). A FAM matrix can be de-
scribed as an N dimensional table where each dimen-
sion represents a specific input. The size of each
dimension equals to the number of fuzzy membership
functions used to describe the representative input.
For example, a FAM matrix with 2 inputs and 3 mem-
bership functions for describing each input (e.g.
small, medium and high) would be require a table
with 32 = 9 entries to store all possible fuzzy rule
consequents. Like lookup tables, FAM matrices have
the advantage of allowing fuzzy rule consequents to
be directly accessed from the input vector which
enables their output to be produced quickly. Fur-
thermore, the output is derived by what is effectively
a parameterized smoothing (weighted averaging)
over a small neighborhood of table entries which
provides good generalization and immunity to is o-
lated incorrect entries. This is explained in Section
4.2. FAM matrices also have the advantage of being
trainable via a supervised machine learning process
called compositional rule inference, see Sudkamp and
Hammell (1994). Unlike conventional neural net-
works, FAM matrices have the advantage of being
able to learn and recall associations quickly, are ca-
pable of incremental learning and can enable the de-
signer to appropriately divide up the input space.
Furthermore, the acquired knowledge within FAMs
is capable of being interpreted by examining the
fuzzy rules which comprise table entries.

3.1 Using a Single FAM Matrix to Map Sensors to
Trajectory Velocities

The main disadvantage with using a FAM matrix to
classify robot sensor data is that the size of the ma-
trix increases exponentially with increasing numbers
of inputs and fuzzy sets. For example, a FAM which
has 16 inputs connected to sensors and 4 member-
ship functions describing each input will require 416

or 4,294,970,000 entries to store all possible rule con-
sequents. This not only will require considerable
memory but for learning purposes may also require a
lot of data to be learnt in order to fill those entries.
One way to effectively reduce the size of the FAM
and consequently the amount of data required to fill
all entries in the FAM is by grouping sensors to-
gether.

In our initial TVL experiments we used a single FAM
matrix and arranged the robot’s sensors into five
groups of three (as shown in Figure 9(a)). We produced
the input vector by taking the minimum sensor reading
from each sensor group. We also described the input
domain using a reduced number of membership func-
tions for inputs at the sides and toward the rear of the
robot, as shown in Figure 9(a), so that the robot’s per-
ception is more acute toward the front. Furthermore, the
structure of the membership functions, shown in Figure
9(b), are concentrated toward the near vicinity of the
robot so that range readings of closer objects can be
interpreted more accurately. The resulting arrangement
allows the total input search space to be described with
just 5 ∗ 4 ∗ 3 ∗ 3 ∗ 4 = 720 possible fuzzy rules.

(a)

(b)

Figure 9. (a) Sonar sensors arranged into five groups with
three sensors in each group. (b) Membership functions used
to fuzzify the input vector.

Each of the 720 FAM entries is used to store the con-
sequences of each possible rule. So to describe all the
appropriate velocities associated with the robot’s seven
trajectories, a total of 720 ∗ 7 = 5040 entries are re-
quired within the FAM as shown in Figure 10.

9

Figure 10. Using a FAM matrix to store velocities of 7
trajectories.

For TVL to work effectively, FAM entries should
always be initialized to low velocities. Thus, as
learning progresses, the robot becomes increasingly
aware of faster trajectories that exist around objects
(and into free space) and becomes capable of negoti-
ating the environment via these faster trajectories. If
the FAM is instead initialized with fast or random
velocities, an inexperienced robot would perceive
many trajectories that collide with nearby objects to
be inappropriately fast. Consequently, when per-
forming behaviors, the robot would choose to follow
these inappropriately fast trajectories at speed and
end up colliding heavily with objects. (The require-
ment for unfamiliar input vectors to always produce
low velocities is one reason why conventional neural
nets are unsuitable for TVL (see Section 4.3 for fur-
ther details)).

Although the use of grouped sonar sensors re-
sults in the robot having considerably coarse per-
ception, we found the single FAM arrangement (in
Figure. 9) to be simple and effective for demonstrat-
ing the fast learning times possible with TVL within
structured and uncluttered environments. However,
for more difficult environments it is better to avoid
coarsely grouped sensors by using multiple FAM
matrices.

3.2 Using Multiple FAM Matrices to Map
Sensors to Trajectory Velocities

To overcome the coarse perception that results from
having grouped sonar sensors, we decided to re-
place the robot's single FAM by providing the robot
with seven FAM matrices for storing velocities be-
longing to each of the robot’s seven trajectories as
shown in Figure 11. Each FAM matrix receives its
own independent input vector which is derived from

sensors that are considered the most relevant for de-
tecting objects in the vicinity of the FAM’s trajectory.
For example the most appropriate sensors for resolving
the forward trajectory (T0) would of course be the front
sensor as well as some neighboring sensors to the left
and right of the front sensor.

 5 T0
FAM

 T0

 7 T1L
FAM

 T1

 6 T3R
 FAM

 T6

T0 Sensors

T1L Sensors

T3R Sensors

Input Vectors Trajectory Velocities

Figure 11. Storing associations between sensors and trajectory
velocities in 7 FAM matrices

Although this multi-FAM configuration requires
almost seven times as much processing to lookup the
robot’s seven trajectory velocities, this does not sig-
nificantly reduce response times for the robot due to
the high speed at which FAMs can produce their out-
puts directly from input vectors. Furthermore, having
independent FAMs to store each trajectory’s velocities
provides increased immunity to sensor damage and can
assist the robot in adapting to sensor malfunctions as
explained in Ward and Zelinsky (1997).

3.3 Selecting Appropriate FAM Inputs from Avail-
able Sensors

To decide which sensors produce the most relevant
information for resolving the pathways of individual
trajectories, three factors need to be considered: (1) the
position of each sensor, (2) the reflective nature of so-
nar signals and (3) the divergence (or beam angle) of
transmitted sonar signals. Although sensors adjacent
to a specific trajectory have obvious relevance to that
trajectory, due to their position, they will not always
return a signal from objects located on the trajectory’s
pathway. In particular, flat walls can be a problem. For
example, Figure 12 shows typically how a flat wall could
be detected by a sonar ring.

10

Figure 12. Detecting a flat wall with a sonar sensor
ring.

Although the flat wall in Figure 12 lies directly in
the path of trajectory T1L, adjacent sensors S1 and
S2 fail to return an echo from the wall due to the
acute angle of incidence of their respective sonar
signals. However, sensors S3 to S5 do detect the
presence of the wall due to their transmitted signals
being almost normal to the wall. Hence, to be able to
resolve appropriate velocities of trajectory T1L, so-
nars S3, S4 and perhaps S5 should be included (as
well as other sensors) as inputs into the FAM matrix
of trajectory T1L.

To determine which sensors to include as inputs
into each FAM, we placed the robot in various loca-
tions and orientations near flat walls and used the
above criteria to decide which sensors would be
needed to resolve each FAM's trajectory.

Similarly, by considering different robot locations
near flat walls, we divided each FAM input into
membership functions such that the various collision
points of each FAM's trajectory could be resolved
with reasonable accuracy. Figure 13 shows how we
allocated sensors and fuzzy membership functions to
the FAM matrices of trajectories T0 through to T3L.
FAM’s belonging to trajectories T1R through to T3R
are allocated to sensors and fuzzy membership func-
tions in the same fashion as T1L to T3L except their
inputs are connected to symmetrically opposite sen-
sors on the right-hand side of the robot.

Figure 13. Sensors and fuzzy membership functions designated
to the FAM matrices of trajectories T0, T1L, T2L and T3L.
(Fuzzy Sets: VN Very Near, N Near, M Medium, F Far, VF Very
Far)

11

Despite configuring the robot’s perception to be
capable of resolving trajectory velocities with re-
spect to flat walls, extensive experimentation indi-
cated that this arrangement also provides adequate
perception of trajectories near most isolated objects
and irregular environment features. The reason for
this is that in most cases ultrasonic waves are more
likely to be reflected back to the receiver from inter-
nal corners or irregular surfaces than from continu-
ous flat surfaces that are not normal to most of the
sensors on the sonar ring. Consequently, we were
able to achieve adequate resolution of our unstruc-
tured laboratory environments for robust behaviors
to be acquired by the robot in relatively short peri-
ods of time.

Increasing the input space of TVL FAMs is not a
serious a matter as may be the case with other
learning methods. This is because during learning,
the robot generates large numbers of training pat-
terns which are able to be immediately loaded into
the FAMs via compositional rule inference (see Sud-
kamp and Hammell (1994)). Thus, the extent to which
you divide up the input space of each FAM, is
largely a matter of how much memory resources are
available and how accurate you would like each
FAM to be. The final multi-FAM configuration, de-
scribed in Figure 13, maps 9 of the 16 sonars to
125,720 fuzzy regions. Although this is nearly 25
times the total number of fuzzy regions allocated to
the single FAM configuration described in Figure 9
(i.e. 5,050 regions), acquiring all 3 behaviors in our
laboratory environments took only slightly longer
than with the single FAM configuration (see Section
5 for details).

Although our experiments demonstrated that
FAMs worked well in this application, other super-
vised learning methods (like CMAC neural networks
Kraft and Campagna (1990)) may also be suitable for
learning associations between sensors and trajectory
velocities on mobile robots. However, if non-FAM
learning methods are used, precautions must be
taken so that unfamiliar input vectors always pro-
duce low velocities as output. Otherwise, high speed
collisions with unknown objects could occur (as
explained in Section 3.1). To conduct our experiments
we implemented this requirement by always initializ-
ing the TVL FAMs with low velocities (0.1m/s).

4. Learning Trajectory Velocities

Since TVL is based on learning perception rather
than specific actions, there is no need for the robot

to perform any of its desired behaviors to acquire the
perception needed to perform those behaviors. In fact,
the simplest way to learn trajectory velocities is to se-
lect trajectories randomly and follow each until a colli-
sion with an object or a full circle in free space occurs.
Alternatively, trajectory velocities can be found by es-
timating the collision points of engaged trajectories by
using accumulated sensor data and odometry. Al-
though this may require considerable computation and
may be less accurate, it has the advantage of enabling
the robot to learn while performing any of its behaviors.
However, if the robot’s motion is constrained by the
engagement of a particular behavior, the robot may
never venture into some regions of the environment
and thus may not learn trajectories associated with in-
put vectors that occur in those regions. For example, a
robot that spends most of its time following walls may
never learn which trajectory velocities should be asso-
ciated with input vectors that occur some distance from
the walls. One effective learning strategy for overcom-
ing this problem is to encourage the robot to explore by
engaging different behaviors.

4.1 An Effective Learning Strategy

To reduce the overhead required to calculate trajec-
tory collision points from accumulated sensor readings,
we performed our TVL experiments by following trajec-
tories until a collision with an object is detected or a full
circle is completed. When this occurs, the robot is
stopped momentarily to update the FAM entries asso-
ciated with the traversed trajectory. This is done by
associating each input vector experienced along the
trajectory with appropriate velocities. These velocities
are calculated by using a predefined deceleration rate to
estimate the appropriate velocity at each point up to the
collision point. Thus, if the robot were to repeat the
path while complying with the learnt velocities, it would
come to a safe halt just prior to the collision point. Ve-
locities associated with trajectories that complete a full
circle are set at the trajectory’s maximum allowable ve-
locity. Each training pattern is used to incrementally
adjust the relevant FAM’s trajectory velocities as ex-
plained in Section 4.2. Figure 14 describes the basic
learning algorithm used to conduct our experiments.
Although odometry is required to measure the dis-
tances between trajectory collision points and recorded
points where sensor readings were taken, these dis-
tances are relatively short and therefore unaffected by
odometry errors.

12

loop
scan all trajectories around robot
choose trajectory with least learning experience
rotate robot to face chosen trajectory
repeat

move one time step along chosen trajectory
record input vector

until collision or full circle occurs
associate appropriate velocities
with each input vector
update FAM with the resulting training exemplars
if collision occurred reverse robot a short
distance along previous path

end loop

Figure 14. Basic algorithm for learning trajectory
velocities.

To speed up learning, the selection of trajectories to
follow is done by applying the current sensor data to
the FAM matrix and choosing the trajectory which
has received the least amount of learning. The
amount of learning each FAM entry has received is
recorded by accumulating the sum of the respective
fuzzy rule’s stimulation levels resulting from all
training exemplars which map to the entry, i.e.

Ei = µA
i
(x)(x, v)∈Ti

∑ (1)

where µAi (x) represents minimum input membership

of training pattern Ti with input x. Thus by using
the result of Equation (1) each time the robot proc-
esses an input vector, the robot is not only able to
perceive the learnt velocities associated with the
input vector but also the amount of learning respon-
sible for each entry’s current value.

4.2 Updating FAM Entries

Various techniques for generating fuzzy rules di-
rectly from training data have been reported. Gener-
ally, these methods can be classified by the learning
technique involved, the most common being neural
networks Lin and Cunningham (1995), genetic algo-
rithms Homaifar and McCormick (1995), iterative rule
extraction methods Abe and Lang (1993) and direct
fuzzy inference techniques Turksen (1992). The most
significant differences in these methods lies in the
time it takes to generate fuzzy rules and whether or
not fuzzy input and output sets need to be prede-
fined. Unfortunately, the methods which do not re-
quire the predefinition of fuzzy sets, require far too
much training time for on line robot learning to be
possible. With this in mind we have chosen to adopt
the compositional rule inference approach proposed
by Zadeh (1973) and more recently investigated by

Sudkamp and Hammell (1994). This approach enables
the robot to incrementally adjust its FAM entries while
experiencing its environment.

Consequent adjustment of FAM matrices is achieved
by accumulating the weighted average of training ex-
emplars which stimulate each consequent entry,
namely:

Vi =
µA i(x)(x,v)∈Ti

∑ vi

µA i(x)(x,v)∈Ti
∑

(2)

where µAi (x) represents minimum input membership of
training pattern Ti with input x and v represents the
velocity associated with training pattern Ti

Defuzification is performed by using the weighted
averaging method with the difference that we use the
crisp consequent values rather than representative val-
ues from fuzzy output sets to save computation time.
Thus the anticipated velocity from each FAM matrix is
given by:

V =
µAi(x)

i=1
n∑ vi

µAi(x)
i=1
n∑

(3)

Because FAM entries can be accessed directly from
the input vector, both updating FAM entries and infer-
ring trajectory velocities from sensor data can be done
quickly regardless of the size of the FAM matrix. This
enables the robot to both perceive the velocities of its
trajectories and learn trajectory velocities within the real
time constraints of normal robot operation.

4.3 Conflicting Training Patterns

Due to the reflective nature of ultrasonic waves and the
presence of undetectable features in most environ-
ments, there will inevitably be situations where the ro-
bot experiences the same sensor data but discovers
different velocities for the same traversed trajectory.
Some typical examples of this can be seen in Figure 15.

Figure 15. Conflicting training patterns. (i.e. same sensor data
but different trajectory velocities).

Our experiments have shown that there was no need
to devise sensor pre-processing or conflict resolution

13

strategies to deal with these problems because most
were adequately dealt with by the averaging effect of
the FAM updating procedure (explained in Section
4.2). This effectively cancels noise effects in the
training data by taking the averages of all readings
which map to the same FAM entries. It also tends to
adjust FAM entries updated by conflicting training
patterns (like those shown in Figure 15) safely
downward. This occurs because in typical environ-
ments there are usually more internal corners and flat
walls than external corners. Therefore, if any con-
flicting patterns are generated, there will usually be
more conflicting patterns associated with lower ve-
locities than with higher velocities. When performing
behaviors, the only effect the learnt conflicting pat-
terns have is they cause the robot to fail to perceive
the faster alternative trajectories that exist near exter-
nal corners. Therefore when the robot is near external
corners, it may have to move further along its current
trajectory before becoming aware of the faster alter-
native trajectories that exist.

4.4 Symmetrical Learning

Because the robot’s sensors and trajectories are
symmetrical, the knowledge required in the FAMs
belonging to the left and right trajectories can also
be considered symmetrical. Thus, any training pat-
terns derived from trajectories on the left can not
only be used to update the appropriate left FAM but
can also be used to update the opposite right FAM,
as shown in Figure 16.

 Input Vector No. Input Vector No.

 Left Trajectory Right Trajectory

 0 1 2 3 4 0 1 2 3 4

 150 150 105 84 150 .35 150 84 105 150 150 .35

Vel. Vel.

(experienced) (implied)

Figure 16. Updating 2 symmetrically opposite FAMs with
one training pattern.

4.5 Rotating Foveal Perception

Similarly, training data derived from trajectories on
the right can be used to update symmetrically oppo-

site FAMs on the left. This can be used to both speed
up learning and provide the robot with more compre-
hensive perception of its environment. However, spe-
cial consideration (as explained in Ward and Zelinsky
(1997)) has to made if the robot’s sensors have signifi-
cant differences in performance or if some sensors be-
come damaged.

The ability to escape dead-ends when performing
behaviors can easily be encoded by providing the robot
with rotating foveal perception. This is achieved by
enabling the robot to rotate its perception within the
sonar ring so that the robot can perceive the environ-
ment as if it were facing other directions. For example, if
the robot finds itself in a situation where all immediate
trajectories are perceived to be slower than the velocity
threshold, the robot is able to increases its view of per-
ceived trajectories without physically rotating itself by
rotating its perception within the sonar ring. Thus by
rotating its perception all the way around the 16 sen-
sors comprising the ring the robot becomes capable of
perceiving the velocities of 16 ∗ 7 = 112 trajectories
while maintaining its current direction. This enables the
robot to make quick decisions as to what direction it
should face when it finds itself in tight situations such
as dead-ends. For example, Figure 17 shows what hap-
pens when a robot performing wall following enters a
dead-end. In this situation all the immediate perceived
trajectory velocities lie well below the velocity thresh-
old. So the robot rotates its perception within the ring
to find faster trajectories. Consequently, the robot dis-
covers that the nearest trajectory to the closest object
that is faster than the threshold is trajectory T3L in the
direction of sensor 6. In response, the robot rotates
counter-clockwise to face the direction of sensor 6 and
then proceeds along trajectory T3L at the appropriate
velocity.

Figure 17. Rotating the robot’s perception virtually within the
sonar ring to locate faster trajectories.

14

5. Experimental Results.

We conducted a number of learning experiments in
the four structured environments shown in Figure 18
(a to d), These environments were primarily used for
testing the accuracy of behaviors, comparing the
performance of different FAM configurations and for

observing the effects of adjusting the velocity thresh-
old parameter. The unstructured lab environment, Fig-
ure 18 (e & f), was used to test the robot's ability to
acquire competences in indoor environments where a
diverse range of input vectors are possible and features
exist that are difficult for sonar sensors to detect.

(a) (b) (c)

(d) (e) (f)

Figure 18. Environments used to perform TVL robot experiments. (a) - (d) Structured environments. (e) - (f) The robot laboratory.

Prior to each learning trial we initialized all FAM ve-
locity entries to 0.1 m/s and the velocity threshold to
85% of trajectory maximums. To learn behaviors within
each of these environments we engaged the robot in
exploratory learning (as explained in Section 4.1) and
monitored the robot’s competence by periodically
switching the robot’s behavior to object avoidance and
wall following to see if the robot could perform these
behaviors without colliding with walls or objects. To
determine the amount of learning occurring within the
robot at any moment we measured the average change
of all the velocity entries within the FAM matrices per
time step for each minute of learning time i.e.

∆V =
vi − vi−1i=1

n∑
n

(4)

where v i − v i − 1 is the total change occurring in all

FAM velocity entries during each time-step and n is
the number of time steps occurring in each minute of
learning.

Because we initially set all FAM entries to low ve-
locities (i.e. 0.1m/s), the robot’s increasing competence
can be measured by monitoring the robot’s average
velocity in addition to its collision rate.

5.1 Single FAM TVL Experiments

We conducted a number of TVL experiments within the
structured environments shown in Figure 18 with the
single FAM configuration described in Section 3.1.
Generally, the robot acquired competent behaviors in
less than 15 minutes of learning time. However, some
trials took up to 20% longer than others due to the ran-
dom manner by which trajectories were selected during
learning. Often, this resulted in similar trajectories being
traversed many times before unfamiliar trajectories were
experienced. The graphs in Figure 19 show the average
learning rate and acquired competence of 5 trials con-
ducted in the circular, square and corridor environ-
ments.

15

Figure 19. Learning curves and performance measures for the
circular, square and corridor environments with the single FAM
configuration.

Although the robot generally acquired the ability to
avoid collisions quickly (e.g. less than 9 min in the cir-
cular and square environments), inappropriate trajecto-
ries were regularly selected (when performing behav-
iors) until almost all FAM entries ceased to change.
This caused the robot to turn too early, too late or too
much in order to avoid collisions or get nearer to walls.
Also, for all trials the final competence acquired from
the square environment also worked reasonably well in
the circular environment and visa versa. Although this
demonstrates fast learning in simple environments as
well as the generalizations possible the single FAM
configuration, the robot’s coarse perception appeared
to limit the robot’s ability to maintain parallel paths to
walls and consistent wall clearance distances while
performing the wall following behavior. Figure 20
shows typical wall following paths exhibited by the
robot in the circular, square and corridor environments.

(c) (b) (c)

Figure 20. Wall following behavior within (a) circular (b)
square and (c) corridor environments.

Adjusting the robot’s velocity threshold after
learning, (as explained in Section 2.2) produced signifi-
cant changes to the average velocity and wall clearance
distances while performing object avoidance and wall
following behaviors. The results are shown by the
graphs in Figure 21.

Figure 21. Relationship between trajectory velocity threshold
and: (a) the average wall clearance distance, (b) the average
velocity, when performing wall following in the circular and
square environments (Dashed lines indicates collision prone
behavior).

Varying the threshold from 65% to 95% of trajectory
maximums resulted in a corresponding change in the
wall clearance distance of between 0.32 meters to 0.67
meters at an average velocity of 0.32 m/s to 0.45 m/s.
We found following walls at closer distances to be
possible with lower thresholds, however, the inability
of the single FAM robot to maintain consistent wall
clearances resulted in increased collisions as the
threshold was further reduced.

We conducted goal seeking trials with the environ-
ment shown in Figure 22. This was done by firstly
placing objects at set positions in the environment and
performing learning until competent object avoidance
behavior was produced. The robot was engaged in goal
seeking behaviour by providing it with an instruction
to follow fast trajectories toward a set goal location (as
described in Section 2.1). Relative positions of the ro-
bot and goal were maintained by using odometry. Al-
though this provided only limited accuracy, we found it
sufficient to demonstrate the acquired goal seeking
capability of the robot within the environment due to
the short distances involved and the brief duration of
the trials. Because of the greater number of input vec-
tors possible within environments containing obstacles

16

learning took approximately 50% longer than in the
same environment without objects.

Figure 22. Goal seeking paths exhibited by robot. (a) - (c)
goals successfully achieved. (d) unsuccessful goal seeking at-
tempt.

All goals depicted in Figure 22 were successfully
found without collisions except for the case shown in
Figure 22(d). This situation produced a local minimum
despite the gaps between the objects being wide
enough for the robot to pass. Examination of the sonar
data revealed this to be mainly due mainly to the ro-
bot’s coarse perception which makes narrow gaps hard
to resolve.

When learning trials were attempted in the labora-
tory environment (with the structured artifacts re-
moved) the single FAM configuration had considerable
difficulty learning how to avoid all collisions. Further
examination of the sonar data and FAM contents indi-
cated two reasons for this: (1) some objects such as the
sharp edges of tables are difficult for a sonar ring to
detect when approached from certain angles as shown
in Figure 23, and (2) by having coarsely grouped so-
nars the robot had difficulty differentiating its orienta-
tion with respect to nearby objects. For example, in
some positions the robot could be turned as much as
15 degrees with respect to nearby objects without any
change occurring to the input vector. Hence, some in-
put vectors become associated with fast velocities by
experiencing near misses during learning. When the
same input vectors occurred while performing behav-
iors the fast learnt trajectories sometimes lead to colli-
sions with objects. (Note: we found this problem could
be improved to some extent by using the sonar sensors
to detect collision points and defining a collision to be

further from objects when learning than when perform-
ing behaviors.)

Figure 23. Some environment features that are hard for a so-
nar ring to detect.

5.2 Multi-FAM TVL Experiments

To improve the robot’s coarse perception caused by
having coarsely grouped sonar sensors, we provided
the robot with 7 FAM matrices as described in Section
4.2. Although all the FAMs in this configuration (ex-
cept FAM T0) are considerably larger than the single
FAM configuration (e.g. Trajectory T1L with the multi-
FAM has 31,250 entries as opposed to 720 for the sin-
gle FAM) the learning time needed to produce comp e-
tent behaviors was only 10% − 20% longer within the
same environments. For example, Figure 24 compares
the average learning times from 5 trials in the square
environment with both the single and multiple FAMs
being trained simultaneously from the same

Figure 24. Average learning time and collision rate for single
and multiple FAM configurations within the square environ-
ment.

We found the relatively small difference in learning
times occurred because the robot generates large num-
bers of training patterns during learning. Many of these
redundantly map to same FAM entries in the single

17

FAM whereas they tend to become distributed over
more FAM entries in the multiple FAMs. Although
significant fluctuations in the multi-FAM’s velocity
entries continued to occur with ongoing learning this
appeared to have no effect on the robot’s behaviors.

We found the robot’s capabilities to be greatly im-
proved with the multi-FAM configuration. Narrow
spaces could be negotiated with relative ease, there
were fewer collisions and the robot exhibited more pre-
cise motion after similar learning periods. Figure 25
shows typical wall following pathways exhibited by the
multi-FAM robot in the circular, square and corridor
environments.

(a) (b) (c)

Figure 25. Wall following behavior within (a) circular (b)
square and (c) corridor environments with the multi-FAM con-
figuration.

The ability of the robot to negotiate closely paced ob-
jects was also greatly improved. Goals that were out of
reach to the single FAM robot due to the presence of
narrow gaps (e.g. Figure 22(d)) could now be success-
fully reached by the multi-FAM robot as shown in Fig-
ure 26(a). However, where environments contained a
goal in a narrow passageway, like that shown in Figure
26(b), the robot would also fail to enter the passageway
and reach the goal if the robot did not happen to ven-
ture into the passageway during learning. To obtain
consistent results (in Figure 26(b)) over 5 trials, we al-
ways commenced learning by starting the robot close
to the passage entrance and by facing it toward the
goal. Thus, the robot would first learn faster trajectories
at the entrance and within the passageway before pro-
ceeding on to learn the rest of the environment.

Figure 26. Goal seeking behavior with the multi-FAM robot.
(a) Obtaining a goal that the single FAM robot could not reach.
(b) Negotiating narrow passages to reach a goal.

Similarly, learning trials conducted within the labora-
tory (with the structured artifacts removed) also dem-
onstrated improvement performance when compared
with that of the single FAM configuration. The average
learning time and acquired competence of 5 consecu-
tive trials for single and multiple FAM configurations
are shown in Figure 27.

Figure 27. Comparison of learning times and competence
measures performed in the laboratory environment with the
single and multiple FAM configurations.

Although some change was still occurring to the
FAMs after 60 minutes of learning, the robot’s behav-
iors appeared to stop improving approximately 45 min-
utes after learning commenced. During this time the
robot’s average velocity at performing behaviors in-
creased from 0.1 m/s to 0.5 m/s. Figure 28 shows typical
wall following and object avoidance paths exhibited by
the robot in the lab after 45 minutes of learning.

(a) (b)

Figure 28. Typical paths exhibited by the multi-FAM robot
after 45 minutes of learning in the laboratory environment (a)
object avoidance, (b) wall following.

18

Despite the improved perception provided by the
multi-FAM configuration, the robot still experienced
occasional collisions even after 60 minutes of learning.
This was due to the presence of object features which
are difficult to detect using sonar sensors, (as explained
in Section 5.1). We also found that when ongoing
learning was done in environments that contained
many features that are hard for sonar sensors to detect,
the robot would actually reduce the speed of its free
space motion when performing its behaviors. This oc-
curs because an increased number of training patterns
with larger range readings tended to become associated
with slower velocities.

Although this may appear to corrupt the learning
process by making the robot appear slower and less
competent at performing its behaviors, this can in fact
be considered an appropriate way for an adaptive agent
to respond to a difficult environment. For example, if an
adaptive life-form were to experience regular collisions
with objects which are hard for its senses to detect,
cautious motion (as well as fear of collision and re-
duced competence) would similarly become exhibited.
Furthermore, when the undetectable features were
physically tagged to make them visible to the sonar
ring, further learning resulted in restoration of the ro-
bot’s speed and comp etence.

We also conducted experiments in more cluttered
environments using the same learning algorithm. How-
ever, learning times and final competences were both
inconsistent and relatively poor for any worthwhile
results to be reported. Even after hours of learning, the
robot was often unable to negotiate much of its envi-
ronment no matter what behavior was selected. The
difficulty with learning cluttered environments was due
mainly to our trajectory learning algorithm confining
the robot to small sections of the environment during
learning. Thus, the robot would often fail to learn many
unique features and narrow passages because they
were not experienced during learning. With further
work, we hope to overcome this by implementing
learning algorithms that base trajectory selection (while
learning) on unfamiliar environment regions. Or alterna-
tively, by engaging the robot in obstacle avoidance (or
wandering) behavior and by using accumulated sensor
data and odometry to estimate trajectory collision
points for the purpose of adaptively learning trajectory
velocities.

6. Summary and Conclusion

Although various unassisted robot learning methods
have been around for some time now, they generally
result in long learning times when used to learn be-
haviors on real robots. The main reasons for this are
the credit assignment problem in reinforcement learning
methods and the robot fitness evaluation problem in
evolutionary or classifier techniques.

To avoid the credit assignment problem and the fit-
ness evaluation problem in existing unassisted robot
learning methods, we have developed a mobile robot
learning technique based on learning associations be-
tween sensor range readings and appropriate trajectory
velocities. Appropriate trajectory velocities are deter-
mined in relation to trajectory collision distances with
nearby objects. This enables the robot to learn to per-
ceive its environment in terms of trajectory velocities
so that trajectories that collide with nearby objects are
perceived to be slower than those which lead into free
space.

To learn trajectory velocities the robot has to detect
the collision points of engaged trajectories from which
appropriate velocities are calculated. These are then
associated with sensor data that occurred along the
negotiated trajectory and used to train fuzzy associa-
tive maps. For the purpose of conducting our experi-
ments collision points were detected by following en-
gaged trajectories until a collision or full circle oc-
curred. Once the robot has sufficiently learnt to per-
ceive its environment in terms of trajectory velocities,
object avoidance, wall following and goal seeking be-
haviors can be performed by giving the robot instruc-
tions like "follow fast trajectories nearest to forward
direction", "follow fast trajectories nearest to closest
object" and "follow fast trajectories nearest to goal
location" respectively.

We tested this learning technique on a Yamabico
mobile robot equipped with 16 sonar sensors and a
bump sensor. We provided the robot with 7 trajectory
commands. Therefore, the robot's learning task was to
learn a mapping between its sonar sensors and 7 trajec-
tory velocities. To effectively learn sensor-velocity
associations, FAM (Fuzzy Associative Memory) matri-
ces Koza (1991) were used and trained via composi-
tional rule inference Sudkamp and Hammell (1994).

19

Our experiments demonstrated that the robot was
able to effectively learn uncluttered environments and
could produce all behaviors in relatively short periods
of time (10-15 min. in structured environments, 30-50
min. in the lab environment). Attempts to learn clut-
tered environments were less successful. Many, obsta-
cles would tend to confine the robot to small sections
of the environment during learning. This prevented the
robot from learning many unique features in the envi-
ronment.

Although more work is required before trajectory
velocity learning can be applied to robots for perform-
ing useful tasks, the experiments described in this pa-
per demonstrate that this approach to learning certain
mobile robot behaviors has considerable benefits and
cost savings. It can enable mobile robots equipped
with range sensing devices to acquire object avoid-
ance, wall following and goal seeking behaviors simu l-
taneously and relatively quickly in unknown environ-
ments. At the same time, the robot also learns to ap-
propriately control of its velocity. The object clearance
distance of all behaviors can be adjusted by changing
a single velocity threshold parameter. Dead end escape
behavior can also be incorporated into the robot by
rotating the robot's perception within the sonar ring
when all immediate trajectories are perceived to be be-
low the velocity threshold. TVL has the disadvantage
that it requires range sensors or range readings derived
from other types of sensors. Also, TVL is limited to
learning behaviors that can be described in terms of
fast trajectories near to some predefined criteria. For
this reason, when it comes to learning complex tasks
with robots, TVL can only be expected to facilitate
other learning techniques or control architectures by
providing a means of rapidly acquiring certain low level
behaviors.

References

Abe, S. and Lang, M.S. 1993. A Classifier using fuzzy
rules extracted directly from numerical data, Proc. 2nd
IEEE Int. Conf. on Fuzzy Systems, pp. 1191-1198.

Asada, M. Noda, S. Tawaratsumida, S. and Hosoda, K.
1995. Vision-based reinforcement learning for pur-
posive behavior acquisition, IEEE Int. Conf. on Ro-
botics and Automation, pp. 146-153.

Castellano, G. Attolico, G. Stella, E. Distante, A. 1996.
Automatic generation of rules for a fuzzy robotic
contro ller, Proc. IEEE IROS ‘96, pp. 1179-1186.

Connell, J. and Mahadevan, S. 1992. Rapid task learning
for real robots, in Robot Learning by J Connell, Klu-
wer Academic Publishers.

Floreano D. and Mondada, F. 1994. Automatic creation
of an autonomous agent: genetic evolution of a neu-
ral-network driven robot, In From Animals to Animats
III, Cambridge, MA: MIT Press.

Floreano D. and Mondada, F. 1996. Evolution of hom-
ing behavior in a real mobile robot, IEEE Transac-
tions on Systems, Man, and Cybernetics, 26(3):396-
407.

Floreano, D. and Mondada, F. 1995. Evolution of neural
control structures: some experiments on mobile ro-
bots, Robotics and Autonomous Systems, 16:183-195.

Fox, D. Burgand, W. and Thrun, S. 1997. The dynamic
window approach to collision avoidance. IEEE Ro-
botics & Automation Magazine, 4(1):23-33.

Grenfenstette, J. and Schultz, A. 1994. An evolutionary
approach to learning in robots. In: Proc. of the Ma-
chine Learning Workshop on Robot Learning, New
Brunswick, NJ.

Guez A. and Selinski, J. 1988. A trainable neuromorphic
controller, Journal of Robotic Systems, August.

Holland, J. H. 1986. Escaping brittleness: the possibili-
ties of general purpose learning algorithms applied to
parallel rule-based systems. In Machine learning, an
artificial intelligence approach. (Vol. II), Los Altos:
Morgan Kaufmann.

Homaifar A. and McCormick. E. 1995. Simultaneous
design of membership functions and rule sets for
fuzzy controllers using genetic algorithms. IEEE
Trans. on Fuzzy Systems, .3(2):129-138.

Jakobi, N. 1994. Evolving sensorimotor control architec-
tures in simulation for a real robot, Masters thesis,
University of Sussex, School of Cognative and Co m-
puter Sciences.

Jakobi, N. Husbands, P. and Harvey, I. 1992. Noise and
the reality gap: the use of simulation in evolutionary
robotics, Proc. of the 3rd Int. Conf. of Artifical Life,
Springer, Berlin, pp. 110-119.

Kaelbling. L.P. 1995. An adaptive mobile robot. Proc. of
the 1st European Conf. on Artificial Life, pp. 41-47,
Cambridge, MA, MIT Press.

Kaelbling, L. 1995. Reinforcement learning in embed-
ded systems, MIT Press.

Kaelbling. L. P. 1996. Reinforcement learning: a survey.
Journal of Artificial Intelligence Research, 4:237-285.

Kalmar, Z. Szepesvari, C. and Lorincz, 1998. A. Module
based reinforcement learning: experiments with a real
robot, Autonomous Robots, 5(3/4):273-295.

20

Khatib, O. 1985. Real-time obstacle avoidance for ma-
nipulatios and mobile robots. Proc. of the IEEE Int.
Conf. on Robots and Automation, pp. 500-505, St.
Louis.

Kosko. B. 1992. Neural networks and fuzzy systems,
Englewood Cliffs, NJ, Prentice Hall, Inc.

Koza, J. 1991. Evolution and co-evolution of computer
programs to control independent acting agents. Proc.
of the 1st Int. Conf. on the Simulation of Adaptive
Behavior. Cambridge, MA, MIT Press/Bradford
Books.

Kraft, L.G. and Campagna, D. 1990. A summary com-
parison of CMAC neural networks and traditional
adaptive control systems, Neural Networks for Con-
trol, MIT Press, Cambridge, MA.

Krose, B.J.A. and Evans, M. 1994. A self-organizing
representation of sensor space for mobile robot navi-
gation. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, pp. 9-14.

Lin, Y. and Cunningham, G.A. 1995. A new approach to
fuzzy-neural system modeling, IEEE Transactions on
Fuzzy Systems, 3(2):190-197.

Materic, M.J. 1997. Reinforcement learning in the multi-
robot d omain, Autonomous Robots 4(1).

Materic, M.J. and Cliff, D. 1996. Chalanges in evolving
controllers for physical robots, Robotics and
Autonomous Systems, 19:67-83.

Michaud, F. and Matrec, M.J. 1998. Learning from his -
tory for behavior-based mobile robots in non-
stationary conditions, Autonomous Robots,
5(3/4):335-354.

Meeden. L. A. 1996. An incremental approach to devel-
oping intelligent neural network controllers for ro-
bots. Trans. on Systems, Man and Cybernetics,
26(3):474-485.

Nehmzow, U. Smithers, T. & Hallam, J. 1990. Steps to-
ward intelligent robots, DAI Research Paper No. 502,
Dept. of Artificial Intelligence, Edinburgh University.

Nolfi, S. Floriano, D. Miglino, O. and Mondada, F. 1994.
How to evolve autonomous robots: different ap-
proaches in evolutionary robotics, Proc. of Artificial
Life IV, pp. 190-197.

Pomerleau, D.A. 1993. Neural network perception for
mobile robot guidance, Kluwer Academic Publis hers.

Schmidhuber, J.H. 1996. A general method for multi-
agent learning and incremental self-improvement in
unrestricted environments. in Evolutionary Comp u-
tation: Theory and Applications. Scientific Publis h-
ing Co., Singapore.

Schultz, A.C. 1991. Using a genetic algorithm to learn
strategies for collision avoidance and local navig a-

tion, Proc. of the 7th Int. Symposium on Unmanned,
Untethered, Submersible Technology, Durham, NH,
pp. 213-225.

Sharkey, N.E. 1998. Learning from innate behaviors: a
quantitative evalution of neural network controllers,
Autonomous Robots, 5(3/4):317-334.

Sudkamp, T. and Hammell, R.J. 1994. Interpolation,
completion and learning fuzzy rules, IEEE Trans. on
Systems, Man and Cybernetics, 24(2):332-342.

Singh, S.P. Barto, A.G. Grupen, R.A. and Connolly, C.I.
1993. Robust reinforcement learning in motion plan-
ning with harmonic functions, Proc. of NIPS '93.

Tani J. and Fukumura, N. 1994. Learning goal directed
sensory-based navigation of a mobile robot, Neural
Networks, 7(3):553-563.

Turksen, I.B 1992. Fuzzy second generation expert sys -
tem design for IE/OR/MS. Proc. of IEEE Int. Conf. on
Fuzzy Systems, pp. 797-786.

Watkins. C. J. 1989. Learning from delayed rewards.
PhD Thesis, King’s College Cambridge UK.

Ward, K. and Zelinsky, A. 1997. An exploratory robot
controller which adapts to unknown environments
and damaged sensors. Int. Conf. on Field and Serv-
ice Robots, pp. 477-484 Canberra, Australia.

Yuta, S. Suzuki, S. and Iida, S. 1991. Implementation of a
small size experimental self-contained autonomous
robot: sensors, vehicle control and description of
sensor behavior, Proc. of 2nd Int. Symposium on Ex-
perimental Robotics, pp. 25-27, Toulouse, France.

Wyeth, G. 1998. Training a vision guided mobile robot,
Autonomous Robots, 5(3/4):381-394.

Zadeh, L.A. 1992. Outline of a new approach to the
analysis of complex systems and decision processes,
IEEE Trans. on Systems, Man and Cybernetics, 3:779-
786.

Zelinsky, A. and Kuniyoshi, Y. 1996. Learning to coor-
dinate behaviors in mobile robots, Journal of Ad-
vanced Robotics, 10(2):143-159.

21

Koren Ward received her BCompSc degree in Com-
puter Science from the University of Wollongong in
1995. Currently she is a PhD candidate at the University
of Wollongong working on the development of rapid
alternatives to existing robot behaviour learning meth-
ods. Her research interests include knowledge discov-
ery from data, internet robotics and human-computer
interfaces.

Alexander Zelinsky was born in Wollongong, Austra-
lia in 1960. He worked for BHP Information Technology
as a Computer Systems Engineer for 6 years before
joining the University of Wollongong, Department of
Computer Science as a Lecturer in 1984. Since joining
Wollongong University he has been an active re-
searcher in the robotics field and obtained his PhD in
robotics in 1991. He spent nearly 3 years (1992-1995)
working in Japan as a research scientist with Prof.
Shinichi Yuta at Tsukuba University, and Dr. Yasuo
Kuniyoshi at the Electrotechnical Laboratory. In March
1995 he returned to the University of Wollongong, De-
partment of Computer Science as a Senior Lecturer. In
October 1996 he joined the Australian National Univer-
sity, Research School of Information Science and Engi-
neering as Head of the Robotic Systems Laboratory,
where he is continuing his research into mobile robot-
ics, co-operative multiple robots and human-robot in-
teraction. In January 2000 Dr. Zelinsky was promoted to
Professor and Head of Systems Engineering at The
Australian National University. Prof. Zelinsky is a
member of the IEEE Robotics and Automation Society
and is currently President of the Australian Robotics &
Automation Association.

