Finger Track - A Robust and Real-Time Gesture
Interface

Rochelle O’Hagan
Department of Computer Science
Faculty of Engineering & Information Technology
The Australian National University
CANBERRA ACT 0200
rohagan@syseng.anu.edu.au
Tel. (02) 6216 7092 Fax. (02) 6279 8688

Alexander Zelinsky
Department of Systems Engineering
Research School of Information Sciences & Engineering
The Australian National University
CANBERRA ACT 0200
alex@syseng.anu.edu.au
Tel. (02) 6279 8840 Fax. (02) 6279 8688

Abstract

Real-time computer vision combined with robust gesture recognition provides a natural
alternative to traditional computer interfaces. Human users have plenty of experience with
actions and the manipulation of objects requiring finger movement. In place of a mouse, users
could use their hands to select and manipulate data. This paper presents a first step in this
approach using a finger as a pointing and selection device.

A major feature of a successful tracking system is robustness. The system must be able to
acquire tracked features upon startup, aedcquire them if lost during tracking. Re-
acquisition should be fast amdcurate (i.e. ithwould pick up the correct feature). Intelligent
search algorithms are needed for speedy, accurate acquisition of lost features with the frame.
The prototype interface presented in this paper is based on finger tracking as a mgauns of i

to applications. The focus of the discussion is how the system can be made to perform robustly
in real-time. Dynamically distributed search windows are defined for searching within the
frame. The location and number of search windows are dependent on the confidence in the
tracking of features. Experimental results showing the effectiveness of these techniques are
presented.

Introduction

Gesture forms a major part of human communication. In fact one definition of gesture
is “body movements which are used to convey some information from one person to
another” [Vaananen & Bohm]. The form of gestures may vary, but most cultures use
gesture to convey information in addition to speech. Humans are also very familiar
with direct manipulation of objects. People use their hands to move and shape objects

and to learn about their environment. Direct manipulation gesture-based interfaces to
computers should, therefore, be intuitive and familiar to users.

Gesture is either spontaneous or conscious. Spontaneous gestures are usually
associated with speech and are the primary form of gesture. Conscious gestures
provide other information - they can be used as a means of learning the environment
through tactile experience, and as a manipulation device. In order to avoid pre-defined
interaction techniques and use gesture as an alternative to the mouse for object
positioning and manipulation, conscious gestures must be recognised and understood
[Cassell]. To determine an appropriate subset of gestures, it is important to understand
different types of gesture and the purpose for which various gestures are used.

Two methods of classifying gestures are by type and by function. Cassell classifies
conscious gesture by type into groups suckerablematicor propositional gestures.
Examples of emblematic gestures include the “V-for-victory” gesture and “thumbs up”
or “okay” ring. Propositional gestures are also associated with speech, and consist of
gestures such as using the hands to indicate size while saying “it was this big”.
Conscious gestures have three functional roesniotic ergotic andepistemidCadoz

94]. Gesture in interaction with computers has traditionally focused on the ergotic
function - for example typing on a keyboard, moving a mouse and clicking buttons.
Both tie the user to the computer by wired hardware. Neither is a natural interface,
merely a means of transferring information to the computer.

Computer vision allows body parts and gestures to be an effective and non-intrusive
means of input into the computer. The camera can be located as an unobtrusive sensor
of human movement. No wired components or markers need to be introduced into the
system allowing greater flexibility of action. Various work has been carried out using
computer vision with gesture recognition. Crowyal have shown a system using a
finger or other object such as a pencil as an input interface to a simple painting
program. The system starts tracking when an object is moved into a trigger region. |If
tracking of the object is lost, the system waits until another object enters the trigger
area and then continues tracking the new object. We believe that automatic recovery is
necessary in a tracking system. |If the target moves out of the workspace and then
reenters, it shouldn't have to move to a specific area for tracking to continue, but
should be automatically reacquired by the system.

A system developed by Pavlowt al uses two cameras and special lighting to track the
motion of the hand and recognise gestures at approximately 10 frames per second. This
is slower than the NTSC video rate (30Hz) and doesn't allow for real-time performance
of rapid motion gesture. The development of real-time hardware vision systems [Inoue
et. al] allows successful tracking at video rate. These systems have been used for
robot vision and head tracking. Zelinsdy al, using the Fujitsu vision system, have
produced a system capable of tracking and recognising facial gestures at frame rate.
The head-tracking system uses Kalman filters and a relative feature location network to
provide robustness. It relies on located features to help determine the position of other
features. This works well with the head and face, but is not appropriate for single
feature tracking.

The fundamental requirements of such systems are speed, robustness and adaptability.
Tracking of features and processing of gestures must be accomplished in real-time (30
Hz for NTSC video). The system must be able to initially acquire, and when lost
automatically reacquire, features quickly and accurately. The system must also not rely
on special lighting, marks or stickers on the hands, specific “trigger” locations or any
other artificial means of aiding tracking.

Finger Track

As a first step toward full hand tracking in three dimensions, we developed the two-
dimensional finger tracking interface. The main purpose of the interface was to support
investigation into ways of improving the reacquisition of lost features, and hence the
robustness of the tracking system. Exhaustive systematic searching of the entire video
frame takes too long to be a viable option. Also, as the system is dynamic, there are no
guarantees that the object (hand) will stop moving just because tracking has been lost,
S0 a systematic search could fail to find the object completely. Intelligent search
algorithms are needed. The tracking system gives two basic pieces of information - the
location where the feature was last detected, and the vector of movement at that time.
Our system implements a dynamic search pattern focusing initially on areas where the
feature is most likely to be found, and widening the search area over time as the feature
remains undetected.

The system used a single video camera and dedicated image processing hardware to
track the motion of the user’s finger. Image correlation was used to determine the
location of the finger in the video frame. Positional information and point or click
status was sent to a server program which generated events similar to mouse events for
the application programs. Search algorithms were implemented to produce a robust
tracking system.

Advances in computer vision have led to achievable real-time performance in tracking
features. Dedicated hardware allows processing of video images at frame-rate giving
rise to the possibility of performing real-time tracking and recognition of gestures. In
any vision based tracking system, tracked features will be lost at some stage. Indeed
the system will be in a “lost” state at startup and will have to find the required features
within the whole frame. In order to accomplish this reacquisition as quickly as
possible, given a limited amount of processing power available, intelligent search
methods are needed. A systematic search of the whole image is time-consuming and,
with features that are probably moving, quite likely to fail to find the features. A
search process that distributes search windows based on the last known location of the
feature and the direction of movement is likely to find the feature more quickly than an
exhaustive search. The searched area of the frame is initially constrained to the
probable location of the feature, and then gradually increased as the feature remains
undetected.

The Vision System Used in this Prototype

The Fujitsu MEP tracking vision system was used to track the finger pointer for the
gesture interface. This system is designed to track multiple templates in the frames of a

NTSC video stream in real time. The vision system consists of two VME-bus cards - a
video module and a tracking module which can track up to 100 templates
simultaneously at video frame rate (30 Hz for NTSC). The vision system is controlled
by a MC68040 processor card running VxWorks (see Figure 1).

i

: \\'- Widas
Zl X
| . ..'|2="i- I\-':=I |= I
H

_l;_lq:l-'i'li,i. M o b=]

WME

Bus

| wiviE 162 Embecicd Cantrolles |
1

| tthemet Transcsver

i Ethemat
N ¥

=
WaTkALALK

R W,
Figure 1. SystentConfiguration

Object tracking is based on comparison of templates within a defined search window.
Templates can be either 8x8 or 16x16 pixels in size, with a magnification of up to 4
times a template. The video module digitises the video input stream and stores the
digital images in dedicated video memory (VRAM) which is also accessed by the
tracking module. The tracking module performs a comparison between the stored
templates and the live video at a given location within the frame. The comparison is
done using a cross correlation which sums the absolute difference between
corresponding pixels in the template and frame. The resulting value is called the
distortion, and measures the similarity between the two images. The formula for
distortion is shown in Equation 1 wheBezeis the size of the template (8 or 1Gjx,y)

is the grey value of the template at the specified co-ording(gsy) is the grey value

of the pixel in the last framex,, m, are the magnification of the template in x and y
directions ana,, o, are the offsets in the frame.

Size Size

D=22

x=0 y=0
wherex, = xx m,

Y=y xm Equation 1
Xp =XXm+Qq
Y =yxm +q,

High distortions indicate a poor match while low distortions result when two very
similar images are compared. The distortion provides a measure of confidence in the
tracking of features. A threshold value of 4000 was determined for the fingertip
beyond which tracking seemed to fail. Confidence in tracking was high for distortion
values much less than 4000, but dropped off markedly for values above 4000. The
linear relationship between distortion and confidence was used in the calculation of
search window locations where raw distortion values were too large.

a.(x:%)- g (%: %)

For successful feature tracking it is necessary to calculate the distortion at a number of
points within the search window. The tracking system performs up to 256 cross
correlations per feature within the search window and finds the position in the image
frame where the feature matches with the lowest distortion. Motion is represented by a
vector to the origin of the lowest distortion. The search window can be moved along
the axis of the motion vector to track an object. For objects that do not change their
appearance or shade and are never occluded by other objects, the tracking system works
perfectly.

Tracking the Finger

Problems occur when trying to track finger and hand movements as the fingers (in a
16x16 template) do not differ significantly from each other. Also, the shape of the
finger is altered by rotation which often occurs when moving the finger over the
workspace. Fortunately, the hand’s rotation is physically limited in the plane and does
not pose difficulty in tracking.

Figure 2. Point Gesture Figure 3. Click Gesture

The vision system was used to track the fore-finger of the hand. Templates were
defined of the finger in the “point” position (see Figure 2), and in the “click” position,
with the second finger brought alongside the first as shown in Figure 3.

To fully exploit the capability of the vision system, templates were compared not only
with the expected position of the finger in the frame, but with surrounding areas as
well. The location and number of the surrounding search windows is dependent on the
confidence in the current position estimate. When confidence that the finger is being
accurately tracked is high, search windows are distributed closely around the expected
position. When the feature’s position is less certain, the area search windows spread
out to cover a wider area of the frame. Fewer search windows are used when the
feature is tracking well. If the object is determined to have been lost completely, a
search is performed to find it again.

The tracking program allowed the user to define the workspace, move the “mouse”
around within the workspace and have the corresponding movement echoed within the
application program, and to select screen objects by “clicking” on them. The user's
workspace needed to be defined so that accurate relative positions could be mapped to
the screen. The user set up the workspace at the beginning of the session by moving
the forefinger to the upper-left and lower-right hand corners of the workspace, and
performing the clicking action (see Figure 4). This provided the reference coordinates
for the workspace area. After setting up the workspace, the user could move the mouse

l
b \ [T_Lj Click Gesture
Move finger

\ Point Gesture

Workspace M

Figure 4. Defining the workspace

cursor around the application program by moving their finger within the defined
workspace, and select objects by performing the click action. Double-clicking was
achieved by repeating the click action within a short time. The tracking system was set
up as a server on VxWorks and passed event calls to application programs as they
occurred. This is similar to the way a mouse works. Changes in the position of the
finger were sent by the server using Xevents to the application programs. When
“clicks” and “double-clicks” were detected, the change in state was also passed to the
application. The Finger Tracker interface was trialed with programs such as xv and
xfig. This showed that the finger could be tracked in real-time with cursor movement
on the screen providing feedback to the user. This was sufficient to test the robustness
of the tracking system.

Building Robustness

To initially acquire the finger and start tracking it, it was necessary to find the feature
within the frame. The number and location of search windows was determined by the
distortion values obtained from the vision system. The program always knows the
expected location of the feature and eight surrounding search areas to search in each
frame. As the distortion values increased, the certainty that the feature is tracking
declines and so more search windows are introduced. It was also important to know
that the system was tracking the correct feature. To ensure this, a malus factor was
defined, and when the distortion of the new object in relation to the current feature
went below the malus factor, tracking switched to the new feature.

Search windows were distributed at a distad¢cdrom the last known position of the
feature, and at an angk from the feature’s direction of movement. The distribution

LB

Figure 5. Search window distribution
function f(d).

function (Figure 5 & Equation 2) was determined experimentally. The disthwes
calculated in (Equation 3), wheege P are dependent on the confidence of the last
known position, ang is a random value between 0 - 511 (the maximum size of the
frame). This distribution meant that when the confidence in the previous location of
the feature was high, the search windows were mostly distributed close to the previous
location. When confidence decreased, the windows were more widely spread away
from the last location.

_ 1
1+ald|”

f(d)

Equation 2

0
al=2E o Equation 3
=3 yH l% quation

The vision system calculates a movement vector for each template in every frame. This
vector gives the direction of motion of the feature when tracking was lost or became
uncertain. This movement vector can be used to limit the area of the frame that is
initially searched as it is likely that the feature will be somewhere in the direction it was
last moving. The confidence in the tracking is used to specify an an@letween 1%

and 180), which constrains the search window placement directions. Search windows
are placed withint 0 ° of the movement vector direction at a randomly generated
angle. When the feature was completely lost, for example at startugs set to 180,

giving a full 360 of search area. As the time that the feature has been lost inceeased,
was increased to search a wider area of the frame. Figure 6a shows the system when it
is tracking the finger. Search windows for a feature that was lost with no reliable
movement vector is shown in Figure 6b. The windows are distributed in the fell 360
around the centre of the frame. Figure 6¢c shows the search windows generated for a
feature with the movement vector headed straight down the workspace.

a. Tracking the finger. b. 3BDistribution. c. Directed search
distribution.

Figure 6. Search Window Distribution

The vision system can track ~100 templates at frame rate. However, there is limited
computation time (33ms) between frame grabs. If the system isn’t released in time for
the next frame grab it waits for the following time slot and so tracking slows down.
The computation time is used to calculate the best template match from the distortion
values and to calculate the locations of all the search windows. It is important
therefore, to only process as many search windows as are necessary to find the feature.
The number of search windows was varied according to the confidence of tracking.
When the feature was completely lost, the maximum number of search windows were
allocated to maximise the chance of finding the feature in the frame.

Conclusions & Further Work

An un-obtrusive, prototype gesture interface allowed investigation of techniques for
robust, real-time feature tracking. Fingers of the hand were tracked and events
generated and passed through a server to the application program in the same manner as
mouse events. When the system lost the finger or confidence in the tracking decreased,
more search windows were allocated to recover the feature. A dynamic distribution of
the search windows concentrating on the last known location and direction of
movement of the object improved the ability of the system to recover the feature and
resume tracking.

The long-term goal of the work reported in this paper is to develop a robust, real-time
gesture interface for three-dimensional virtual environments. Two-dimensional
pointing devices are inadequate for three-dimensional environments such as the Virtual
Workbench [Postoet. al]. Currently available interfaces such as data-gloves and the
Polhemus FastTrak stylus and switch can be awkward to use in rotation and
manipulation of objects in virtual space. These devices are also intrusive, physically
connecting the user to the hardware and thus limiting freedom of movement. A vision-
based gesture interface could provide an unobtrusive, flexible interface to the virtual
world and allow natural manipulation of virtual objects.

The current work forms a good base for tracking the hand and recognising other
gestures in three dimensions. The techniques used for feature recovery and acquisition
can be transferred to a full hand tracking system, thus providing robustness.

Acknowledgements

This research is supported by The Australian National University and the Co-operative
Research Centre for Advanced Computational Systems. The presentation of this report
was greatly improved by the assistance of Duncan Stevenson. Technical assistance was
gratefully received from Jochen Heinzmann, Gordon Cheng and David Jung.

Bibliography
[Cadoz] C. Cadoz, “Les realites virtuelles”, Dominos, Flammarion, 1994.
[Cassell] J. Cassell. “What You Need to Know about Spontaneous Gesture, and Why

You Need to Know It”. ¥ International Conference on Automatic Face and Gesture
Recognition, Vermont, October 1996.

[Crowley] J. Crowley and J. Coutaz, “Vision for Man Machine Interaction”, EHCI,
Grand Targhee, August 1995.

[Crowley et. al] J. Crowley, F. Berard, and J. Coutaz, “Finger Tracking as an Input
Device for Augmented Reality”, International Workshop on Gesture and Face
Recognition, Zurich, June 1995.

[Inoue et. al] H. Inoue, T. Tachikawa and M. Inaba, “Robot Vision System with a
Correlation Chip for Real-time Tracking, Optical Flow and Depth Map Generation”,

Proceedings 1992 IEEE International Conference on Robotics and Automation,
pp.1621 - 1626, 1992.

[Pavlovicet. al] V. Pavlovic, R. Sharma and T. Huang, “Gestural Interface to a Visual
Computing Environment for Molecular Biologists”, Proceedings of the 2d International
Conference on Automatic Face and Gesture Recognition, pp. 30-35, 1996.

[Postonet. al] T. Poston and L. Serra, “The Virtual Workbench: Dextrous VR”,
Proceedings ACM VRST'94 - Virtual Reality Software and Technology, pp. 111-122,
1994.

[Vaananen & Bohm] Gesture-driven interaction as a human factor in virtual
environments-an approach with neural networks. In R.A. Earnshaw, M.A. Gigante &
H. Jones (Eds.Yirtual Reality SystemsLondon: Academic Press Ltd.

[Zelinsky et. al] A. Zelinsky and J. Heinzmann, “Real-Time Visual Recognition of
Facial Gestures for Human-Computer Interaction”, Proceedings oftheténational
Conference on Automatic Face and Gesture Recognition, pp. 351-356, 1996.

