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Abstract

The use of visual landmarks for robot localisa-
tion is a promising field. It is apparent that
the success of localisation by visual landmarks
depends on the landmarks chosen. Good land-
marks are those which remain reliable over time
and through changes in position and orienta-
tion. This paper describes a system which
learns places by automatically selecting land-
marks from panoramic images and uses them
for localisation tasks. An adaption of the bi-
ologically inspired Turn Back and Look be-
haviour is used to evaluate potential land-
marks. Normalised correlation is used to over-
come the affects of changes in illumination in
the environment. Results from real robot ex-
periments are reported, showing successful lo-
calisation from up to one meter away from the
learnt position.

1 Introduction

Visual localisation is one of the key problems in mak-
ing successful autonomous robots. Vision as a sensor is
the richest source of information about a mobile agent’s
environment and as such contains information vital to
solving localisation problems. One limit to visual lo-
calisation is the narrow field of view offered by normal
monocular camera systems. Obviously the greater the
field of view of the camera the more information about
the environment can be extracted through visual pro-
cessing.

Figure 1: A panoramic image

Another problem is that vision provides us with too
much information. In fact one of the main tasks of vision
science is to work out which parts of the information is
necessary for the given job and to discard or put aside
that which is not.

1.1 Panoramic Imaging for Localisation

Panoramic imaging can solve the first problem men-
tioned above [Yagi et al., 1994]. By the use of con-
vex mirror shapes greater fields of view can be achieved.
Panoramic mirrors give the full 360 degrees of horizontal
visual field and can get over 140 degrees in the vertical
field as well as shown in figure 1. This increase in the
visual field comes at the cost of resolution in some parts
of the picture however, as it must be captured with a
camera with a normal field of view.

With the full 360 degree horizontal field of view there
is more information from which to achieve the navigation
tasks of localisation, path planning and path traversal.
[Matsumoto et al., 1997] use panoramic pictures to nav-
igate a robot down corridors using a view sequence ap-



proach. The robot memorises a sequence of panoramic
images along a route, acquiring new images once the cur-
rent view drops below a set correlation threshold with
the last image. This works well in the corridor environ-
ment, with the environment only changing sufficiently to
warrant a new view being memorised every 1-2 meters.
In a non-regular environment however the rate of ac-
quisition would increase dramatically as the panoramic
image would change dramatically over small distances.

1.2 Natural Landmarks for Navigation
An attractive solution to this problem is the use of land-
marks for localisation tasks. Using landmarks in locali-
sation requires only parts of an environment to be stored
and can contribute to accurate localisation with the aid
of triangulation techniques. The use of landmarks would
overcome the acquisition rate problem by not requiring
the entire visual field to remain constant, therefore max-
imising the area in which one set of landmarks can be
used for localisation.

Obviously the success of localisation using landmarks
depends on the choice of landmarks [Thrun, 1996].
[Bianco and Zelinsky, 1999] describe a monocular system
where landmarks are chosen on the basis of their relia-
bility. To be selected, landmarks must display unique-
ness in the immediate surroundings and the ability to
remain reliable as the robot moves through the environ-
ment. To this end the system monitors the reliability
of landmarks through a series of small arcs. This ‘turn
back and look’ behaviour is inspired from observations of
honey bee flight patterns [Collet and Zeil, 1996] [Lehrer,
1993].

The applicability of panoramic camera systems to vi-
sual localisation using landmarks has been investigated
[Thompson et al., 1999]. In light of the increased field
of view available to the robot, both the landmark se-
lection strategy and the localisation procedures need to
be adjusted. Like Bianco and Zelinsky, Thompson et al.
describe systems which have the goals of:

1. Learning places in an environment associating areas
with sets of appropriate visual landmarks.

2. Localising mobile robots by locating sets of land-
marks which denote a particular place.

3. To ultimately use these landmarks to home to
places, and to navigate between places.

This paper details the implementation of such a system
and reports on some initial results from localisation ex-
periments on a real robot.

2 The System

2.1 System Setup
This system is implemented on a Nomad200 mobile
robot platform from Nomadic Technologies Inc. A spher-

ical mirror is mounted on an upwards pointing camera
on top of the robot to achieve panoramic vision. Images
are captures via a ACVC capture card and unwarped
in software to produce a 320×120 greyscale image. All
image processing is done in software, taking advantage
of Intel’s MMX Technology to speed correlation compu-
tations.

2.2 Learning a Place
The process of landmark selection is aimed at increas-
ing the localisation and navigation abilities of a mobile
robot in subsequent exposure to the environment. This
means that landmarks must be reliable, strongly identi-
fiable, they must be distributed throughout the image to
minimise the error in navigation calculations. They also
must be able to withstand distortions due to temporal
and translational distortions. To this end Bianco and
Zelinsky [1999] selects a number of landmarks from dif-
ferent sections of the static environment based on their
reliability. This reliability is then tested in a dynamic
environment by moving the robot about the original po-
sition.

Static Reliability of Landmarks
The static reliability of a landmark in Bianco and Zelin-
sky’s [1999] model, is determined by the uniqueness of
the landmark within its local region of the image. Local
uniqueness is defined as the degree to which the land-
mark template differs from the area of the image im-
mediately surrounding the landmark. This approach is
based on the ‘The Valley Method’ proposed by Mori et
al [Mori et al., 1995] to generate attention tokens in
a scene, which in turn appears to be an instance of a
Moravec interest operator [Moravec, 1977] applied to fea-
ture tracking. Bianco and Zelinsky adapt this method
for the present task of automatic selection of landmarks
as shown in figure 2. The figure shows correlation re-
sults obtained by matching a 16×16 template on a 32×32
search window centered on the original template. The
valley in the image is the template matched with itself,
thus having a high correlation (low distortion). Com-
paring the minimum matching distortion resulting from
the match of the landmark and the sixteen surrounding
values, shown by the grey square, with the value at the
bottom of the valley, the local uniqueness of the land-
mark is found. More formally:

r = 1− g/g′

where r is the reliability of the landmark, g is the dis-
tortion of the landmark matched with itself, and g′ is
the minimum matching distortion from the surrounding
circle of pixels. Given that g should only result in dis-
tortion due to noise, then the higher the distortion of
the minimum of the surrounding templates, the steeper



Figure 2: An example of the valley in the distortion ma-
trix caused by a reliable landmark. Figure from Bianco
and Zelinksy 1999

the valley in the distortion matrix and subsequently the
more unique the local template should be (see figure 2).

The panoramic image is divided up into 4 sectors cor-
responding roughly to forward, back, left and right of
the robot, and the best four landmarks in each sector
are selected. By dividing up the visual field in such a
way an equal distribution of landmarks can be ensured.
The sixteen best landmarks are then evaluated on their
dynamic reliability.

Dynamic Reliability of Landmarks
To be good navigational cues, landmarks need to be re-
liable in a changing environment. They need to remain
strongly identifiable under small changes in lighting and
shifts in perspective. To this end Bianco and Zelinsky
test the reliability of the statically selected landmarks
throughout a series of small arcs. This Turn Back and
Look (TBL) phase is inspired by observations of wasps
and bees on flights away from the hive [Collet and Zeil,
1996] [Lehrer, 1993]. Figure 3 shows the path taken by
Bianco and Zelinsky’s [1999] robot on the TBL phase.
The robot moves further away from the original, or goal,
position while keeping the camera oriented towards it.
In a panoramic scene containing potential landmarks in
any direction, a TBL phase is needed which tests the re-
liability of the landmarks throughout movements in all
directions. At this stage a basic TBL movement is im-
plemented in the shape of a cross as shown in figure 4.
This covers movement in two planes and it is yet to be
determined if a more elaborate movement would have an
effect on the localisation performance.

Potential landmarks are tracked along this path and
their reliability measures are evaluated at approximately
400 steps along the way. Each landmark’s dynamic re-
liability is given by the average of the reliability mea-
sures taken over the entire path. The landmarks with
the highest dynamic reliability measure from each sector
are chosen to represent the place.

Figure 3: Bianco and Zelinsky’s TBL phase for dynamic
landmark selection

Figure 4: Modified TBL phase for dynamic landmark
selection with panoramic vision

2.3 Localisation
Localisation is simply a matter of matching sets of land-
marks, and their associated place, to the current visual
scene. A brute force search of landmarks throughout
the entire image is undertaken for each set of landmarks.
The robot is assumed to be in the place associated with
the set of landmarks which have the highest average cor-
relation in the current scene.

3 Localisation Experiments

Localisation experiments were carried out to determine
the performance of the system under a variety of con-
ditions described below. All experiments took place
in the Electro-Technical Laboratory, Intelligent Systems
Division. The environment is a semi-structured corridor
about 2.5 meters in width and over 15 meters in length.
All experiments consisted of an initial phase of learning a
place by guiding the robot to the desired place and initi-
ating the automatic landmark selection software. A sub-
sequent phase of guiding the robot to several positions
and attempting to locate the learnt landmarks gave the
system’s localisation performance results. The results
are correlation values from 0 to 1, with 1 representing
perfect correlation. The desired localisation performance
is to achieve high correlation results over the largest pos-
sible area, while still being able to discriminate between
seperate places. By having landmarks which can cover
a wide area, the system can cut back on the amount
of storage and processing time needed for localisation.
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Figure 5: Localisation performance of Statically vs Dy-
namically selected landmarks

High correlation within that area can allow more accu-
rate positioning by landmark triangualtion and can lead
to navigation behaviours such as homing and moving
between places.

3.1 Static Landmarks vs Dynamic
Landmarks

First to establish the usefulness of the Turn Back and
Look phase in automatic landmark selection, a compar-
ision of localisation performance for a given place was
made using landmarks selected by either soley static
landmark selection or by both static and dynamic se-
lection. In the place learning phase the most reliable
static landmarks are stored in addition to the best dy-
namic landmarks. Both were used to localise within a
2×2 meter section of the corridor environment, centered
on the place that was learnt. Measurements were taken
at 20cm intervals.

The results of using static landmarks for localisation
are shown in the first plot of figure 5. A sharp peak is
evident near the center, peaking at 0.79, but falling to
around 0.50, just 40cm from the peak, and maintaining
this to the edges of the graph. The second plot of figure 5
shows the results when using dynamic landmarks. Again
there is a peak near the center (0.86) but it is not nearly
so sharp and drops less rapidly. At about 60cm from
the peak with correlation values around 0.70, the slope
of the graph decreases further and eventually falls to
approximately 0.63 at the edges of the graph.

Comparing the two graphs shows that the use of dy-
namic landmarks for localisation results in higher cor-
relation measures over a greater area around the learnt
place than when using static landmarks. The two dif-
ferent slopes observed in the dynamic graph can be at-
tributed to the higher distortion of landmarks located
on the sides of the corridor (closer to robot), when com-
pared to those at the end of the corridor (further away).

Figure 6: Sample panoramic image captured at 15:00

Figure 7: Sample panoramic image captured at 20:00

Obviously the distances measured were not enough to
say for certain when the graph of the dynamic landmark
localisation would approach the 0.50 value. This should
be observable in the results from the place discrimination
experiments.

3.2 Localisation under Illumination
Changes

Next the affect of changes of illumination on the sys-
tem’s performance was investigated. A place was learnt
at 15:00, and the selected landmarks stored. The local-
isation phase was carried out immediately after learn-
ing and again at 20:00 that evening, using the same set
of learnt landmarks. Again the results given are for a
2×2 meter section of the corridor centered on the learnt
place, and the measurements taken at 20cm intervals.
Sample images from the robot during the 15:00 run and
the 20:00 run are shown in figures 6 and 7 respectively to
demonstrate the variance in illumination between trials.

Figure 8 shows the results from the localisation exper-
iments conducted with differing levels of illumination.
Both peak at the same position in the graph with sim-
ilar values (0.86, 0.87 respectively) and both follow the
same two step slope described in the previous experi-
ment, with values of around 0.63 at the edges of the
graph.

Figure 9 shows a good example of the robustness of
the normalised template matching routines. Landmarks
are tracked successfully despite rapidly diminishing illu-
mination.
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Figure 8: Localisation performance with differing light
levels: tests performed at 13:00 and 20:00

Figure 9: Landmark tracking under changing illumina-
tion
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Place Discrimination in Localisation
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Figure 10: Place discrimination using learnt landmarks.
3 sets of landmarks associated with 3 learnt places are
used to localise a robot along a 4 meter path. Places are
learnt at the positions associated with image numbers 8
(landmark set 1) , 27 (set 2) and 58 (set 3).

3.3 Place Discrimination
Finally the ability of the system to correctly discriminate
between places was tested. Three places were learnt at
sites roughly 1.5 meters apart down the center of the
corridor. Localisation measures were then taken contin-
uously for each of the learnt places as the robot moved in
a straight path of 4 meters in length down the middle of
the corridor. The correlation results for each set of land-
marks (and their associated place) are given in figure 10.
As the robot progresses down the path the landmark set
associated with the nearest learnt place has the highest
correlation. The deterioration in the performance from
landmark set 1 to set 3 can be attributed to the robot
wandering from the center of the corridor.

For the majority of the four meter traverse the robot
knows approximately where it is. It achieves this from
purely visual clues, not relying on any past observa-
tions or odometry. Clearly the process could benefit
from knowledge of previous positioning and a probab-
listic model could be added to the system to enhance
performance and robustness. Also an expectation of en-
countering a place due to past observations could signif-
icantly reduce the search time for evaluating potential
places and add to the scalelability of the system.

4 Conclusions and Further Work

This system described in this paper demonstrates the
use of automatically selected landmarks from panoramic
images in mobile robot localisation. The Turn Back and



Look phase of landmark selection results in landmarks
which are more reliable and can be recognised from a
greater area in the robot’s environment. These land-
marks can also be located despite dramatic changes in
illumination, due to the normalised correlation routines
implemented. Finally the system was demonstrated by
the robot localising between a number of learnt places
along a four meter trajectory.

An obvious extension of this work, as mentioned
above, is to introduce a probabilistic model for locali-
sation, with past observations influencing the outcome
of the next observation. The association of landmarks
with measures of reliability and correlation to the ob-
served scene should lend well to this approach.

The number and positioning of landmarks that are de-
sirable to represent a place is also an interesting question.
While in these experiments a minimal number of land-
marks were used, today’s hardware allows a much greater
number of landmarks to be tracked at frame rate. The
physical position of landmarks in relation to the robot
also poses a problem. For gross localisation, landmarks
which are far away and will not change under translation,
or even move in the visual field, are desirable. For ac-
curate localisation and navigation tasks, however, land-
marks that do not move, or move very slightly in the
visual field in response to ego motion, cannot provide
the robot reliable information about its relative position.
So landmarks which are very far away or lie along the
direction of motion of the robot are not as useful.

The desirable number and positioning of landmarks
for localisation and navigation is currently being inves-
tigated. Navigation algorithms for homing to places and
navigation between places are also being developed.
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