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Abstract

In this paper we present a theoretical analysis of a behaviour-based navigation system that we
have developed for autonomous mobile robots. The robot navigates in an unknown
environment, and avoids obstacles. While behaviour-based systems for robotics are currently
being chosen over the well-established, traditional AI approaches, no well-defined theoretical
foundation has been presented to support such systems. One of their most common problems is
that they tend to suffer the problem of competing behaviours. Our work shows that the system
we have developed possesses the property of completeness while performing a physically
grounded search. We show how the navigation problem can be expressed in a mathematical
manner, from which making improvements is substantially easier. We present experimental
results of a real robot navigating in complex environment with our system.
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Introduction

Behaviour-based [Brooks 86] approaches in robotics are being used extensively as an
alternative to AI approaches. Behaviours are normally engineered by trial and error, and
complete their tasks without a proper model from which to work. For example, consider what
happens when a robot comes upon an obstacle while it is navigating. An unresolvable state may
eventuate from the competing move-to-goal behaviour and obstacle-avoidance behaviour.
Behaviour-based systems can get into a deadlocked state between competing behaviours; this is
an undesirable effect of these systems. Some of the techniques for solving such a problem are
to introduce randomness [Arkin 92], or relocate the goal [Adams 90], but with those
techniques, the robot does not benefit from knowledge gained from failure. Our work has
mainly been concerned with improving the behaviour-based approach. In one of our approaches
we introduce a Purposive Map (PM) [Zelinsky 95]. The PM is used as a resource to coordinate
the arbitration of behaviours; we found that by using a PM, knowledge can be acquired, and the
system becomes more robust.

Little theoretical work has been done on behaviour-based approaches. Few attempts
have been made to show how behaviours will perform, and how behaviours can be improved.
Some strategies have been formally stated [Lumelsky 87]. We are working with autonomous
mobile robots navigating in an unknown environment, with an arbitrary number of obstacles. In
our approach, the autonomous mobile robot would only require four simple navigational
behaviours: Free-Space-Move; Move-to-Goal; Avoid-obstacles; and Contour-Following. These
behaviours use the PM as a resource to accomplish its task. Further details about these
behaviours will be given later. Our autonomous mobile robot will be guided by the potential
fields until either a local minimum has been encountered, or the test for reachability becomes
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true. Consider a farmer travelling from one paddock to another. If he comes to a high, long
fence. To find a gate, which way should he start walking? Also and how far should he go
before he turns back and tries going in the other direction? At this point, the farmer will possess
some of the same behaviours as our autonomous mobile robot.

Potential field methods are used for collision avoidance in robot navigation [Khatib 86].
However, their main aim is to be real-time efficient, rather than on reaching the final target. The
problem with potential field methods is that they can be trapped in local minima. One of the
methods for solving the local-minima problem works by defining a potential function with no or
few local minima; other methods use search techniques. Such search techniques will be the
main focus of this paper.

The local minima are defined as those points where the sum of the attractive potential
force and the repulsion potential force is equal to zero. There are two possible types of local
minima: minima in which the target is blocked; and minima in which the target is in free space.
These types of local minima are shown in Figure 1.
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Figure 1

We will show that our approaches are mathematically sound and provide a complete
search of the solution space. Being able to define the behaviour mathematically, it will be
substantially easier to enhance behaviour. Also, other similar behaviours can be easily
compared.

The navigation behaviours of an autonomous mobile robot

The autonomous mobile robot in this study is able to rotate through 360 degrees. The robot
houses a number of distance sensors, which help it to sense surrounding obstacles. The system
will be monitored and coordinated with the aid of a PM. The autonomous mobile robot
possesses the three navigational behaviours that we mentioned previously. It also has
knowledge of its current and previous locations.

The three basic behaviours are as follows:
Free-Space-Move behaviour: if the robot can sense free space directly in front, it moves
forward toward the free space for some period of time. This is very human like; if we
saw a free space in the direction in which we wanted to move, we would proceed
forward.
Potential Field Methods: these will be used to guide the robot. This is obtained by
summing the total attractive and repulsive potentials. Further details of potential field
methods can be found in [Latombe 91]. The use of potential field methods will allow the
robot to possess two sub-behaviours: Move-to-Goal and Avoid-Obstacles.
Contour-Following behaviour will guide our autonomous mobile robot in either
direction about an obstacle, regardless of the shape of the obstacle. The test for
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reachability and the escaping technique form part of this behaviour. The escaping
technique will not only a escape from behind a obstacle, but it will also be able to find
an opening. The farmer would be able use this technique, as well as our robot. The first
technique has been experimentally demonstrated by [Zelinsky 95].

The environment

The environment contains a Start and a Target. The task given to our autonomous mobile robot
is to move from the start to the target, if a continuous path exists. The environment also
contains an arbitrary number of obstacles that can be either of a convex or concave shape. These
obstacles may be connected (very much like a real world environment).

The avoidance scheme

Procedure:
1. Calculate the potential forces by summing all attractive and repulsive potentials, then move

toward the target using the potential forces until:
(a) the total potential force becomes zero. Check:

(i) if the Target is reached, the robot stops.
(ii) if a local minimum has been encountered, mi  is defined; Goto step 2.

2. Check for free space. If free space is ahead, the robot moves forward. Otherwise Do step 3.
3. Start contour following:

(a) Define a line segment mi ,oi( ) between the local minimum mi  and the object oi . This
line segment is used to test for target reachability.

(b) Contour-Following : the robot starts in one direction (eg. counter clockwise) for a
set distance n, and moves forward until either the distance n is reached, or it
escapes. If it does not escape before the distance n is reached, the robot is released,
as in step 1. If it returns to the local minimum, and repeats the process in the other
direction. If it does not escape, it will again return to the minimum. Now the robot
will have travelled in both directions. n will then be doubled, and the whole process
repeated. Testing for reachability is done while the robot is travelling in each
iteration. The basic motion of our robot is shown in Figure 2.
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Figure 2

It is clear from this procedure that the most of the execution time will be spent escaping
from an obstacle. This is where our analysis begins.

Analysis:
The total length of the path produced by this escaping technique should never exceed the limit of



- 4 -

(1) ρ =
5D

2
− 4n m > 0

3n m ≤ 0












 where m = log2

D

2n












where D is the total facing length of the obstacle, n is the trial distance before returning to the
minimum, and m is defined as the number of turns required to escape.

Proof:
To show this, consider moving in either direction. The worst case would be to start from the
middle of the facing obstacle; the most number of trials would be required. At most the distance

n required to escape D would be 
D

2
 in one single step.

A sequence of trials will have occurred, of the form n,n,2n,2n,4n,4n,... . This can be
expressed as 2i ⋅ n . With both directions being explored, we rewrite this as
2 × (n,n,2n,2n,4n,4n,...) and 4 × 2i ⋅ n . This would form the series 4n + 8n + 16n + 32n,....

Therefore we can write,

(2) 4 2i

i=0
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This represents the total distance travelled, in m steps, before escaping. And the mth step would

not need to exceed 
D

2
.

From these sequences, we can see that the term m can be derived from:
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From this we can be write:
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Substituting for the summation, we can rewrite this as:

(7) ρ = 4n(2m −1) + D

2

By substituting (4) into (7), we will get (1).
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If m > 0 then n must be less than 
D

2
. Therefore equation (7) will be used.

If m ≤ 0 then ρ = 3n , and n is greater than or equal to 
D

2
. When this condition holds, the best

case would be 1n; otherwise, if the robot starts in the longer direction of D, the worst case is
3n.

Improving the behaviour

One method of improving this behaviour would be to double n each time the same local
minimum is reached. This is illustrated as follows.

From our previous analysis, we can see that by altering the search scheme, substantial
improvements can be made. By changing 3 (b) in the previous procedure:

(b) Contour-Following : the robot starts in one direction (eg. counter clockwise) for a
set distance n, and moves forward until either the distance n is reached, or it escapes.
If it does not escape before the distance n is reached, it returns to the local minimum,
and repeats the process in the other direction, for distance 2n. On each return to the
local minimum the distance is to be doubled. The same test for reachability is done
while the robot is travelling in each iteration. The basic motion of our robot is shown
in Figure 3.
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Analysis:
The length of the path produced by this escaping technique should never exceed the limit of
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where D is the total facing length of the obstacle, n is the trial distance for each turn. m
is defined as the number of turns required to escape.

Proof:
To show this, consider moving in either direction. The worst case would be to start from the
middle of the facing obstacle; the largest number of trials will be required. At most the distance

n required to escape D would be 
D

2
 in one single step.

A sequence of trials will have occurred, of the form n,2n,4n,8n,.... This can be
expressed as 2i ⋅ n . With both directions being explored, we rewrite this as 2n,4n,8n,.... This
forms the series 2 × n + 2n + 4n + 8n+...( ).

Therefore we can write:
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(9) 2 2i
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Which in turn is:

(10) ρ = 2n(2m −1) + D

2

This will, in turn, give us equation (8) by substitution.

From this second proof we see no reason why improvment would not be gained through
incresing the multiple amount from double to a higher value on each return of the same local
minimum. A probability study would be ideal in determining this value, but is beyond the scope
of this paper.

Testing for reachability

Testing for reachability provides a way of preventing the robot from over-searching, if no
solution exists. By determining that no solution exists, resources will not be wasted (eg. battery
power). Whenever a local minimum occurs, mi  is defined for the ith , i=1,2,3,4... for each local
minimum the robot encountered. If, for mi , i is 1 and a local minimum occurs. This can only
mean that either no obstacle was encountered while travelling from the Start to the Target, or the
target cannot be reached.

Procedure:
Test for reachability: when the local minimum is reached, a line segment from this local
minimum mi  to the obstacle is defined. This line is normally determined by the sensor facing
the obstacle. While the robot is trying to escape this local minimum, if it crosses this line
segment, it can only mean that at each point on its path, the robot will cross the surface of the
obstacle if it tries to move towards the target. Therefore, the target is unreachable. Consider the
two extreme cases: the target being inside a closed room; and the target being outside a closed
room. This is illustrated in Figure 4.
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Figure 5 shows the motion that the robot would take inside a maze, and how the test for
reachability will still apply.
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Testing for line intersection is shown as:

x1, y1( )

x2, y2( )

x3, y3( )

x4, y4( )

Figure 6

(11) λ = (x3 − x1)(y3 − y4 ) − (y3 − y1)(x3 − x4 )
(x2 − x1)(y3 − x4 ) − (x3 − y1)(x3 − x4 )

When 0 ≤ λ ≤ 1, the robot has crossed the line segment (mi ,oi ). If λ = 0  the robot
crossed at the local minimum. If λ = 1 the robot crossed at the obstacle (this could never
happen physically). This could be useful for adjusting sensor errors. Other information can also
be obtained from λ . For example: if λ  becomes ∞, the robot is moving parallel to the line
segment (mi ,oi ). If λ > 1 the robot’s movement will intersect with the projection of the line
segment (mi ,oi ) further on. If λ < 0 the robot’s movement intersected with line segment
(mi ,oi ) further back. This information may be used for determining the direction of the robot’s
movement.

Results

Our implementation of this scheme used a Nomad200 robot simulator navigating in an
unknown environment. The Nomad robot was able to perform the same experiments in a
similar fashion. In most of the experiments the value of n is normally set to the maximum
sensor range. The test for reachability is done with the assistance of the Nomad’s global
coordinate system. Figure 7 shows a Nomad200 escaping from a wall of boxes.
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Figure 7

Conclusion

This paper has presented a method for analysing behaviour-based schemes for navigation in an
unknown environment. As far as we are aware, only [Lumelsky 87] has formally attempted to
state navigation algorithms for unknown environments in a similar manner. This paper has
shown that the behaviours we have developed are mathematically sound and contain the
property of completeness (ie. if there is a solution, it will be found, otherwise it will terminate).
The behaviours can be expressed in a mathematical form to allow further analysis and
improvement. We also believe that this analysis can easily be applied to other behaviours.

From a practical viewpoint, a system that can determine completeness means that
resources will not be wasted (eg. the battery power of the robot).

Further studies could improve the avoidance scheme - for example, by using a Fibonacci
sequence. Also, a probability study can be undertaken to determine the best nth terms from
which to start the search.
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